
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023 2005113

Analytical Formulation of Scattering From
Anisotropic Power-Law Spectrum Surfaces:

Getting Rid of the Cutoff Wavenumber
Gerardo Di Martino , Senior Member, IEEE, Alessio Di Simone , Member, IEEE,

and Antonio Iodice , Senior Member, IEEE

Abstract— Sea and soil surfaces exhibit power-law spectra over
a wide range of spatial frequencies. An analytical formulation of
the electromagnetic scattering from such surfaces can be obtained
via the two-scale model (TSM). However, this approach requires
the definition of a cutoff surface wavenumber, separating the
low- and high-frequency parts of the surface spectrum. The
final obtained normalized radar cross section (NRCS) value
is dependent on the choice of this cutoff wavenumber, which
is, to some extent, arbitrary. This problem can be avoided
by describing power-law spectrum surfaces via the theory of
fractional Brownian motion (fBm) two-dimensional (2-D) random
processes. The bistatic NRCS of an fBm surface can be analyti-
cally evaluated by using the Kirchhoff approximation (KA) or the
first-order small slope approximation (SSA-1): its expression is
related to the probability density function (pdf) of an alpha-stable
random process, and it can be efficiently evaluated by means
of proper asymptotic series expansions. However, fBm surfaces
are statistically isotropic, whereas natural surfaces are often
anisotropic. Therefore, in this work, we first of all show that
an anisotropic power-law spectrum surface can be considered
as a generalized anisotropic fBm surface; then, we present an
analytical formulation of its NRCS, based on SSA-1; and finally,
we compare the obtained results with measured NRCSs of natural
surfaces and with NRCS values obtained via more accurate
but more computationally demanding methods that require the
numerical evaluation of scattering integrals.

Index Terms— Anisotropic power-law spectrum surfaces, elec-
tromagnetic scattering, fractional Brownian motion (fBm), sea
surface, small slope approximation (SSA).

I. INTRODUCTION

ELECTROMAGNETIC scattering from natural rough sur-
faces is usually studied by modeling the surface rough-

ness as a random process [1], [2], [3]. As it is by now
widely recognized in literature, most marine and soil sur-
faces are well described by random processes, whose power
spectral density (PSD), or spectrum, exhibits a power law
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behavior over a wide range of spatial frequencies [4], [5],
[6], [7], usually including those involved in the microwave
scattering phenomenon [7]. Therefore, it is of practical interest
to evaluate the normalized radar cross section (NRCS) of
power-law spectrum surfaces. To this aim, numerical methods,
based on the method of moments (MoM) and Monte Carlo
simulations, can be used; but, for extended two-dimensional
(2-D) surfaces, their computational burden is too high for
practical purposes. Therefore, approximate methods are usu-
ally preferred [1], [2], [3]. However, they often still require
the numerical evaluation of scattering integrals. This can be
avoided by using the two-scale model (TSM) [8], [9]: a cutoff
surface wavenumber is selected, of the order of the incident
electromagnetic wavenumber, and the overall surface NRCS
is computed as the sum of the NRCSs of the high-frequency
(or small-scale) roughness (i.e., the surface spatial-frequency
components at wavenumbers higher than the cutoff one) and of
the low-frequency (or large-scale) roughness (i.e., the surface
spatial-frequency components at wavenumbers lower than the
cutoff one). The former is computed by using the small
perturbation method (SPM) [1], [2], [3], and it is dominant
at far-from-specular scattering directions, while the latter is
computed by using the geometrical optics (GO) approximation
[1], [2], [3], and it is dominant at near-specular scattering
directions. With this approach, that can be applied to both
isotropic and anisotropic power-law spectrum surfaces, a fairly
simple analytical expression of the NRCS is obtained (if
the SPM NRCS is not averaged over the large-scale slopes,
or this average is approximated [10]). However, this expression
depends on the choice of the cutoff wavenumber, which is to
some extent arbitrary: this is the main drawback of the TSM.

A different analytical approach that avoids both the numer-
ical evaluation of the scattering integral and the necessity of
defining a cutoff wavenumber was provided in [7], [11], [12],
[13], and [14]: by describing statistically isotropic power-law
spectrum surfaces via the theory of 2-D fractional Brownian
motion (fBm) random processes [4], [5], it was shown that
the scattering integral appearing in their NRCS, as computed
via the Kirchhoff approximation (KA) [1], [2], [3], is for-
mally identical to the probability density function (pdf) of
an alpha-stable random process [14], and it can be efficiently
evaluated by means of proper asymptotic series expansions
[7], [12], [13]. The fact that the KA scattering integral of a
power-law spectrum surface is formally identical to the pdf
of an alpha-stable random process was also shown in [15]
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by using the theory of infinite-variance random processes, but
there an analytical solution was only provided in the high-
frequency limit.

Since the same scattering integral also appears in the
NRCS expression obtained by using the first-order small slope
approximation (SSA-1) [16], [17], the method of [7], [11],
[12], [13], and [14] can also be applied in the framework of
the SSA-1, which has a wider range of validity with respect
to KA. This was first noticed in [14] and has been recently
fully implemented in [18].

In any case, since 2-D fBm processes are statistically
isotropic, this method can be only applied to statistically
isotropic power-law spectrum surfaces. However, natural sur-
faces are often statistically anisotropic due to the presence
of a surface preferential direction: this is the case of marine
surfaces, for which the preferential direction is the wind
direction, and of tilled soil surfaces, for which the preferential
direction is the plowing direction. Therefore, in this article,
we extend the method of [7], [11], [12], [13], and [14] to the
case of statistically anisotropic power-law spectrum surfaces.
To this aim, we first show that the latter can be considered
as generalized anisotropic fBm surfaces; then, we provide an
analytical formulation of their NRCS by using the SSA-1;
finally, we compare the obtained results with measured NRCSs
of natural surfaces and with NRCS values obtained via more
refined but more computationally demanding methods that
require the numerical evaluation of scattering integrals.

II. ANISOTROPIC POWER-LAW SPECTRUM SURFACE

Let us consider a rough surface z(x, y) separating the air
from a possibly lossy medium and illuminated by an incident
electromagnetic wave with incidence angle ϑiϑi. The xy plane
is the surface mean plane, and the xz plane is the incidence
plane (see Fig. 1). Let us assume that z(x, y) is a zero-mean
Gaussian random process, whose PSD is

S2D
(
κx , κy

)
= S2D(κ, ϕ) = S(κ)8(ϕ) (1)

with

S(κ) = S0κ
−α (2)

and

8(ϕ) = 1 +1 cos[2(ϕ−ϕ0)] (3)

where κ and ϕ indicate the amplitude and direction of the
surface wavenumber vector, and κx and κy are its x and y
components, with{

κx = κ cosϕ
κy = κ sinϕ,

i.e.,

{
κ =

√
κ2

x + κ2
y

tanϕ = κy/κx .
(4)

S0 is a parameter measured in m4−α , α is the power exponent,
satisfying 2 < α < 4, 1 is the spectral anisotropy parameter,
satisfying 0 ≤ 1 < 1, and ϕ0 is the angle between the x-axis
and the X-axis of the preferential reference system X–Y of
the anisotropic surface (for instance, for a sea surface, X and
Y axes are the upwind and crosswind directions, respectively,
and ϕ0 stands for the wind direction).

