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Abstract— Natural surfaces exhibit scale-invariance properties
and power-law spectra over a wide range of scales. For this
reason, they are well described in the frame of fractal geometry
and, in particular, using fractional Brownian motion (fBm) 2-D
statistical processes. In this letter, we present the derivation of the
correlation of Global Navigation Satellite System reflectometry
(GNSS-R) signals scattered by a fBm surface. We here show that
this correlation depends on a parameter related to the root-mean-
square (rms) surface slope as measured at the electromagnetic
wavelength scale. When this parameter increases, the correlation
smoothly decreases from a value close to unity reaching the value
of the roughness-independent expression already available in the
literature. In our experiments, based on roughness measurements
available in the literature, we first show how the description of
the roughness of natural surfaces can be conveniently obtained
via fBm parameters. Then, we illustrate the behavior of the cor-
relation time for different roughness regimes. For a high-altitude
airborne receiver, values ranging from about 6 ms (as predicted
by the expression already available in the literature) to several
tens of milliseconds are obtained.

Index Terms— Electromagnetic scattering, fractional Brownian
motion (fBm), power-law spectrum surfaces.

I. INTRODUCTION

IN THIS letter, we focus on the evaluation of the corre-
lation of Global Navigation Satellite System reflectometry

(GNSS-R) signals scattered by natural rough surfaces. This
topic is of great interest not only in GNSS-R [1] but also
in monostatic and bistatic synthetic aperture radar (SAR)
interferometric applications [2]. Therefore, this problem has
been long since tackled for very rough surfaces, for which a
classical roughness-independent expression of the correlation
is available [1], [2]. For the ocean surface, a dependence of
signal correlation on wind speed is observed only in case of
low-altitude low-velocity GNSS-R receivers [3], [4], [5].

Stimulated by the interest in novel GNSS-R land appli-
cations and by the finding that a dominant near specular
incoherent component can be appreciated even in case of very
flat gently undulating land surfaces [6], [7], [8], this topic has
been recently reconsidered, especially for near-specular scat-
tering (which is of interest for GNSS-R applications). In this
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case, a roughness-dependent expression of the correlation is
expected, as first confirmed through simulations in [7] and [9]
and then by the analytical formulation of the correlation
obtained in [10] by the authors of this letter. In particular, the
obtained expression of the correlation coefficient decreases for
increasing roughness from a value close to unity (for gently
undulating surfaces) to the value predicted by the classical
roughness-independent expression [1], [2] (for very rough
surfaces).

In [10], as well as in most of the relevant literature, the
roughness is assumed to be well described through a stationary
2-D random process, so that the process can be characterized
using two statistical parameters, namely, the root-mean-square
(rms) height σ and the correlation length L , upon choosing
an appropriate model for the autocorrelation function (usually,
Gaussian). However, when measuring the roughness of natural
surfaces, one finds out that the obtained values of σ and
L strongly depend on the size of the measured profile and,
in particular, their values increase with increasing profile
lengths [8], [11], [12]. This makes their use in the modeling of
scattering from natural surfaces problematic [11]. It is widely
recognized that natural surfaces exhibit power-law spectra and
scale-invariance properties over a wide range of scales and that
this behavior should be described through fractal geometry,
e.g., using fractional Brownian motion (fBm) surfaces [12].
Hence, the availability of an expression of the scattered field
correlation coefficient in terms of fBm parameters is of great
practical relevance.

In this letter, we extend the approach of [10] to the case
of fBm surfaces. Preliminary results have been discussed
in [13]. In the experimental section, based on recent roughness
measurement data available in [8], we first show that flat (at the
topographic scale) natural surfaces are well modeled by fBm
surfaces at the scale of interest for the considered sensors and
applications. Then, the behavior of the correlation coefficient
and of the correlation time as a function of surface roughness
is investigated.

