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Abstract— In the context of bistatic synthetic aperture radar
(SAR) imaging, SAR interferometry is an appealing application
due to the capability of retrieving accurate topographic informa-
tion or surface deformations at fractions of wavelength. Within
this framework, we present a new physical-based approach
to evaluate the correlation between a pair of bistatic SAR
acquisitions over a bare soil surface and in a very general imaging
geometry, which includes two transmitters and two receivers.
Some specific configurations of practical interest for proposed
bistatic spaceborne SAR missions, for example, SESAME and
PLATiNO-1 (PLT-1), namely coplanar and along-track bistatic
geometries, are analyzed as well. The proposed methodology
makes use of electromagnetic scattering models suited to ran-
dom rough surfaces, namely the Kirchhoff approximation (KA)
and the first-order small-slope approximation (SSA1), under
which analytical formulations of the correlation between the
received electromagnetic fields are derived. It is found that in
the coplanar imaging geometry, a unitary correlation coefficient
can be obtained with nonnull orthogonal baselines. Closed-form
expressions of the critical baseline are derived as well. The
proposed approach can be applied to such scenarios where single
surface scattering is the dominant mechanism, such as bare soil
surfaces or scarcely to moderately vegetated areas.

Index Terms— Bistatic radar, coherence, synthetic aperture
radar (SAR) interferometry.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) interferometry is a
well-known technique able to retrieve accurate terrain

topography [1], [2] or small terrain movements [3], [4], [5]
from the proper combination of multiple acquisitions. The
most common implementation of the technique consists in the
combination of monostatic SAR images acquired at different
times (repeat-pass interferometry) [1], [2], [3], [4], [5], which
is necessary for terrain movement retrieval, but often employed
also for topographic applications. More accurate topography
measurements are obtained by using a transmitting-and-
receiving antenna and an additional receiving-only antenna
(single-pass interferometry) [6], [7], that is, by combining a
monostatic SAR acquisition with a bistatic one. If the two
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antennas are carried by a single platform, as in the Shuttle
Radar Topography Mission (SRTM) [6], the SAR interferome-
try system is usually considered to be monostatic. Conversely,
if the two antennas are carried by different platforms, as in
TanDEM-X [7], the SAR interferometry system is usually
considered to be bistatic. However, conceptually the two
implementations are identical, and here we will refer to them
as single-pass monostatic SAR interferometry.

Recently, fully bistatic implementations have been pro-
posed [8], [9] and experimentally implemented [9], which
imply the use of one transmitting-only antenna and two
closely spaced receiving-only antennas. In this case, both
the SAR acquisitions of the interferometric pair are bistatic,
and here, we will refer to this implementation as single-pass
bistatic SAR interferometry. Moreover, bistatic SAR exper-
iments are being currently performed [10], thus paving the
way to repeat-pass bistatic SAR interferometry, in which
pairs of bistatic SAR acquisitions are used. Finally, in the
last decade, both public space agencies and private leading
companies are planning to launch innovative spaceborne SAR
systems working in bistatic acquisition geometries, such as
the X-band PLATiNO-1 (PLT-1) designed by the Italian Space
Agency (ASI), that will form a bistatic SAR system with the
satellites of Cosmo-SkyMed Second Generation (CSG), also
working in X-band [11]. Remarkably, CSG/PLT-1 is planned
to operate in two different phases: Phase 1, where PLT-1 will
acquire bistatic data flying on the same orbit of CSG at a
planned along-track distance of few hundreds of kilometers,
and Phase 2, where PLT-1 will operate in a nominal monostatic
mode on a lower orbit of about 400 km with potential bistatic
modalities when sufficiently close to CSG.

In this work, we consider the general case of two closely
spaced transmitters and two closely spaced receivers placed
at arbitrary distance from the transmitters. This general con-
figuration can be easily specialized to obtain all the SAR
interferometry configurations described above. Indeed, the
couples of transmitters and of receivers might each represent
either a couple of physically separated platforms or the same
platform at two different passages over the same surveyed area.

One of the main factors influencing the accuracy of inter-
ferometric measurements is coherency. The latter may be
impaired by several decorrelation sources, among which base-
line, or spatial, decorrelation is unavoidable, because it is
caused by the fact itself that the two transmitters and/or the two
receivers are spatially separated [2], [12], [13]. The analysis
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Fig. 1. Geometry of the problem.

of the correlation between the scattered fields has been the
subject of intense research activities in the nineties, when
different numerical, experimental, and analytical approaches
for the evaluation of the so-called angular correlation function
have been developed, see [14], [15], [16], [17], and [18].
Ishimaru and Chen [14] and Le et al. [17] focus on the
analysis of the fields scattered in the incidence plane, while
in [15] and [16] only 1-D surfaces are treated. Finally, [18]
derives analytical expressions of the correlation under the
small perturbation method. An evaluation of the baseline
decorrelation in monostatic SAR interferometry is available
in [2], [12], and [13]. In particular, in [2] and [12], it is
assumed that the scattering centers belong to a flat surface and
their contribution is spatially delta-correlated, whereas in [13]
the scattering surface is described as randomly rough. Results
of [13] reduce to those of [2] and [12] when surface standard
deviation and correlation length are both much smaller than the
system resolution, as it is often the case. The approach of [13]
has been recently extended to the case of one transmitter and
two receivers at near-specular direction [19], [20], which is
the case of interest for Global Navigation Satellite System
Reflectometry (GNSS-R), but not for SAR interferometry.
A more general configuration is briefly considered in [21],
where only the single-transmitter case is still considered. Here,
we extend the approach of [13] to the general case of two
transmitters and two receivers, so being able to evaluate the
baseline decorrelation for both single-pass and repeat-pass
bistatic SAR interferometry.