Fig. 1. Geometry of the problem.

The above defined process has infinite variance, it is statis-
tically anisotropic and nonstationary, and its derivatives have
infinite variance, too. However, it is a stationary-increment
process [19], so that it is possible to define its structure
function Q2D(1x,1y) as the variance of its increments over
two generic points displaced by 1x and 1y over x- and y-
axes, respectively

Q2D(1x,1y) = ⟨|z(x+1x, y+1y)−z(x, y)|2⟩ (5)

where the symbol ⟨·⟩ stands for statistical mean.
The structure function is related to the PSD via the follow-

ing relation [19]:

Q2D(1x,1y) =
1

4π2

∫
+∞

−∞

∫
+∞

−∞

2
[
1 − e j (κx1x+κy1y)]

×S2D
(
κx , κy

)
dκx dκy . (6)

We will now exploit this relation to evaluate the struc-
ture function of the anisotropic power-law spectrum surface
of (1)–(4).

By using (1)–(4) in (6) and letting{
1x = ρ cosψ
1y = ρ sinψ,

i.e.,

{
ρ =

√
1x2

+1y2

tanψ= 1y/1x
(7)

where ρ and ψ indicate the length and direction of the segment
joining the two surface points, and we get

Q2D(1x,1y)

= Q2D(ρ, ψ)

=
1

4π2

∫
∞

0

∫ 2π

0
2
[
1−e jκρ cos(ϕ−ψ)

]
S(κ)8(ϕ)κdϕdκ

=
S0

2π2

∫
∞

0
κ−α+1

∫ 2π

0

[
1−e jκρ cos(ϕ−ψ)

]
8(ϕ)dϕdκ. (8)

By letting κ̄ = κρ, we obtain

Q2D(ρ, ψ)

= ρα−2 S0

2π2

∫
∞

0
κ̄−α+1

∫ 2π

0

[
1−e j κ̄ cos(ϕ−ψ)

]
8(ϕ)dϕdκ̄

= ρ2H S0

π

∫
∞

0
κ̄−1−2H{1− J0

(
κ̄
)
+1J2

(
κ̄
)

cos[2(ψ−ϕ0)]
}

dκ̄

(9)

where

J0
(
κ̄
)
=

1
2π

∫ 2π

0
e j κ̄ cos(ϕ−ψ)dϕ (10)
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is the zeroth-order Bessel function of the first kind [20], and
J2(κ̄) is the second-order Bessel function of the first kind, for
which, see Appendix A, the following equality holds:∫ 2π

0
e j κ̄ cos(ϕ−ψ) cos[2(ϕ−ϕ0)]dϕ

= −2π J2
(
κ̄
)

cos[2(ψ − ϕ0)] (11)

and, finally, we have set α − 2 = 2H , so that α = 2 + 2H
and 0 < H < 1.

By using integration by parts, it turns out that∫
∞

0
κ̄−1−2H{1−J0

(
κ̄
)}

dκ̄ =
1

2H

∫
∞

0
κ̄−2H J1

(
κ̄
)
dκ̄

=
0(1−H)

2H22H0(1+H)
(12)

where J1(κ̄) is the first-order Bessel function of the first kind,
that is the derivative of −J 0(κ̄), 0(·) is the gamma function,
and the following equality [21]:∫

∞

0
zµ Jν(z)dz =

2µ0
(

1+ν+µ

2

)
0
(

1+ν−µ

2

) (13)

that holds for µ < 1/2 and µ + ν > −1 has been used
with µ = −2H and ν = 1.

By using the same equality, but with µ = −1 − 2H and
ν = 2, we get∫

∞

0
κ̄−1−2H J2

(
κ̄
)
d κ̄ =

0(1−H)
21+2H0(2+H)

=
0(1−H)

21+2H (1+H)0(1+H)
. (14)

By replacing (12) and (14) in (9), we finally get

Q2D(ρ, ψ)

= ρ2H S00(1−H)
2πH22H0(1+H)

{
1+

H
1+H

1 cos[2(ψ − ϕ0)]
}

= Q(ρ)9(ψ) (15)

where

Q(ρ) = s2ρ
2H

(16)

and

9(ψ) = {1+δ cos[2(ψ−ϕ0)]} (17)

with

s2
=

S00(1−H)
2πH22H0(1+H)

(18)

and

δ =
H

1+H
1 (19)

so that 0 ≤ δ < H/(1 + H). We explicitly note that s2 is
measured in m4−α , i.e., m2−2H.

The result of (15)–(19) is new and it generalizes to the
anisotropic case the known analogous result for the isotropic
case [12], [22], to which it reduces for 1 = 0.

We recall that an fBm is a process whose increments over
a fixed distance ρ are zero-mean Gaussian random variables

with variance proportional to ρ2H [4], [5]. Therefore, (15)–(19)
show that if 1 = 0 (isotropic case), the considered power-law
surface is a 2-D fBm, as already known. For 1 > 0, (15)–(19)
show that any height profile obtained from a cut of the
considered power-law surface along an arbitrary direction is
a 1-D fBm. Therefore, for 1 > 0, the anisotropic power-law
spectrum surface defined in (1)–(4) can be considered as the
anisotropic generalization of an fBm surface.

The variance of such a surface is infinite; however, the
measured variance σ 2

ψ of the height of one of its profiles of
length l along a direction ψ is finite and increases with l

σ 2
ψ (l)∼

1
2

Q(l)9(ψ) =
1
2

s2l2H9(ψ). (20)

Average over all directions (i.e., over ψ) leads to the
following measured variance σ 2 of the height of a surface
patch of linear size l:

σ 2(l) ∼
1
2

s2l2H . (21)

Similarly, the variance of the slopes of an anisotropic fBm
process is infinite; however, the variance of slopes measured
at a scale ρ along a direction ψ (i.e., the variance of slopes
of chords joining surface points at a fixed distance ρ along a
direction ψ) is finite and increases as ρ decreases

σ 2
sψ (ρ) = Q(ρ)9(ψ)/ρ2

= s29(ψ)/ρ2−2H . (22)

III. NORMALIZED RADAR CROSS SECTION

Let us consider a surface satisfying (1)–(4) in a wide but
limited range of spatial wavenumbers, from κmin to κmax, with
κmin ≪ κmax. It will also satisfy (15)–(19) in a wide but limited
range of scales, from ρmin ∼ 2π/κmax to ρmax ∼ 2π/κmin.
Let us also assume that this range of scales includes those
involved in the microwave scattering phenomenon, so that the
formulation of (15)–(19) can be used to model the surface in
electromagnetic scattering problems. In Section IV, we will
show that many natural surfaces satisfy these hypotheses.