II. THEORY

A. Surface Modeling
A 2-D fBm is a random process z(x, y) whose incre-

ments z(x, y) − z(x ′, y′) over a fixed horizontal distance
1 = ((x − x ′)2

+ (y − y′)2)1/2 are zero-mean Gaussian ran-
dom variables with variance Q(1) = s212H [Q(1) being the
fBm structure function], where s is a parameter measured in
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Fig. 1. Geometry of the problem: 3-D view.

Fig. 2. Geometry of the problem. (a) Projection onto the x–z plane. (b) Projection onto the x–y plane.

m1−H , and H is the Hurst coefficient, with 0 < H < 1 [12],
[14], [15]. Realizations of the 2-D fBm process are fractal
surfaces with fractal dimension D = 3 − H [12].

The fBm process is statistically nonstationary, with sta-
tionary increments, and has infinite variance [12]. However,
actual natural surfaces exhibit the fBm behavior only up
to an outer scale l that may be their linear size or, for
a sea surface, the dominant wavelength. These are known
as physical (or bandlimited) fBm random surfaces and
they are statistically stationary [12], [14], [15], with finite
variance σ 2

= (1/2)s2l2H , so that we can write, for
1 ≤ l

Q(1) = 2σ 2[1 − C(1)] = s212H (1)

where C(1) is the surface normalized autocorrelation func-
tion. It is clear from (1) that C(1) is not Gaussian and that
its second derivative C ′′(1) diverges in the origin. Since the
results of [10] can be applied to random rough surfaces sat-
isfying the conditions discussed in [10, Appendix B] (among
them, regularity of the derivatives of the correlation function),
in our case of interest, they cannot be used. Therefore, it is
necessary to devise a new, original analytical formulation of
the correlation coefficient. Its rationale is based on proper
modifications of the approach of [10], and it is detailed in
Section II-B.

B. Evaluation of the Correlation Coefficient
In the following, we refer to the geometry illustrated in

Fig. 1 (3-D view) and Fig. 2 (projections on the x−z and x−y
planes), where the two receiver positions are those assumed
by a single moving GNSS-R receiver at two slightly different
acquisition times. At time t , the transmitter is placed at
T ≡ (xT ,0, zT ), with xT = −rT sinϑ0 and zT = rT cosϑ0;
and the receiver is placed at R1 ≡ (xR1,0, zR), with xR1
= rR1sinϑ0 and zR = rR1cosϑ0, so that the origin O is the
specular point at time t for the mean plane and the plane
x-z is the vertical plane containing transmitter and receiver
at time t . Both transmitter and receiver move with velocities
vT and v, respectively; but since for all spaceborne and
airborne GNSS-R systems rR1 ≪ rT , so that vT /rT ≪ v/rR1,
we can neglect the movement of the transmitter, assuming
that at time t + 1t , the transmitter is still in T , whereas the
receiver has moved to the point R2 ≡ (xR2, yR2, zR), with xR2
= rR2sinϑR2cosφR2 = xR1+ vx1t and yR2 = rR2sinϑR2sinφR2
= vy1t , where vx and vy are the x- and y-components of the
receiver velocity, so that v = (v2

x + v2
y)

1/2.
We further assume that |vx |1t≪ rR1, |vy |1t≪ rR1, so that,

see Fig. 2

ϑR2 − ϑ0 =1ϑ ∼=
vx1t cos ϑ0

rR1
, ϕR2 =1ϕ ∼=

vy1t
rR1 sin ϑ0

.

(2)
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We consider the resolution cell that includes the specular
point, so that the observed area is centered in the origin and
its size is related to the sensor spatial resolution [10]. Finally

R̃X (x, y) =

√
(zX − z)2

+ (xX − x)2
+ (yX − y)2

= RX (x, y)

√
1 +

z2 − 2zX z
R2

X (x, y)
∼= RX (x, y)

−
zX

RX (x, y)
z(x, y) (3)

with

RX (x, y) =

√
z2

X + (xX − x)2 + (yX − y)2 (4)

and with the subscript X that must be replaced by T , R1, or R2
as needed. Therefore, while rX are the distances of sensors
from the origin, RX are their distances from the generic point
(x, y,0) of the mean plane, and R̃X are their distances from
the generic point (x, y, z(x, y)) of the rough surface.