II. THEORY

Let us consider a rough surface z(x, y), whose mean
plane is the xy plane, modeled as a statistically homogeneous

zero-mean Gaussian random process with standard deviation σ

and normalized (to σ 2) autocorrelation function C(1x, 1y),
with 1x = x ′

− x , 1y = y′
− y, (x, y) and (x ′, y′) being two

generic surface points. Although it is not strictly necessary,
we will assume that the surface is statistically isotropic, so that
C(1x , 1y) = C(1x2

+ 1y2). The normalized autocorrelation
function is equal to one for 1x = 1y = 0 and is negligible
for 1x and/or 1y larger than the surface correlation length L .
We assume that L is much smaller than system resolution.

The geometry of the problem is depicted in Fig. 1: we
consider two identical closely spaced transmitters T1 and T2,
placed at rT 1 ≡ (xT 1, yT 1, zT 1), with xT 1 = rT 1 sin ϑT 1 cos φT 1,
yT 1 = rT 1 sin ϑT 1 sin φT 1, zT 1 = rT 1 cos ϑT 1, and rT 2 ≡

(xT 2, yT 2, zT 2), with xT 2 = rT 2 sin ϑT 2 cos φT 2, yT 2 =

rT 2 sin ϑT 2 sin φT 2, zT 2 = rT 2 cos ϑT 2; and two identical
closely spaced receivers R1 and R2, placed at rR1 ≡

(xR1, yR1, zR1), with xR1 = rR1 sin ϑR1 cos φR1, yR1 =

rR1 sin ϑR1 sin φR1, zR1 = rR1 cos ϑR1, and rR2 ≡ (xR2, yR2,
zR2), with xR2 = rR2 sin ϑR2 cos φR2, yR2 = rR2 sin ϑR2 sin φR2,
zR2 = rR2 cos ϑR2. We also define the transmitter base-
line vector BT =rT 2−rT 1 and the receiver baseline vector
BR =rR2−rR1, and we assume that the spacing between the
transmitters is much smaller than their distances from the
ground (|BT | ≪ rT 1, rT 2), and similarly that the spacing
between the receivers is much smaller than their distances from
the ground (|BR| ≪ rR1, rR2), so that

rT 2 − rT 1 = BT ∥

ϑT 2 − ϑT 1 = 1ϑT ∼=
BT ⊥

rT 1

ϕT 2 − ϕT 1 = 1ϕT
∼=

BT az

rT 1 sin ϑT 1
(1)
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and

rR2 − rR1 = BR∥

ϑR2 − ϑR1 = 1ϑ R ∼=
BR⊥

rR1

ϕR2 − ϕR1 = 1ϕR
∼=

BRaz

rR1 sin ϑR1
(2)

where BT ∥, BT ⊥, BT az and BR∥, BR⊥, BRaz are the parallel,
perpendicular, and azimuth components of the baseline vectors

BT = BT ∥r̂T 1 + BT ⊥ϑ̂T 1 + BT azϕ̂T 1

BR = BR∥r̂R1 + BR⊥ϑ̂ R1 + BRazϕ̂R1. (3)

The origin O of the reference system coincides with the
center of the considered resolution cell. We assume perfect
coregistration of the image pair, so that the center of the
resolution cell is the same for both images.

By using the Kirchhoff approximation (KA) [22], the
generic component of the field E1(rR1) transmitted by T1 and
scattered toward R1 can be written as

E1(rR1)

=

∫
∞

−∞

∫
∞

−∞

F1(x, y)

× w(x, y)
exp
{
− jk

[
R̃T 1(x, y) + R̃R1(x, y)

]}
R̃T 1(x, y)R̃R1(x, y)

dxdy.

(4)

Similarly, the generic component of the field E2(rR2) trans-
mitted by T 2 and scattered toward R2 can be written as

E2(rR2)

=

∫
∞

−∞

∫
∞

−∞

F2(x, y)

× w(x, y)
exp
{
− jk

[
R̃T 2(x, y) + R̃R2(x, y)

]}
R̃T 2(x, y)R̃R2(x, y)

dxdy. (5)

In (4) and (5), we have that:
1) k = 2π /λ is the wavenumber, with λ being the

wavelength.
2) w(x, y) is the sensor illumination function, whose shape

may be irregular, depending on the observation geometry
and on the platforms’ flight directions. In addition,
even considering perfect coregistration, it may slightly
differ for the two transmitter-receiver pairs. However,
for not very large transmitter and receiver baselines,
the assumption of equal shapes is usually acceptable.
We will consider the case of arbitrary illumination
function, assuming that its x and y sizes are Ax and
Ay , respectively, but we will also specialize the obtained
expressions in the Gaussian case

w(x, y) = exp

(
−

x2

2A2
x

−
y2

2A2
y

)
. (6)