A. General Expression of the NRCS

The SSA-1 expression of the NRCS of a randomly rough
surface is [16], [17]

σ 0
pq(ϑi ;ϑs, ϕs) =

1
π

∣∣∣∣2kvBpq

uz

∣∣∣∣2 ∫ +∞

−∞

∫
+∞

−∞

e− jk(ux1x+u y1y)

×e−
1
2 k2u2

z Q2D(1x,1y)d1xd1y (23)

where (see Fig. 1) ϑi is the incidence angle, ϑs and ϕs

are the polar and azimuthal scattering angles, k = 2π/λ
is the electromagnetic wavenumber, λ is the electromagnetic
wavelength, and v = cosϑs cosϑi

ux = sinϑi − sinϑs cosϕs

u y = − sinϑs sinϕs

uz = −(cosϑi + cosϑs)

(24)

and as in (25), shown at the bottom of the next page,
are the bistatic Bragg coefficients, with ε being the relative
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permittivity of the lower medium. Finally, p and q may each
stand for horizontal (h) or vertical (v) polarization.

Note that κBx = kux and κBy = ku y are the x and y
components of the surface Bragg wavenumber vector.

By using (7) and (15)–(19) in (23), and letting{
ux = uρ cosϕB

u y = uρ sinϕB,
i.e.,

{
uρ =

√
u2

x + u2
y

tanϕB = u y/ux

(26)

we get

σ 0
pq(ϑi ;ϑs, ϕs) =

1
π

∣∣∣∣2kvBpq

uz

∣∣∣∣2 ∫ 2π

0

∫
∞

0
e− jkuρρ cos(ϕB−ψ)

×e−
1
2 k2u2

z s29(ψ)ρ2H
ρdρdψ. (27)

We assume that the linear size l of the illuminated surface
patch is such that k2u2

z s2l2H
≫ 1, so that the integral in (27)

can span the entire real plane, since the integrand is negligible
outside the illuminated area.

If δ ≪ 1 (in practice, it is sufficient that δ < 0.2), the second
exponential in (27) can be written as

e−
1
2 k2u2

z s29(ψ)ρ2H

= e−
1
2 k2u2

z s2ρ2H
e−

1
2 k2u2

z s2δ cos[2(ψ−ϕ0)]ρ2H

∼= e−
1
2 k2u2

z s2ρ2H
{

1−
1
2

k2u2
z s2δ cos[2(ψ − ϕ0)]ρ2H

}
(28)

so that (27) can be rewritten as

σ 0
pq(ϑi ;ϑs, ϕs)

=
1
π

∣∣∣∣2kvBpq

uz

∣∣∣∣2 ∫ ∞

0
e−

1
2 k2u2

z s2ρ2H
∫ 2π

0
e− jkuρρ cos(ϕB−ψ)

×

{
1−

1
2

k2u2
z s2δ cos[2(ψ−ϕ0)]ρ2H

}
dψρdρ. (29)

By using (10) and (11), with the obvious formal modifica-
tions, to evaluate the integral over ψ in (29), we obtain

σ 0
pq(ϑi ;ϑs, ϕs)

= 2
∣∣∣∣2kvBpq

uz

∣∣∣∣2{∫ ∞

0
J0
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρdρ

+
1
2

k2u2
z s2δ cos[2(ϕB − ϕ0)]

×

∫
∞

0
J2
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+2H dρ
}
.

(30)

In Appendixes B and C, we show that the integrals in (30)
can be analytically evaluated via asymptotic series. In partic-
ular, for small values of the dimensionless parameter

� =

1
2 k2u2

z s2(
k2u2

ρ

)H =
1
2

s2k2−2H u2
z

u2H
ρ

(31)

the following asymptotic series expansion is obtained (see
Appendix B):

σ 0
pq(ϑi ;ϑs, ϕs)

= 2
∣∣∣∣2kvBpq

uz

∣∣∣∣22H
∞∑

n=1

(−1)n+122nH

n!

n0(1+nH)
0(1−nH)

( 1
2 k2u2

z s2
)n(

k2u2
ρ

)1+nH

×

{
1+

1+nH
H

δ cos[2(ϕB − ϕ0)]
}
. (32)

Conversely, for large values of �, the following asymptotic
series expansion is obtained (see Appendix C):

σ 0
pq(ϑi ;ϑs, ϕs)

= 2
∣∣∣∣2kvBpq

uz

∣∣∣∣2 1
2H

∞∑
n=0

(−1)n

22n(n!)2
0

(
n+1

H

)
k2nu2n

ρ( 1
2 k2u2

z s2
) n+1

H

×

{
1−

n
H
δ cos[2(ϕB − ϕ0)]

}
. (33)

Some practical details about the evaluation of the bistatic
NRCS according to (32) and (33) are provided in the
following (see the discussion on computational complexity
in Section IV-B).

B. Limiting Cases

Equations (32) and (33) generalize to the anisotropic case
results of [7], [12], [13], and [14], and they reduce to them
for δ = 0. They are the main results of our work, and
in Section IV, we will show that they allow to efficiently
compute the NRCS of anisotropic natural surfaces. However,
it is interesting to consider the limiting cases of either very
small or very large values of the parameter �. In fact, this
parameter can be written as

� =

1
2 k2u2

z s2

κ2H
B

= k2u2
z

1
2

s2
(
3B

2π

)2H

= k2u2
zσ

2
(
3B

2π

)
(34)

where κB = kuρ and 3B = 2π/κB are the surface Bragg
resonant wavenumber and wavelength, respectively, and (21)



Bhh =
(ε − 1) cosϕs(

cosϑs +

√
ε − sin2 ϑs

)(
cosϑi +

√
ε − sin2 ϑi

)
Bvh =

sinϕs(ε − 1)
√
ε − sin2 ϑs(

ε cosϑs +

√
ε − sin2 ϑs

)(
cosϑi +

√
ε − sin2 ϑi

)
Bhv =

sinϕs(ε − 1)
√
ε − sin2 ϑi(

cosϑs +

√
ε − sin2 ϑs

)(
ε cosϑi +

√
ε − sin2 ϑi

)
Bvv =

(ε − 1)
(√

ε − sin2 ϑs

√
ε − sin2 ϑi cosϕs − ε sinϑs sinϑi

)
(
ε cosϑs +

√
ε − sin2 ϑs

)(
ε cosϑi +

√
ε − sin2 ϑi

)

(25)
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has been used. Therefore, � is the Rayleigh parameter for
surface patches of linear size of the order of the Bragg
wavelength. In Appendix B, we show that for small �, the
scale lengths involved in the scattering phenomenon are just
those around the Bragg wavelength. Therefore, if � is small,
then � is the Rayleigh parameter for surface patches of linear
size of the order of the scale lengths actually involved in the
scattering phenomenon.