The correlation coefficient of the fields is defined as

ρ(1t) =

∣∣cov[E(R1)E(R2)]
∣∣

√
var[E(R1)]var[E(R2)]

(5)

where E(R1) and E(R2) are the generic components of the
electric fields at R1 and R2, evaluated according to the Kirch-
hoff approximation (KA). By following the same procedure
as in [10], we get, see [10, eq. (10)]:

cov[E(R1)E(R2)]

∼=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

exp
{
−jk

[
RT (x, y)+RR1(x, y)−RT

(
x ′, y′

)
−RR2

(
x ′, y′

)]}
RR1(x, y)RR2(x ′, y′)

F(x, y)w(x, y)F∗
(
x ′, y′

)
w
(
x ′, y′

)
f
(
x, y, x ′, y′

)
dxdydx ′dy′

(6)

where k = 2π /λ is the wavenumber:

w(x, y) = exp

(
−

x2

2A2
x

−
y2

2A2
y

)
(7)

is the sensor illumination function, peaked around the origin,
so that Ax and Ay are the x and y sensor resolutions that are
assumed much smaller than rR1; F(x, y) is a slowly varying
function whose expression, as shown in [7], is not of interest
for evaluating the correlation coefficient, and, see [10, eq. (12)]

f
(
x, y, x ′, y′

)
= exp

{
−

k2σ 2

2

[
uz1(x, y) − uz2

(
x ′, y′

)]2
}

×

[
exp

{
−

k2uz1(x, y)uz2
(
x ′, y′

)
2

Q(1)

}

− exp
{
−k2σ 2uz1(x, y)uz2

(
x ′, y′

)}]
(8)

where uz1,2(x, y) = (zT /RT (x, y)) + (zR/RR1,2(x, y)).
Here, at variance with [10], we use (1) in (8) and assume

k2σ 2
= (1/2)k2s2l2H

≫ 1 (i.e., σ larger than the electromag-
netic wavelength λ , that is about 20 cm for GNSS-R), thus

obtaining

f
(
x, y, x ′, y′

)
∼= exp

{
−

k2σ 2

2

[
uz1(x, y) − uz2

(
x ′, y′

)]2
}

× exp

{
−

k2s212H uz1(x, y)uz2
(
x ′, y′

)
2

}
.

(9)

Proceeding again as in [10], we get
cov[E(R1)E(R2)]

∼=

∫
∞

−∞

∫
∞

−∞∣∣F(x, y)
∣∣2w2(x, y) exp

{
−jk

[
RR1(x, y)−RR2(x, y)

]}
RR1(x, y)RR2(x, y)

× exp
{

−
k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2
}

2π

×

∫
∞

0
J0
[
kuxy(x, y)1

]
exp
{
−

k2s212H u2
z (x, y)

2

}
1d1dxdy

(10)

where uxy = ([∂(RT + RR1)/∂x]
2

+ [∂(RT + RR1)/∂y]
2)1/2,

uz = (uz1uz2)
1/2, and J0 is the zero-order Bessel function. The

integral over 1 in (10) also appears in [14], where it is shown
that it can be expressed via a series expansion around uxy = 0
(which is the value of uxy at the specular point, i.e., in the
origin). By arresting the expansion at the second order, we get∫

∞

0
J0
[
kuxy(x, y)1

]
exp
{

−
k2s212H u2

z (x, y)

2

}
1d1

∼=
0
(
1
/

H
)

2H
(

k2s2u2
z (x,y)

2

)1/H

1 −
0
(
2
/

H
)
k2u2

xy(x, y)

40
(
1
/

H
)( k2s2u2

z (x,y)

2

)1/H


∼=

0
(
1
/

H
)

2H
(

k2s2u2
z (x,y)