3)

R̃X (x, y) =

√
(zX − z)2

+ (xX − x)2
+ (yX − y)2

= RX (x, y)

√
1 +

z2 − 2zX z
R2

X (x, y)
∼=

∼= RX (x, y) −
zX

RX (x, y)
z(x, y) (7)

with

RX (x, y) =

√
z2

X + (xX − x)2
+ (yX − y)2 (8)

and with the subscript X that must be replaced by T 1,
T 2, R1, or R2 as needed, so that rX are the distances
of sensors from the origin, RX are their distances from
the generic point (x , y, 0) of the mean plane, and R̃X

are their distances from the generic point [x, y, z(x, y)]
of the rough surface;

4) F1,2(x, y) are slowly varying functions, proportional to
the incident field, accounting for the polarizations of
both the incident and scattered field, the look angles
ϑT 1,2, the receivers polar ϑR1,2 and azimuth angles ϕR1,2,
the local slopes of the surface and its dielectric prop-
erties through the local Fresnel reflection coefficients.
However, its expressions, as shown in the following, are
of no interest for our purposes. The interested reader can
find more details in [22].

We explicitly note that the same formulation, (4) and (5), can
be obtained under the first-order small-slope approximation
(SSA1) [23], with different expressions of the slowly varying
function F1,2 (x, y). This ensures that our results for the
correlation coefficient are valid under both the KA and the
SSA1.

It is also important to note that the functions F1,2(x, y) and
RX (x, y) are slowly spatially varying, that is, they appreciably
change only for variations of x and y not much smaller
than the R1 distance rR1. Accordingly, the variations of such
functions over distances much smaller than rR1 can be ignored,
except that in the argument of the complex exponential func-
tions in (4) and (5), where variations of RX (x, y) can be only
ignored if they are much smaller than wavelength.

We want now to compute the correlation coefficient

ρ =
|cov[E1(rR1), E2(rR2)]|

√
var[E1(rR1)]var[E2(rR2)]

(9)

where

cov[E1(rR1), E2(rR2)]

=
〈
[E1(rR1) − ⟨E1(rR1)⟩][E2(rR2) − ⟨E2(rR2)⟩]∗

〉
=
〈

E1(rR1)E2(rR2)
∗
〉

− ⟨E1(rR1)⟩⟨E2(rR2)⟩
∗ (10)

var
[
E1,2

(
rR1,2

)]
=

〈∣∣E1,2
(
rR1,2

)
−
〈

E1,2
(
rR1,2

)〉∣∣2〉
=

〈∣∣E1,2
(
rR1,2

)∣∣2〉−
∣∣〈E1,2

(
rR1,2

)〉∣∣2 (11)

and the symbol ⟨·⟩ indicates the statistical mean (i.e., the
ensemble average).

By using (4) and (5) in (10), we get

cov[E1(rR1), E2(rR2)] ∼=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

exp
{
−jk

[
RT 1(x, y)+RR1(x, y)−RT 2

(
x ′, y′

)
−RR2

(
x ′, y′

)]}
RT 1(x, y)RT 2(x ′y′⟩RR1(x, y)RR2(x ′, y′)
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× F1(x, y)w(x, y)F∗

2

(
x ′, y′

)
w
(
x ′, y′

)
×
[〈

exp
{

jk
[
uz1(x, y)z(x, y) − uz2

(
x ′, y′

)
z
(
x ′, y′

)]}〉
−
〈
exp
{

jk
[
uz1(x, y)z(x, y)

]}〉
×
〈
exp
{
− jk

[
uz2
(
x ′, y′

)
z
(
x ′, y′

)]}〉]
dxdydx ′dy′ (12)

where

uz1,2(x, y) =
zT 1,2

RT 1,2(x, y)
+

zR1,2

RR1,2(x, y)
. (13)

It should be noted that each term in uz1,2 in (13) comes from
the approximation of the sensor-surface point distance R̃ in (7).
Indeed, they allow to express the sensor-surface point distance
R̃ in terms of the distance R between the sensor and the
mean plane point corresponding to the generic surface point.
Consequently, uz1,2 allows to write the actual bistatic range in
terms of the bistatic range evaluated over the mean plane.

Let us now focus on the following function that appears
in (12):

f
(
x, y, x ′, y′

)
=
〈
exp
{

jk
[
uz1(x, y)z(x, y) − uz2

(
x ′, y′

)
z
(
x ′, y′

)]}〉
−
〈
exp
{

jk
[
uz1(x, y)z(x, y)

]}〉
×
〈
exp
{
− jk

[
uz2
(
x ′, y′

)
z
(
x ′, y′

)]}〉
.