For � ≪ 1, the terms in (32) with n > 1 are negligible, and
the series can be truncated at the first order, so obtaining

σ 0
pq(ϑi ;ϑs, ϕs)

∼= 4k4v2
∣∣Bpq

∣∣2 2H22H0(1+H)
0(1−H)

s2(
kuρ
)2+2H

×

{
1+

1+H
H

δ cos[2(ϕB − ϕ0)]
}
. (35)

By using (18) and (19) in (35), we get

σ 0
pq(ϑi ;ϑs, ϕs)

∼=
4
π

k4v2
∣∣Bpq

∣∣2S0
(
kuρ
)−α

{1 +1 cos[2(ϕB − ϕ0)]} (36)

i.e., see (15)–(17)

σ 0
pq(ϑi ;ϑs, ϕs) =

4
π

k4v2
∣∣Bpq

∣∣2S2D
(
kuρ, ϕB

)
=

4
π

k4v2
∣∣Bpq

∣∣2S2D
(
κBx , κBy

)
(37)

which is coincident with the SPM formulation of the NRCS,
as expected for very small values of the Rayleigh parameter.

Let us now consider the case � ≫ 1, which is always
satisfied at near-specular direction, where ϑs ∼= ϑi and ϕs ∼= 0,
so that uρ ∼= 0. In this case, the terms in (33) with n > 1 are
negligible, and the series can be truncated at the first order
(i.e., considering only the terms with n = 0 and n = 1),
so obtaining

σ 0
pq(ϑi ;ϑs, ϕs)

∼= 2
∣∣∣∣2kvBpq

uz

∣∣∣∣2 0(1/H)

2H
( 1

2 k2s2u2
z

)1/H

×

(
1−
0(2/H)k2u2

ρ

{
1−

1
H δ cos[2(ϕB − ϕ0)]

}
40(1/H)

( 1
2 k2s2u2

z

)1/H

)

∼= 2
∣∣∣∣2kvBpq

uz

∣∣∣∣2 0(1/H)

2H
( 1

2 k2s2u2
z

)1/H

× exp

(
−
0(2/H)k2u2

ρ

{
1−

1
H δ cos[2(ϕB−ϕ0)]

}
40(1/H)

( 1
2 k2s2u2

z

)1/H

)
.

(38)

This expression can be reformulated in terms of the
anisotropic fBm surface slope variances along X- and
Y -directions as measured at the scale length mainly involved
in the scattering phenomenon, that for large �, as shown in
Appendix C, is

ρ0 =
1[ 1

2 k2s29(ψ)u2
z

] 1
2H

. (39)

In fact, by using (22) and (39) with ψ = ϕ0 (for the
X-direction) and with ψ = ϕ0 + π/2 (for the Y -direction),
and recalling that δ ≪ 1, we get

σ 2
s X,Y (ρ0) =

s2(1 ± δ)

ρ2−2H
0

=

[ 1
2 k2s2(1 ± δ)u2

z

] 1
H

1
2 k2u2

z

∼=

[ 1
2 k2s2u2

z

] 1
H (1 ±

δ
H )

1
2 k2u2

z
(40)

so that

σ 2
s X (ρ0)+ σ 2

sY (ρ0)

2
∼=

[ 1
2 k2s2u2

z

] 1
H

1
2 k2u2

z

∼=σs X (ρ0)σsY (ρ0) (41)

and

σ 2
s X (ρ0)− σ 2

sY (ρ0)

2
∼=

[ 1
2 k2s2u2

z

] 1
H

1
2 k2u2

z

δ

H
. (42)

By using (41) and (42), the expression in (38) can be refor-
mulated as

σ 0
pq(ϑi ;ϑs, ϕs)

=
8
∣∣Bpq

∣∣2v20(1/H)
Hu4

zσs X (ρ0)σsY (ρ0)

× exp

−

0(2/H)u2
ρ

{
1−

σ 2
s X (ρ0)−σ

2
sY (ρ0)

σ 2
s X (ρ0)+σ

2
sY (ρ0)

cos[2(ϕB−ϕ0)]
}

2u2
z0(1/H)σs X (ρ0)σsY (ρ0)


=

a8
∣∣Bpq

∣∣2v2

u4
zσs XeffσsY eff

× exp

−

u2
ρ

{
1−

σ 2
s Xeff−σ

2
sY eff

σ 2
s Xeff+σ

2
sY eff

cos[2(ϕB − ϕ0)]
}

2u2
zσs XeffσsY eff

 (43)

where

σ 2
s X,Y eff = bσ 2

s X,Y (ρ0), a =
02(1/H)
H0(2/H)

, b =
0(1/H)
0(2/H)

(44)

with a and b being of the order of unity for H > 0.5, which is
the case for most natural surfaces, as we will see in Section IV.

It is interesting to compare this expression with the usual
GO expression of the NRCS [1], [2], [3], [10], [23], [24] that
at near specular direction can be written as

σ 0
pq(ϑi ;ϑs, ϕs) =

8
∣∣Bpq

∣∣2v2

u4
zσs XσsY

e
−
σ2

sx u2
x +σ2

sy u2
y −2corrsxy ux uy

2u2
z σ

2
s X σ

2
sY (45)

where σ 2
s X , σ

2
sY , σ

2
sx , and σ 2

sy are the slope variances along
the directions X , Y , x , and y, respectively, and corrsxy is the
correlation between the slopes along x- and y-directions.