2

)1/H exp

−
0
(
2
/

H
)
k2u2

xy(x, y)

40
(
1
/

H
)( k2s2u2

z (x,y)

2

)1/H


(11)

where 0 is the gamma function. Similar to w2(x, y), the
exponential function in (11) is peaked around the origin and
its width, which must be compared with the sensor resolution,
can be evaluated by expanding the exponent around the origin:
by using the same approach employed in [10, Appendix C] to
obtain [10, eqs. (22) and (23)] we get

exp

−
0
(
2
/

H
)
k2u2

xy(x, y)

40
(
1
/

H
)( k2s2u2

z (x,y)

2

)1/H

 ∼= exp

(
−

x2

G2
x

−
y2

G2
y

)

(12)

where

Gx =

√
0(1
/

H)

0(2
/

H)

(√
2k1−H s cos1−2H ϑ0

)1/H
2rR1

G y =

√
0
(
1
/

H
)

0(2
/

H)

(√
2 k1−H s cos ϑ0

)1/H
2rR1. (13)

It can be noted that k1−H s ∼ sλ H
/

λ , which is the rms slope
at the wavelength scale.
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From this point on, the results of [10] apply, in which (13)
replaces [10, eq. (23)]. Accordingly, we find

ρ(1t) ∼= exp

{
−

k21t2[W 2
x cos4 ϑ0v

2
x + W 2

y v2
y

]
4r2

R1

}
(14)

with Wx,y = Ax,yGx,y/(A2
x,y + G2

x,y)
1/2. The correlation time

τ is conventionally defined as the value of 1t such that ρ has
decreased to the value 1/e and, in this case, it is equal to

τ ∼=
λrR1

π
√

W 2
x cos4 ϑ0v2

x + W 2
y v2

y

. (15)

For Ax,y≪Gx,y , we get Wx,y∼=Ax,y and

ρ(1t) ∼= exp

{
−

π21t2[A2
x cos4 ϑ0v

2
x + A2

yv
2
y

]
λ 2r2

R1

}
(16)

which is the classical solution of [1]. This leads to a correlation
time τ

τ ∼=
λrR1

π
√

A2
x cos4 ϑ0v2

x + A2
yv

2
y

. (17)

Conversely, for Gx,y ≪ Ax,y , we have Wx,y ∼= Gx,y and,
using (13) in (14)

ρ(1t) ∼= exp

{
−

0
(
1
/

H
)

0
(
2
/

H
)(2k2s2 cos2 ϑ0

)1/H
1t2v2

}
(18)

and

τ ∼=

√
0
(
2
/

H
)

0
(
1
/

H
) 1

v
(√

2 ks cos ϑ0

)1/H . (19)

Equations (18) and (19) reduce to the results of [10] for
H→1, with s assuming the meaning of rms slope.

III. EXPERIMENTAL RESULTS

As a first step, we here show that the fBm model is
well-suited for the description of natural surfaces, even in the
case of gently undulating terrains. To this aim, we consider
the results obtained in [8] from airborne Lidar data acquired in
May 2020 over the CYGNSS cal/val sites in San Luis Valley,
Colorado. Two areas are analyzed there: the Z1 site, which
is a very flat agricultural area, and the Z4 site, which is a
flat area containing some terrain undulations. The estimation
of the rms height using Lidar patches of different linear sizes,
ranging from about 1 m to about 140 m, was performed in [8],
thus producing plots of the rms height σ as a function of the
linear size l for the two sites. They are reported in [8, Fig. 8].
We extrapolated these data plotting them on a logarithmic
plane (see Fig. 3). These graphs show an almost perfect fit
with a linear behavior, as predicted by modeling the surfaces
with a physical fBm process. In fact, for an fBm, as reported
in Section II-A

σ 2
=

1
2

s2l2H (20)

i.e., moving to logarithmic quantities

log(σ ) = log(s) −
1
2

log(2) + H log(l). (21)

Fig. 3. Logarithm of the height standard deviation σ [m] versus logarithm
of the profile length l [m] for CYGNSS cal/val site (a) Z1 and (b) Z4. Solid
line is the obtained regression line, whereas the dots are the measured values
obtained from [8].