The statistical means that appear in this expression are the
characteristic functions [24] of Gaussian random variables,
so that they can be readily computed

f
(
x, y, x ′, y′

)
= exp

{
−

k2σ 2

2

[
u2

z1(x, y) + u2
z2

(
x ′, y′

)
− 2uz1(x, y)uz2

(
x ′, y′

)
C(1x, 1y)

]}
− exp

{
−

k2σ 2

2

[
u2

z1(x, y) + u2
z2

(
x ′, y′

)]}
= exp

{
−

k2σ 2

2

[
uz1(x, y) − uz2

(
x ′, y′

)]2
}

×
[
exp
{
−k2σ 2uz1(x, y)uz2

(
x ′, y′

)[
1 − C(1x, 1y)

]}
− exp

{
−k2σ 2uz1(x, y)uz2

(
x ′, y′

)}]
. (14)

The function f is appreciably different from zero only for
1x and 1y not larger than the surface correlation length L ,
where C(1x, 1y) is not negligible. Therefore, the integrand
of (12) is appreciably different from zero only for |x − x ′

| and
|y − y′

| smaller than L . Considering that L is much smaller
than resolution, which in turns is usually much smaller than
the transmitter and receiver distances rT 1 and rR1, in the first
exponential of (12), we can let

RT 1(x, y) + RR1(x, y) − RT 2
(
x ′, y′

)
− RR2

(
x ′, y′

)
= RT 1(x, y) + RR1(x, y) − RT 1

(
x ′, y′

)
− RR1

(
x ′, y′

)
+ RT 1

(
x ′, y′

)
− RT 2

(
x ′, y′

)
+ RR1

(
x ′, y′

)
− RR2

(
x ′, y′

)
∼= −ux (x, y)1x − u y(x, y)1y+RT 1(x, y) − RT 2(x, y)

+ RR1(x, y) − RR2(x, y) (15)

where

ux (x, y) =
∂(RT 1 + RR1)

∂x
=

x − xT 1

RT 1(x, y)
+

x − xR1

RR1(x, y)

u y(x, y) =
∂(RT 1 + RR1)

∂y
=

y − yT 1

RT 1(x, y)
+

y − yR1

RR1(x, y)
. (16)

In addition, elsewhere in (12) and (14), apart from C(1x, 1y),
we can assume x = x ′, y = y′. It is worth stressing here that
similar approaches allowing to reduce the fourfold integral
in (12) to a twofold one have been proposed in the literature,
see [12], [13], and [18]. Accordingly, (14) can be rewritten as

f
(
x, y, x ′, y′

)
= exp

{
−

k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2
}

f̃ (x, y, 1x, 1y)

(17)

where

f̃ (x, y, 1x, 1y)

=
[
exp
{
−k2σ 2u2

z (x, y)
[
1 − C(1x, 1y)

]}
− exp

{
−k2σ 2u2

z (x, y)
}]

(18)

and we have set uz(x, y) = (uz1(x, y)uz2(x, y))1/2.
Note that in (15), we have set RT 1(x ′, y′) − RT 2(x ′, y′) ∼=

RT 1(x, y) − RT 2(x, y) and RR1(x ′, y′) − RR2(x ′, y′) ∼=

RR1(x, y)− RR2(x, y). It can be shown that the corresponding
errors are of the order of (|BT |/rT 1) and (|BR|/rR1) times the
distance from (x, y) to (x ′, y′), respectively. Therefore, our
approximation holds if (|BT |/rT 1)L and (|BR|/rR1)L do not
exceed λ . For example, for systems with baselines of the order
of some kilometers, L cannot exceed a few meters.

By using (15) and (17) in (12), we have

cov[E1(rR1), E2(rR2)]

∼=

∫
∞

−∞

∫
∞

−∞

F1(x, y)F∗

2 (x, y)w2(x, y)

RT 1(x, y)RT 2(x, y)RR1(x, y)RR2(x, y)

× exp
{
−jk

[
RT 1(x, y)−RT 2(x, y)+RR1(x, y)−RR2(x, y)

]}
× exp

{
−

k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2
}

×

∫
∞

−∞

∫
∞

−∞

exp
[

jkux (x, y)1x
]

exp
[

jku y(x, y)1y
]

× f̃ (x, y, 1x, 1y)d1xd1ydxdy. (19)

The double integral over 1x and 1y in (19) is the
Fourier transform (FT) of f̃ (x, y, 1x, 1y) evaluated in
kux (x, y), ku y(x, y), so that we can write

cov[E1(rR1), E2(rR2)]

∼=

∫
∞

−∞

∫
∞

−∞

F1(x, y)F∗

2 (x, y)w2(x, y)

RT 1(x, y)RT 2(x, y)RR1(x, y)RR2(x, y)

× exp
{
− jk

[
RT 1(x, y) − RT 2(x, y)

+RR1(x, y) − RR2(x, y)
]}

× exp
{

−
k2σ 2

2

[
uz1(x, y) − uz2(x, y)

]2
}

× F̃
(
x, y, kux (x, y), ku y(x, y)

)
dxdy (20)

where F̃ is the FT of f̃ (and it is real, due to the symmetry
properties of the autocorrelation function). The sensor illumi-
nation function w in (20) is peaked around the origin and is
appreciably different from zero only in the resolution cell of
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area of the order of Ax Ay . Since the resolution is usually much
smaller than rT 1 and rR1, in the resolution cell the argument of
the first exponential in (20) can be approximated by expanding
it around the origin