By using (26) and the following relations [10]:

σ 2
sx = σ 2

s X cos2 ϕ0 + σ 2
sY sin2 ϕ0

σ 2
sy = σ 2

sY cos2 ϕ0 + σ 2
s X sin2 ϕ0

corrsxy =
1
2

sin 2ϕ0
(
σ 2

s X − σ 2
sY

) (46)
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after some algebra, (45) can be recast as follows:

σ 0
pq(ϑi ;ϑs, ϕs)

=
8
∣∣Bpq

∣∣2v2

u4
zσs XσsY

exp

−

u2
ρ

σ 2
s X +σ 2

sY
2

{
1−

σ 2
s X −σ 2

sY
σ 2

s X +σ 2
sY

cos[2(ϕB −ϕ0)]
}

2u2
zσ

2
s Xσ

2
sY


∼=

8
∣∣Bpq

∣∣2v2

u4
zσs XσsY

exp

−

u2
ρ

{
1−

σ 2
s X −σ 2

sY
σ 2

s X +σ 2
sY

cos[2(ϕB − ϕ0)]
}

2u2
zσs XσsY


(47)

where the last approximate equality holds for
(σ 2

s X − σ 2
sY )/(σ

2
s X+σ 2

sY ) ≪ 1.
By comparing (43) with (47), we conclude that the

SSA-1 NRCS for an anisotropic power-law spectrum sur-
face at near-specular direction coincides (apart from the
almost-unitary factor a) with the classical GO solution, pro-
vided that effective surface slope variances in (44) are used,
that change with frequency, via k, and with the incidence and
scattering angles, via uz , see (40).

IV. VALIDATION OF THE PROPOSED APPROACH

In this section, we first verify that the assumptions made to
derive (32) and (33) are usually satisfied by natural surfaces,
and then, we compare numerical results obtained via (32)
and (33) with available measured data and with results of
the second-order SSA (SSA-2) [17]. Note that SSA-2 is
more accurate than SSA-1, so that it can be used as a
reference; however, it requires the numerical computation of
fourfold integrals with oscillating integrands, so that it is
computationally very heavy, and it requires specific numerical
algorithms [17].

A. Validity of the Assumptions

The main assumptions that we have made are as follows.
1) The surface has an anisotropic power-law spectrum

in the range of scale lengths actually involved in the
scattering process.

2) The surface slope variance, measured at the scale lengths
actually involved in the scattering process, is small with
respect to unity, so that the validity limits of SSA-1 are
satisfied.

3) The anisotropy parameter δ is not larger than about 0.2.
4) k2u2

z s2l2H
≫ 1.

From [4], [5], [6], and [7], it is known that natural soil
surfaces exhibit power-law spectra over range of scales varying
from few centimeters to tens of meters (and even at topo-
graphic scale, but sometimes with different power exponents
α at these larger scales). Typical values of H for soil surfaces
are in the range 0.6–0.9, while the order of magnitude of s2

usually ranges from 10−4 to 10−2 m2−2H [6], [26], [27], [28].
No reliable information on δ or 1 is available for soil surfaces.

With regard to sea surfaces, for microwave scattering pur-
poses, the Elfouhaily spectrum [29] is usually employed. It
turns out (e.g., [30] and Fig. 2) that this spectrum is well
approximated by (1)–(3) in its high-frequency part, i.e., in the

range of surface wavenumbers from several tens of times the
peak wavenumber κp to about κm , where [29]

κp ∼= 0.71
g

u2
10
, κm ∼= 370m−1, g ∼= 9.81m/s2 (48)

and u10 is the wind speed at 10 m over the sea surface. For
wind speed ranging from 5 to 25 m/s, κp ranges from about
0.01 to about 0.25 m−1. In addition, α = 3.5, so that H = 0.75,
and [30]

S0 =
παmcm

√
g

(49)

where cm = 0.23 m/s and αm is the is the generalized
Phillips–Kitaigorodskii equilibrium range parameter, whose
expression as an increasing function of wind speed is provided
in [29]. Finally, 1 increases with the wind speed accord-
ing to the expressions reported in [29]. Actually, 1 is also
slightly dependent on the surface wavenumber κ , but we can
neglect this dependence and take 1 equal to its value at the
wavenumber most contributing to the scattering process (κB or
2π /ρ0, according to the value of �). For wind speed ranging
from 5 to 25 m/s, S0 [and hence, see (18), s2] ranges from
about 10−3 m2−2H to about 10−2 m2−2H and 1 from about
0.2 to about 0.6, so that, see (19), δ ranges from about 0.08 to
about 0.25. Note that for higher wind speeds, the scattering
is dominated by breaking waves, so that surface scattering
models are not accurate at those wind regimes.

From the above data, it is clear that the condition over δ is
satisfied for most sea surfaces, the most critical situation being
high frequency (Ku-band) at high wind speed. It is reasonable
to expect that this condition is satisfied for most soil surfaces,
too.

In order to verify the validity of the other assumptions,
it is useful to note that the quantity s2k2−2H is a small
fraction of unity for frequencies up to the Ku-band at least.
Accordingly, see (31), the parameter � is small at far-from-
specular directions, where both uρ and uz are of the order of
unity and large at near-specular directions, where uρ is much
smaller than unity. Therefore, to verify that SSA-1 validity
limits are satisfied, at far-from-specular directions, the slope
variance at the Bragg wavelength scale must be checked,
whereas at near-specular direction, the slope variance at the
ρ0 scale must be verified. In the former case, we have (after
average over ψ)

σ 2
s

(
3B

2π

)
= s2/

(
3B

2π

)2−2H

= s2κ2−2H
B = s2k2−2H u2−2H

ρ

(50)

which is of the order of no more than s2k2−2H (since |uρ | is
smaller than 2), and it is therefore much smaller than unity
for natural surfaces, so that SSA-1 can be applied. In addition,
for all frequencies spanning from hundreds of MHz to about
12 GHz, the Bragg wavelength is within the range of scales,
in which natural surfaces exhibit power-law spectra.

For near-specular directions, we have

σ 2
s (ρ0)=s2/ρ2−2H

0 =

( 1
2 k2s2u2

z

) 1
H

1
2 k2u2

z
=
(
s2k2−2H) 1

H

(
1
2

u2
z

) 1−H
H

(51)
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Fig. 2. Elfouhaily spectrum (blue line) and its power-law approximations
of (49) (green line) and (52) and (53) (red line) for three different wind
velocities.

which is much smaller than unity (since uz is smaller than 2,
too), so that, again, SSA-1 can be applied. In addition, in most
cases of interest, the scale lengths of the order of ρ0 turn out to
be within the range of scales, in which natural surfaces exhibit
power-law spectra. A noteworthy exception is the sea surface
when L-band is used: in this case, in fact, at low (up to about
10 m/s) wind speed, 2π /ρ0 is of the order of no more than few
tens of times κp, so that the power-law model with α = 3.5 and
S0 given by (49) is not a good approximation of the Elfouhaily
spectrum. However, as shown in [31] and as illustrated in
Fig. 2, in this more extended range of wavenumbers, a still
reasonably good agreement with the Elfouhaily spectrum is
obtained by using a wind-dependent parameter α given by

α = 3.5 + 0.5 exp
(

−
u2

10

u2
0

)
(52)

where u0 = 12 m/s, and replacing (49) with

S0 = Cαm

[
1 + exp

(
−

u2
10

u2
0

)]
(53)

where C = 0.623 m4−α .
Finally, we note that, considering the range of values of s2

and H of natural surfaces, the condition k2u2
z s2l2H

≫ 1 is

Fig. 3. Backscattering dependence on wind direction φ0 at C-band (fre-
quency = 5.66 GHz and ε = 67 − j36), ϑ = 35◦, and u10 = 10 m/s.
Backscattering vv (red line) and hh (blue line) NRCS computed by our method
(solid lines) and corresponding measured data (red and blue connected dots).

satisfied if the linear size l of the illuminated surface patch is
much larger than wavelength.