TABLE I
HIGH-ALTITUDE AIRBORNE GNSS-R SYSTEM PARAMETERS

Therefore, we can conclude that fBm is a good model for the
considered sites. In addition, according to (21), it is possible
to obtain an estimate of the fBm parameters s and H by
applying a simple linear regression to the data shown in Fig. 3.
The obtained estimates for the two sites are H = 0.93 and
s = 0.06 m0.07 for Z4 and H = 0.83 and s = 0.01 m0.17 for Z1.

Let us now move to analyze the behavior of the correlation
coefficient and of the correlation time as a function of surface
roughness. We consider the high-altitude airborne GNSS-R
system, whose parameters are reported in Table I [10]. Note
that the sensor is moving along the x-axis, so that vy = 0.
In Fig. 4, we show the graphs of the correlation coefficient
(setting 1t = 7 ms) and of the correlation time as a function
of the parameter s of the observed surface, obtained using (14)
and (15) with the two values of H estimated for sites Z4
and Z1. It can be noted that in both cases, as s increases, the
correlation coefficient decreases from a value close to unity
to the value obtained via the classical, roughness-independent
expression (16), i.e., about 0.336. Also, the correlation time
decreases from several milliseconds to the value obtained
by (17). This value is achieved for s larger than about
0.04 m1−H , and for the considered system, it is equal to 6.7 ms.
Accordingly, it is expected that for the Z4 site (s = 0.06 m0.07),
a value of the correlation time very close to the “classical”
one should be obtained. This is confirmed by the fact that
using (13), we obtain Gx = 1975 m and G y = 1711 m, which
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Fig. 4. Correlation time τ [s] and correlation coefficient ρ (for 1t = 7 ms)
versus s [m1−H ] for the values of H estimated for the two CYGNSS cal/val
sites considered in [8], i.e., (a) H = 0.93 for Z4 and (b) H = 0.83 for Z1.

are larger than resolution, so that (17) can be applied. In fact,
the value obtained by (17) is in rather good agreement with
that obtained for the Z4 site using the exact expression (15),
i.e., 7.0 ms.

Conversely, for the Z1 site (s = 0.01 m0.17), we expect to
obtain a value of the correlation time significantly larger than
6.7 ms. Indeed, the value of correlation time obtained using
the exact expression (15) is 15.2 ms. Note that for the Z1 site,
the use of (13) provides Gx = 230 m and G y = 199 m, which
are smaller than resolution, so that in this case, (19) can be
applied, providing a correlation time of 14.8 ms, close to the
exact value.

These results confirm that for very flat, gently undulating
land surfaces, the value of the correlation time might be
significantly higher than the one foreseen by the classical
roughness-independent expression available in the literature,
at least for airborne GNSS-R systems.

IV. CONCLUSION

A novel analytical formulation for the expression of the
correlation coefficient and correlation time of GNSS-R signals
scattered by natural land surfaces modeled as physical fractal
fBm surfaces has been obtained. The obtained expressions
depend on the parameter k1−H s, which is the rms slope at
wavelength scale. For sufficiently low values of the parameter,
ρ and τ depart from the classical roughness-independent
values reported in the literature, paving the way to their
use in support of coherent GNSS-R processing or roughness
retrieval. When this parameter decreases, the correlation coef-
ficient smoothly increases from the value obtained by the
roughness-independent expression to a value close to unity.

As a meaningful side result, our analysis also provides a
first preliminary evidence of the appropriateness of a frac-
tal description of natural land surfaces also in flat, gently
undulating areas, by exploiting roughness measurements inde-
pendently reported in the scientific literature. This is a new
result, since the use of fBm for natural surfaces was previously
demonstrated for sea surfaces [16], rocky terrains [17], areas
with significant topography [18], and lava tubes [19].
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