RT 1(x, y) − RT 2(x, y) + RR1(x, y) − RR2(x, y)

∼= rT 1 − rT 2 + rR1 − rR2 + ηx x + ηy y (21)

where ηx = ηT x + ηRx and ηy = ηT y + ηRy with

ηT x =
∂(RT 1 − RT 2)

∂x

∣∣∣∣x=0
y=0

= −
xT 1

rT 1
+

xT 2

rT 2

= − sin ϑT 1 cos ϕT 1 + sin ϑT 2 cos ϕT 2

∼= cos ϑT 1 cos ϕT 11ϑT − sin ϑT 1 sin ϕT 11ϕT
∼=

∼=
cos ϑT 1 cos ϕT 1 BT ⊥

rT 1
−

sin ϕT 1 BT az

rT 1

ηT y =
∂(RT 1 − RT 2)

∂y

∣∣∣∣x=0
y=0

= −
yT 1

rT 1
+

yT 2

rT 2
= − sin ϑT 1 sin ϕT 1 + sin ϑT 2 sin ϕT 2

∼= cos ϑT 1 sin ϕT 11ϑT + sin ϑT 1 cos ϕT 11ϕT

∼=
cos ϑT 1 sin ϕT 1 BT ⊥

rT 1
+

cos ϕT 1 BT az

rT 1
(22)

ηRx and ηRy being obtained from (22) by replacing the
subscript T 1 and T 2 with R1 and R2, respectively.

The parameters ηx and ηy allow to simplify the distances
RX in (21) by expressing them in terms of the sensor-origin
distances rX .

All other functions in (20) can be assumed approximately
constant in the resolution cell and equal to their value in the
origin

F1,2(x, y) ∼= F1,2(0, 0) = F10,20 (23)
uz1(x, y) − uz2(x, y)

∼= uz1(0, 0) − uz2(0, 0)

= cos ϑT 1 + cos ϑR1 − cos ϑT 2 − cos ϑR2

∼= sin ϑT 11ϑT + sin ϑR11ϑ R

∼=
sin ϑT 1 BT ⊥

rT 1
+

sin ϑR1 BR⊥

rR1
(24)

uz(x, y)

∼= uz0 = uz(0, 0) ∼= cos ϑT 1 + cos ϑR1 (25)
ux (x, y)

∼= ux0 = ux (0, 0)

= − sin ϑT 1 cos ϕT 1 − sin ϑR1 cos ϕR1 (26)
u y(x, y) ∼= u y0 = u y(0, 0)

= − sin ϑT 1 sin ϕT 1 − sin ϑR1 sin ϕR1 (27)

F̃
(
x, y, kux (x, y), ku y(x, y)

)
∼= F̃0

= F̃
(
0, 0,kux0, ku y0

)
. (28)

By using (21), (23)–(28) in (20) we get

cov[E1(rR1), E2(rR2)]

∼=
F10 F∗

20 F̃0 exp
[
− jk(rT 1 − rT 2 + r R1 − rR2)

]
rT 1rT 2r R1rR2

× exp

{
−

k2σ 2

2

[
sin ϑT 1 BT ⊥

rT 1
+

sin ϑR1 BR⊥

rR1

]2
}

×

∫
∞

−∞

∫
∞

−∞

w2(x, y) exp
[
− jkηx x − jkηy y

]
dxdy. (29)

The double integral over x and y in (29) is the FT of
w2(x, y) evaluated in kηx , kηy , so that we can write, by using
also (22)

cov[E1(rR1), E2(rR2)]

=

F10 F∗

20 F̃0 exp
[

jk
(

BT ∥ + B R∥

)]
rT 1rT 2r R1rR2

× exp

{
−

k2σ 2

2

[
sin ϑT 1 BT ⊥

rT 1
+

sin ϑR1 BR⊥

rR1

]2
}

×W sq

{
k
[

cos ϑT 1 cos ϕT 1 BT ⊥

rT 1
−

sin ϕT 1 BT az

rT 1

+
cos ϑR1 cos ϕR1 BR⊥

rR1
−

sin ϕR1 BRaz

rR1

]
,

k
[

cos ϑT 1 sin ϕT 1 BT ⊥

rT 1
+

cos ϕT 1 BT az

rT 1

+
cos ϑR1 sin ϕR1 BR⊥

rR1
+

cos ϕR1 BRaz

rR1

]}
(30)

where Wsq(kηx , kηy) is the FT of the sensor illumination
function squared w2(x, y).