B. Numerical Results

Let us first consider a comparison of our NRCS results
with real backscattering measurements over the sea available
in literature.

In Fig. 3, we illustrate the dependence on wind direction φ0
of vv and hh backscattering NRCSs (ϑs = ϑi and ϕs = π) for a
wind speed u10 = 10 m/s, at C-band (frequency = 5.66 GHz
and ε = 67 − j36) and ϑi = 35◦. Measurements obtained
from RADARSAT-2 quad-pol synthetic aperture radar (SAR)
data, reported in [32], are also shown in Fig. 3. Similarly,
in Fig. 4, we show the vv and hh backscattering NRCSs as
functions of wind direction φ0 for a wind speed u10 = 10 m/s,
at Ku-band (frequency = 12.5 GHz and ε = 42 – j39)
and ϑi = 45◦. Measurements obtained by using an aircraft
polarimetric scatterometer, reported in [33], are also displayed
in Fig. 4. In both cases, a good agreement with measurements
is obtained at vv polarization, whereas an underestimation of
about 3 dB is obtained at hh polarization. However, a similar
underestimation with respect to backscattering measurements
at hh polarization is also obtained by using the more refined
SSA-2, see for instance [17]. This discrepancy is mainly due
to the presence of breaking waves [17], [34], [35], which
causes an asymmetry in the wave shape and the presence of
foam: both phenomena are not considered in the employed
sea surface description, and their effects are much more
pronounced at hh polarization than at vv polarization [17],
[34]. The discrepancy can be strongly reduced by using, for
instance, the empirical correction functions provided in [34].
However, this is beyond the scope of our work.

Let us now move to consider comparisons with SSA-2
results. In Fig. 5, we show vv and hh backscattering NRCS
as a function of the incidence angle ϑi at X-band (fre-
quency = 10 GHz and ε = 61 − j45) for a wind speed
u10 = 15 m/s, and for up-wind (φ0 = 0) and obliquus wind
direction (φ0 = 45◦). This case is the same as considered
in [17, Fig. 3], so that we can directly compare our results
with those obtained in [17] by using SSA-2. It turns out that a
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Fig. 4. Backscattering dependence on wind direction φ0 at Ku-band
(frequency = 12.5 GHz and ε = 42 − j39), ϑ = 45◦, and u10 = 10 m/s.
Backscattering vv (red line) and hh (blue line) NRCS computed by our method
(solid lines) and corresponding measured data (red and blue connected dots).

Fig. 5. Backscattering NRCS at vv (red line) and hh (blue line) polarizations
versus the incidence angle ϑ at X-band (frequency = 10 GHz and ε = 61 −

j45) for u10 = 15 m/s and for (a) up-wind (φ0 = 0) and (b) obliquus wind
direction (φ0 = 45◦). Our model (solid lines) is compared with SSA-2 (dots).

satisfactory agreement is obtained, also considering that results
of [17] are obtained not only with a higher order model, but
also using the exact Elfouhaily spectrum, at variance with our
power-law approximation [we used α = 3.5 and S0 given
by (49), which is appropriate at C-, X-, and Ku-bands at
nonnegligible wind speed, see Section IV-A].

Let us now consider a bistatic scattering case. In Fig. 6,
we illustrate the sea surface bistatic NRCSs, as a function of
the polar scattering angle ϑs , for up-wind (φ0 = 0) configu-
ration and for several azimuth scattering angles ϕs , with an
incidence angle ϑi = 45◦, at L-band (frequency = 1.58 GHz

Fig. 6. Bistatic NRCS (hh in blue, vv in red, hv in green, and vh in black)
versus the polar scattering angle ϑs at L-band (frequency = 1.58 GHz and
ε = 65 − j61) for ϑi = 45◦, a sea surface with u10 = 10 m/s, up-wind
(φ0 = 0), and azimuth scattering angles: (a) φs = 0◦, (b) φs = 30◦,
(c) φs = 60◦, and (d) φs = 90◦. The results obtained with the SSA-2 model
are reported as dots (hh in blue, vv in red, hv in green, and vh in black).

and ε = 65 − j61), and for a wind speed u10 = 10 m/s. Again,
this specific configuration is the same considered in [17], and
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Fig. 7. Bistatic NRCS (hh in blue and vv in red) versus wind direction φ0
at L-band (frequency = 1.58 GHz and ε = 65 − j61) for ϑi = 45◦, for a
sea surface with u10 = 10 m/s, φs = 0◦, and ϑs = 35◦. The results obtained
with the SSA-2 model are reported as dots (hh in blue and vv in red).

Fig. 8. Number of terms needed to compute the NRCS of Fig. 5, as a function
of the incidence angle. In this plot, the number of terms is n = min{n1, n2},
where n1 and n2 are the numbers of terms needed to converge by the
series (32) and (33), respectively.

results obtained there via SSA-2 (and considering the exact
Elfouhaily spectrum) are also shown in Fig. 6. In this case,
in our method, we used α and S0 given by (52) and (53),
which is appropriate at L-band (see Section IV-A). A good
agreement is obtained in almost all cases, with differences of
no more than about 3 dB, except, in a few cases, at grazing
scattering angles. In addition, a very low vv polarization NRCS
is obtained by our method at ϑs ∼= 45◦ for ϕs = 60◦ [see
Fig. 6(c)] and at ϑs ∼= 0◦ for ϕs = 90◦ [see Fig. 6(d)]. This is
an intrinsic limitation of SSA-1: in fact, if, as it is the case for
the sea surface, |ε| ≫ 1, the Bragg coefficient Bvv , see (25),
becomes negligible when cosϕs = sinϑs sinϑi .

Finally, in Fig. 7, we show the sea surface NRCS behav-
ior as a function of wind direction φ0 at L-band (fre-
quency = 1.58 GHz and ε = 65 − j61) for u10 = 10 m/s,
ϑi = 45◦, ϑs = 35◦, and φs = 0◦. Again, our results
are compared to those obtained via SSA-2 in [17], and a
reasonable agreement is obtained.

A few last words on computational complexity are now
needed. It turns out that in most cases of practical interest,
at least one of the two series, (32) and (33), converges after
very few terms. Here, for “converges,” we mean that the
absolute value of the difference in decibel (dB) between the
values obtained by arresting the summation after n + 1 and

Fig. 9. Integration contour for the integrals in (30) in the complex
p = ρ + jξ plane.

n terms falls below a prescribed threshold. For instance,
in Fig. 8, we plot the number of terms, as a function of
the incidence angle, needed to compute the NRCS in the
case of Fig. 5 with an accuracy of 0.1 dB. In particular,
the expression (33) is used for small incidence angles, up to
16◦–17◦, whereas (32) is used for larger incidence angles. The
number of needed terms is always smaller than five, except for
incidence angles around 16◦–17◦, where � is of the order of
unity and the number of terms is up to more than 30. In any
case, all the plots in Figs. 3–7 have been obtained in less than
1 s by using a commonly available laptop.

V. CONCLUSION

In this article, we have presented an analytical method
to compute the NRCS of anisotropic power-law spectrum
surfaces. The method extends to the anisotropic case the
approach of [7], [11], [12], [13], [14], and [18]. In particular,
first of all, we have evaluated the structure function of an
anisotropic 2-D random process with power-law PSD, and
we have thus shown that this process can be considered
as the anisotropic generalization of an fBm process. Then,
we have used this process to model natural surfaces, and
we have derived an analytical formulation of their NRCS
by using the SSA-1. We have also verified that at far-
from-specular scattering, our formulation tends to the SPM
one, whereas at near-specular scattering, it tends to the GO
expression with properly defined effective surface slope vari-
ances. Finally, we have compared the obtained results with
measured NRCSs of natural surfaces and with NRCS values
obtained via the SSA-2. The presented results suggest that our
approach can be used for a reasonably accurate fast evaluation
of NRCS of natural surfaces. It must be underlined that,
at variance with the TSM, the proposed approach does not
require the (to some extent arbitrary) definition of a cutoff
surface wavenumber. Our approach inherits this advantage
from the SSA-1. However, without using our approach, the
application of the SSA-1 to scattering from surfaces described
by a power-law-like spectrum (for instance, the Elfouhaily
spectrum [29], [35]) requires a numerical integration for the
inverse Fourier transform of the surface spectrum to derive the
surface correlation function (or structure function) and then a
numerical integration to evaluate the scattering integral in (23).
Conversely, we perform both integrations analytically, so that
no numerical integration is needed, and a fully analytical
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formulation is obtained. This greatly reduces computational
time and allows a deeper physical insight (see, for instance,
the discussion in Section III-B).

It must finally be noted that the presented approach also
inherits the limitations of the SSA-1 that, as all the first-order
scattering models, does not account for multiple scattering
and is not able to model cross-polarization in backscattering
and, more in general, depolarization effects of rough surface
scattering. In the cases in which these effects need to be
accounted for, a fast evaluation of scattering can be obtained
with the anisotropic polarimetric two-scale model (A-PTSM)
method of [10] and [30], which is a TSM approach, in which
the effect of the choice of the cutoff wavenumber on the final
NRCS is reduced by using a semiempirical method to evaluate
surface slope variances.

APPENDIX A

In this Appendix, we show how (11) is obtained.
By making the substitution ϑ = ϕ − ψ , exploiting the

periodicity of the integrand, and finally considering that cosine
and sine are even and odd functions, respectively, we have∫ 2π

0
e j κ̄ cos(ϕ−ψ) cos[2(ϕ − ϕ0)]dϕ

=

∫ 2π−ψ

−ψ

e j κ̄ cosϑ cos[2ϑ+2(ψ − ϕ0)]dϑ

=

∫
+π

−π

e j κ̄ cosϑ
{cos 2ϑ cos[2(ψ − ϕ0)]

− sin 2ϑ sin[2(ψ − ϕ0)]}dϑ

= 2 cos[2(ψ−ϕ0)]
∫ π

0
e j κ̄ cosϑ cos 2ϑdϑ. (54)

By using the following expression of the νth-order Bessel
function of the first kind [20]

Jν
(
κ̄
)
=

j−ν

π

∫ π

0
e j κ̄ cosϑ cos(νϑ)dϑ (55)

with ν = 2, in (54), we obtain (11).

APPENDIX B

In this Appendix, we evaluate the following integrals,
appearing in (30), under the hypothesis that the parameter �
defined in (31) is small:∫

∞

0
J0
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρdρ

= Re
{∫

∞

0
H0
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρdρ
}

(56)∫
∞

0
J2
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+2H dρ

= Re
{∫

∞

0
H2
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+2H dρ
}

(57)

where Hν(·) is the νth-order Hankel function of the first
kind [20], and Re{Hν(·)} = Jν(·). We take the analytical
continuation of the integrands of (56) and (57) on the complex
plane p = ρ+ jξ , and we consider a cut along the real positive
axis in order to force the function p2H to be single-valued.

Integration along the contour depicted in Fig. 9 leads to

Re
{∮

Hν

(
kuρ p

)
e−

1
2 k2u2

z s2 p2H

p1+νH dp
}

=

∫
∞

0
Jν
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+νH dρ

− Re
{∫ j∞

0
Hν

(
kuρ jξ

)
e−

1
2 k2u2

z s2( jξ)2H

( jξ)1+νH d( jξ)
}

= 0 (58)

where ν = 0 for the case of (56) and ν = 2 for the case
of (57).

From (58), we get∫
∞

0
Jν
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+νH dρ

= Re

{
2
π
(−1)

1+
ν
2

jνH−1
∫

∞

0
Kν

(
kuρξ

)
×e−

1
2 k2u2

z s2( jξ)2H
ξ 1+νH dξ

}
(59)

where Kν(t) = (π j1+ν/2)Hν( j t) is the νth-order modified
Bessel function of the second kind [20]. This function has an
exponential decay, so that Kν(kuρξ) is appreciably different
from zero only for values of ξ smaller than a few times
1/(kuρ). If � is small, for such values of ξ , the argument
of the exponential in (59) is small, so that it is convenient to
expand this exponential in Taylor series around null argument

e−
1
2 k2u2

z s2( jξ)2H
=

∞∑
n=0

(−1)n

n!