The field variances are easily deduced from (30) by setting
all baselines to zero

var
[
E1,2

(
rR1,R2

)]
∼=

∣∣F10,20
∣∣2∣∣Wsq(0, 0)

∣∣F̃0

r2
T 1,T 2r2

R1,R2
. (31)

By replacing (30) and (31) in (9), we finally get

ρ ∼= exp

{
−

k2σ 2

2

[
sin ϑT 1 BT ⊥

rT 1
+

sin ϑR1 BR⊥

rR1

]2
}

×

∣∣∣∣Wsq

{
k
[

cos ϑT 1 cos ϕT 1 BT ⊥

rT 1
−

sin ϕT 1 BT az

rT 1

+
cos ϑR1 cos ϕR1 BR⊥

rR1
−

sin ϕR1 BRaz

rR1

]
,

k
[

cos ϑT 1 sin ϕT 1 BT ⊥

rT 1
+

cos ϕT 1 BT az

rT 1
+

cos ϑR1 sin ϕR1 BR⊥

rR1

+
cos ϕR1 BRaz

rR1

]}
/Wsq(0, 0)

∣∣∣∣. (32)

By using a well-known property of the FT, that is, the uncer-
tainty principle, we can state that Wsq(kηx , kηy) is appreciably
different from zero only if kηx is not larger than a critical value
of the order of 1/Ax and if, at the same time, kηy is not larger
than a critical value of the order of 1/Ay . For instance, if the
Gaussian illumination function of (6) is considered, we get

Wsq
(
kηx , kηy

)
= π Ax Ay exp

−
k2η2

x A2
x

4
−

k2η2
y A2

y

4

 (33)

and the critical values for kηx and kηy are 2/Ax and 2/Ay ,
respectively.
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With simple algebraic manipulations, it can be shown that,
if Ax = Ay and BT az = BRaz = 0, the correlation coefficient
in (32) and (33) does not depend on the T 1 and R1 azimuth
angle separately, but only on their difference ϕT 1 − ϕR1.

If, additionally, BT ⊥ = 0, that is, in the presence of one
transmitter, the correlation coefficient is independent of the
R1 azimuth angle ϕR1.

Equations (32) and (33) allow computing the correlation
coefficient for a very general bistatic geometry, but they
are quite involved due to the involved expressions in (22).
However, they can be greatly simplified if we make some
reasonable assumptions. First of all, with no significant loss of
generality, we can assume that the T 1 azimuth angle ϕT 1 = 0.
In addition, in most cases, it is reasonable to assume that the
surface standard deviation is much smaller than the system
resolution along x, that is, σ ≪ Ax , so that (apart from a
particular case that we will consider later) the first exponential
in (32) can be assumed unitary when the second one is
nonnegligible. Finally, we assume that azimuth baselines are
null, that is, BT az = BRaz = 0. With these assumptions, (32)
simplifies as

ρ ∼=

∣∣∣∣Wsq

{
k
[

cos ϑT 1 BT ⊥

rT 1
+

cos ϑR1 cos ϕR1 BR⊥

rR1

]
,

k
[

cos ϑR1 sin ϕR1 BR⊥

rR1

]}
/Wsq(0, 0)

∣∣∣∣ =
= exp

{
−

k2 A2
x

4

[
cos ϑT 1 BT ⊥

rT 1
+

cos ϑR1 cos ϕR1 BR⊥

rR1

]2

−
k2 A2

y

4

[
cos ϑR1 sin ϕR1 BR⊥

rR1

]2
}

(34)

where the second equality holds for the Gaussian illumination
function of (6).

III. DISCUSSION

Before going further in the discussion of the derived formu-
lation, it is helpful to summarize the main mathematical steps
leading to (34).

First of all, we have focused on the evaluation of the
correlation coefficient over such natural scenes where sin-
gle surface scattering is the dominant contribution, such as
bare soil surfaces or scarcely to moderately vegetated areas;
additionally, we treated the most general bistatic SAR system
comprising two transmitters and two receivers.

In order to keep the mathematical treatability of the prob-
lem, we made the following assumptions.

1) H.1: KA or SSA-1 holds.
2) H.2: The resolution cell sizes along x and y, Ax , Ay are

much smaller than rT 1, rR1.
3) H.3: The surface correlation length L is much smaller

than system resolution.
4) H.4: |BT| ≪ rT 1 and | BR| ≪ rR1, where the system

baselines are defined in (3).
By means of KA (or SSA-1), the field received by the two

receivers can be written as in (4) and (5) and their correlation
coefficient can be evaluated through (9) by definition, where

the covariance is reported in (12) and the variances can be
obtained by setting all the baselines to zero.

Exploiting the hypotheses H.2–H.4, the covariance can
be simplified as in (29), that immediately leads to (30)
by introducing the FT of the illumination function squared.
By replacing (30) and (31) in (9), we obtain the final expres-
sion in (32), that specializes as in (34) in the case of Gaussian
illumination, that is, (33), and if the following additional
simplifying assumptions on the imaging geometry and the
sensed scene hold.

1) ϕT 1 = 0.

2) BT az = BRaz = 0.

3) σ ≪ Ax .

Inspection of the final formulations in (32) and (34) reveals
that the obtained correlation coefficient is independent upon
the dielectric properties of the sensed surface, that is, its
soil wetness. This follows from the slow variations of the
F1,2(x, y) function, that, then, simplifies in the evaluation of
the correlation coefficient, see (9), (30), and (31). Therefore,
varying soil wetness will not lead to any variation of the
correlation coefficient.

Similarly, if, additionally, σ ≪ Ax , the correlation coef-
ficient is independent upon the surface roughness, as well,
see (34).