(
1
2

k2u2
z s2
)n

j2nHξ 2nH . (60)

It can also be noted that the main contribution to the integral
in (59) comes from the values of ξ around 1/kuρ = 3B/2π ,
so that the scale lengths involved in the scattering phenomenon
are those around the Bragg wavelength.

Substitution of (60) in (59) and integration by series lead
to ∫

∞

0
Jν
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+νH dρ

=
2
π

∞∑
n=0

Re
{

j(n+
ν
2 )2H−1

} (−1)n+1+
ν
2

n!

(
1
2

k2u2
z s2
)n

·

∫
∞

0
Kν

(
kuρξ

)
ξ(n+

ν
2 )2H+1dξ . (61)

By noting that

Re
{

j(n+
ν
2 )2H−1

}
= cos

[(
n+

ν

2

)
πH−

π

2

]
= sin

[(
n +

ν

2

)
πH

]
and using the following equality [21]:∫

∞

0
Kν(uξ)ξµdξ = 2µ−1u−µ−10

(
1+µ−ν

2

)
0

(
1+µ+ν

2

)
(62)
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that holds for µ± ν > −1, with µ = (n+ν/2)2H+1, ν= 0, 2
and u = kuρ , we get∫

∞

0
Jν
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+νH dρ

=
2
π

∞∑
n=0

(−1)n+1+
ν
2 2(n+

ν
2 )2H sin

[(
n+

ν
2

)
πH

]
n!

×0
[(

n+
ν

2

)
H+1−

ν

2

]
0
[(

n+
ν

2

)
H+1+

ν

2

]
×

( 1
2 k2u2

z s2
)n(

k2u2
ρ

)(n+
ν
2 )H+1

=
2
π

∞∑
n=ν/2

(−1)n+122nH sin[nπH ](
n−

ν
2

)
!

0
[
1+nH−

ν

2

]

×0
[
1+nH+

ν

2

]( 1
2 k2u2

z s2
)n−

ν
2(

k2u2
ρ

)nH+1 . (63)

Use of the relation [20]

sin [nπH ] =
nπH

0[1+nH ]0[1−nH ]
(64)

in (63) leads to∫
∞

0
Jν
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+νH dρ

= 2H
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n=1

(−1)n+122nH(
n−

ν
2

)
!

n0
[
1+nH −

ν
2

]
0
[
1+nH+

ν
2

]
0[1+nH ]0[1−nH ]

×

( 1
2 k2u2

z s2
)n−

ν
2(

k2u2
ρ

)nH+1 . (65)

For ν = 0, we obtain∫
∞

0
J0
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρdρ

= 2H
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n=1

(−1)n+122nH

n!

n0[1+nH ]
0[1−nH ]

( 1
2 k2u2

z s2
)n(

k2u2
ρ

)nH+1 (66)

while for ν = 2, we get∫
∞

0
J2
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+2H dρ

= 2H
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n=1

(−1)n+122nH

(n−1)!
n0[nH ]0[2+nH ]
0[1+nH ]0[1−nH ]

( 1
2 k2u2

z s2
)n−1(

k2u2
ρ

)nH+1

= 2H
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n=1

(−1)n+122nH

n!

n(1+nH)0[1+nH ]
H0[1−nH ]

( 1
2 k2u2

z s2
)n−1(

k2u2
ρ

)nH+1

(67)

where we have used 1/(n − 1)! = n/n! and [20]

0(1 + t) = t0(t) (68)

so that
0(nH)
0(1+nH)

=
1

nH
, 0(2+nH) = (1+nH)0(1+nH). (69)

By employing (66) and (67) in (30), we readily obtain (32).
A rigorous proof that the series in (66) and (67) are asymp-

totic expansions of the corresponding integrals for � → 0 can
be obtained by proceeding along a line similar to the one
described in [25] for the isotropic case.

APPENDIX C

In this Appendix, we consider the case of large values of
the parameter � defined in (31). First of all, we note that
the second exponential in (27) is appreciably different from
zero only for values of ρ smaller than a few times ρ0 defined
in (39). If � is large, for such values of ρ, the argument of the
first exponential in (27) is small, and this first exponential is
approximately unitary. Therefore, the main contribution to the
integral in (27) comes from the values of ρ around ρ0, so that
the scale lengths involved in the scattering phenomenon are
those around ρ0.

Let us now consider the integrals∫
∞

0
Jν
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+νH dρ (70)

with ν = 0 and ν = 2 that appear in (30). The exponential
appearing in (70) is appreciably different from zero only for
values of ρ smaller than a few times 1/((1/2)k2s2u2

z )
1/2H . If

� is large, for such values of ρ, the argument of the Bessel
function in (70) is small, so that it is convenient to expand the
Bessel function in Taylor series around null argument [20]

Jν
(
kuρρ

)
=

∞∑
n=0

(−1)n

n!(n+ν)!

(
1
2

kuρρ
)2n+ν

. (71)

Substitution of (71) in (70) and integration by series lead
to∫

∞

0
Jν
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+νH dρ

=

∞∑
n=0

(−1)n
(
k2u2

ρ

)n+
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2

22n+νn!(n+ν)!

∫
∞

0
e−

1
2 k2u2

z s2ρ2H
ρ2(n+

ν
2 )+1+νH dρ.

(72)

By using the following equality [21]:∫
∞

0
e−uρ2H

ρwdρ =
1

2H
1

u
w+1
2H

0

(
w+1
2H

)
(73)

that holds for w> −1, with w= 2(n + ν/2)+1+νH and u =

(1/2)k2u2
z s2, we get∫

∞
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. (74)
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For ν = 0, we obtain∫
∞

0
J0
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρdρ

=
1

2H
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n=0

(−1)n

22n(n!)2
0

(
n+1

H

) (
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ρ

)n( 1
2 k2u2

z s2
) n+1
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(75)

while for ν = 2, we get∫
∞

0
J2
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H

ρ1+2H dρ

=
1

2H
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n=1

(−1)n−1

22n(n−1)!(n+1)!
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(
n+1

H
+ 1
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k2u2
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)n( 1
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) n+1

H +1
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2H

∞∑
n=1

(−1)n−1

22n(n!)2
n
H
0

(
n+1

H

) (
k2u2
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)n( 1
2 k2u2

z s2
) n+1

H +1
(76)

where we have used (68), so that

0

(
n+1

H
+1
)

=
n+1

H
0

(
n+1

H

)
,

1
(n−1)!

=
n
n!

and
n+1
(n+1)!

=
1
n!
.

By employing (75) and (76) in (30), we readily obtain (33).
A rigorous proof that the series in (75) and (76) are asymp-

totic expansions of the corresponding integrals for � → ∞

can be obtained by proceeding along a line similar to the one
described in [25] for the isotropic case.
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