It is worth mentioning that surface roughness σ is on the
orders from mm to cm for most natural surfaces, whereas
the system resolution typically ranges from meters to tens of
meters for most SAR systems. Accordingly, in most scenarios
of interest here, the assumption σ ≪ Ax can be safely assumed
valid. Notwithstanding, it should be noted that this simplifying
hypothesis is not strictly required in our formulation as the
more general formulation in (32) might be applied in the case it
is not valid or if more accurate evaluations are desired. In such
cases, additional information about the surface roughness is
required.

In the quite general case of (34), it is not possible to define
critical baselines: in order to obtain a nonnegligible coherence,
we have to set

cos ϑT 1 BT ⊥

rT 1
+

cos ϑR1 cos ϕR1 BR⊥

rR1
<

λ

π Ax
cos ϑR1 sin ϕR1 BR⊥

rR1
<

λ

π Ay
.

(35)

In addition, for sin ϕR1 ̸= 0, that is, for noncoplanar geome-
tries, the only way to obtain a unitary correlation coefficient
is having null orthogonal baselines, in which case the phase
sensitivity to topography is obviously null.

Let us now consider some particular cases that are often
met in existing, planned, or proposed bistatic interferometric
SAR systems, such as SESAME and CSG/PLT-1.

A. Single-Pass SAR Interferometry

In single-pass monostatic or bistatic SAR interferometry,
a single transmitter is present. This is also the case of some
proposed systems in which two ground-based receivers collect
the signal transmitted by a spaceborne SAR and scattered by
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the ground [9]. In this case BT ⊥ = 0 and (34) becomes

ρ ∼=

∣∣∣∣∣∣
Wsq

{
k cos ϑR1 cos ϕR1 BR⊥

rR1
, k cos ϑR1 sin ϕR1 BR⊥

rR1

}
Wsq(0, 0)

∣∣∣∣∣∣
= exp

{
−(A2

x cos2ϕR1 + A2
ysin2ϕR1)

[
k cos ϑR1 BR⊥

2rR1

]2
}

.

(36)

In this case, the critical baseline BR⊥c can be defined by
equating the argument of the exponential in (36) to minus
one

BR⊥c =
λrR1

π cos ϑR1

√
A2

x cos2ϕR1 + A2
ysin2ϕR1

. (37)

The monostatic single-pass case is obtained by further letting
ϕR1 = 0, rR1 = rT 1 = r1, and ϑR1 = ϑT 1 = ϑ1, so that (36)
and (37) become

ρ ∼=

Wsq

{
k cos ϑ1 BR⊥

r1
, 0
}

Wsq(0, 0)
= exp

{
−

[
k Ax cos ϑ1 BR⊥

2r1

]2
}

= exp

{
−

[
π Ar BR⊥

λr1 tan ϑ1

]2
}

(38)

BR⊥c =
λr1

π cos ϑ1 Ax
=

λr1 tan ϑ1

π Ar
(39)

where Ar = c/(21 f ) =Ax sin ϑ1 is the slant-range resolution,
with c being the speed of light and 1 f the transmitted chirp
bandwidth. Equation (39) is in agreement with the classical
result of [2], [12], and [13] for the single-pass case (the
presence of π at the denominator of (39) is due to the fact
that we are considering a Gaussian, rather than sinc-type,
illumination function).

B. Coplanar Geometry

Let us consider the case in which transmitters and receivers
all belong to the xz plane, that is, ϕR1 = 0 (backward scattering
geometry) or ϕR1 = π (forward scattering geometry), see
Fig. 2. This is the case, for instance, of parallel sensors’
trajectories with nonsquinted looking geometry. Remarkably,
the backward geometry is relevant for the CSG/PLT-1 system
when operating in repeat-pass mode in Phase 2. In this
case, (34) specializes as

ρ ∼=

Wsq

{
k
[

cos ϑT 1 BT ⊥

rT 1
±

cos ϑR1 BR⊥

rR1

]
, 0
}

Wsq(0, 0)

= exp

{
−

k2 A2
x

4

[
cos ϑT 1 BT ⊥

rT 1
±

cos ϑR1 BR⊥

rR1

]2
}

(40)

where the plus and minus signums hold for backward and
forward scattering geometries, respectively. In this case, it is
not possible to define critical baselines: in order to obtain a
nonnegligible coherence, we have to set

cos ϑT 1 BT ⊥

rT 1
±

cos ϑR1 BR⊥

rR1
<

λ

π Ax
. (41)

Fig. 2. Coplanar geometry (a) backward and (b) forward scattering.

In this case, the ground range resolution Ax can be related to
the slant range one Ar = c/(21 f ) as follows:

Ar =
1
2
|ux0|Ax =

|sin ϑT 1 ± sin ϑR1|

2
Ax (42)

so that in the monostatic repeat-pass case (ϑR1 = ϑT 1 = ϑ1,
rR1 = rT 1 = r1, BT ⊥ = BR⊥ = B⊥ and ϕR1 = 0) we have
Ar = Ax sin ϑ1 and (40) and (41) lead to the classical result
of [2], [12], and [13]

ρ ∼=

Wsq

{
2kcosϑ1 B⊥

r1
, 0
}

Wsq(0, 0)
= exp

{
−

[
k Ax cos ϑ1 B⊥

r1

]2
}

= exp

{
−

[
2π Ar BR⊥

λr1 tan ϑ1

]2
}

(43)

BR⊥c =
λr1

2π cos ϑ1 Ax
=

λr1 tan ϑ1

2π Ar
. (44)

Note that in the specular case (ϑR1 = ϑT 1 = ϑ1 and ϕR1 = π)

according to (42) the ground range resolution tends to infinity
for fixed chirp bandwidth. Actually, in this case (42) is not
a good approximation, but anyway ground range resolution is
very bad. Therefore, this case is not considered for SAR inter-
ferometry applications, and we will ignore it here. However,
the specular geometry is very useful for GNSS-R, and it is
considered in detail in [19] and [20].
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Quite interestingly, in the coplanar geometry, it is possible to
obtain a unitary correlation coefficient with nonnull orthogonal
baselines. In fact, it is sufficient that

cos ϑT 1 BT ⊥

rT 1
= ∓

cos ϑR1 BR⊥

rR1
. (45)

It is worth noting that (45) unveils the relationship between
the receiver and transmitter orthogonal baselines to achieve
the maximum correlation coefficient. Actually, even if condi-
tion (45) is satisfied, the correlation coefficient is not exactly
unitary, because of the first exponential of (32). In addition,
as shown in the following, if (45) is satisfied, the phase
sensitivity to topography is null.

The interferometric phase is

8 =
2π

λ
(RT 1 + RR1 − RT 2 − RR2) (46)

so that its sensitivity to topography is its rate of variation with
respect to z along an equi-range line, see Fig. 3

∂8

∂z
=

2π

λ

∂(RT 1 + RR1 − RT 2 − RR2)

∂z

=
2π

λ

∂(RT 1 + RR1 − RT 2 − RR2)

∂ϑ̄

∂ϑ̄

∂z
(47)

where all the derivatives are computed in the origin and, see
Fig. 3

ϑ̄ = arctan
(

ux0

−uz0

)
= arctan

(
sin ϑT 1 ± sin ϑR1

cos ϑT 1 + cos ϑR1

)
=

ϑT 1 ± ϑR1

2
(48)

∂(RT 1 + RR1 − RT 2 − RR2)

∂ϑ̄

=
∂(RT 1 + RR1 − RT 2 − RR2)

∂x
∂x
∂ϑ̄

= ηx
∂x
∂ϑ̄

(49)

∂z
r̄∂ϑ̄

= sin ϑ̄,
r̄∂ϑ̄

∂x
= cos ϑ̄ (50)

with r̄ being the curvature radius of the equirange line.
By using (49) and (50) in (47), we get

∂8

∂z
=

2π

λ
ηx

∂x
∂ϑ̄

∂ϑ̄

∂z

=
2π

λ

(
cos ϑT 1 BT ⊥

rT 1
±

cos ϑR1 BR⊥

rR1

)
1

sin ϑ̄ cos ϑ̄
. (51)

This equation shows that if (45) is satisfied, then ∂8/∂z = 0,

and there is no phase sensitivity to topography. Therefore, (45)
provides the ideal condition for bistatic differential SAR
interferometry.

It can be also noted that (51) in the monostatic repeat-pass
case reduces to the well-known result

∂8

∂z
=

4π

λ

B⊥

r1 sin ϑ1
. (52)

Finally, we note that in the coplanar geometry, the case
of single transmitter can be easily recovered by replacing
BT ⊥ = 0 in (40), (41), and (51), whereas (42) holds as it is.

Fig. 3. Geometry for the evaluation of the phase sensitivity to topography.
An equirange line is highlighted. Its normal unit vector is the gradient of
RT 1 + RR1, whose x and z components are ux and −uz , respectively.

TABLE I
BISTATIC SAR SYSTEM PARAMETERS

IV. NUMERICAL RESULTS

In this section, we present and discuss some numerical
results of the correlation coefficient derived in Section II.
We considered the X-band bistatic SAR system described in
Table I and analyzed four different scenarios that might be
relevant in practical situations and that differ for the bistatic-
imaging configuration.

1) Scenario A: Coplanar geometry, as described in
Section III-B, in a backward scattering configuration,
that is, ϕR1 = 0, see Fig. 2(a).

2) Scenario B: Coplanar geometry in forward-scattering
configuration, that is, ϕR1 = π , see Fig. 2(b).

3) Scenario C: Noncoplanar geometry with a single trans-
mitter, see Fig. 4.
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Fig. 4. Noncoplanar geometry with a single transmitter (Scenario C).

Fig. 5. Noncoplanar geometry with two transmitters (Scenario D).

Fig. 6. Along-track bistatic geometry with a single transmitter (Scenario E).

4) Scenario D: Noncoplanar geometry with two transmit-
ters, see Fig. 5.

5) Scenario E: Along-track bistatic geometry with a single
transmitter, see Fig. 6. In this configuration, both the
transmitter and the receiver R1 are assumed to move
along the same trajectory that is parallel to the y-axis.

All such cases have been defined according to the sim-
plifying assumptions of (34), namely ϕT 1 = 0, σ ≪ Ax ,

Fig. 7. Correlation coefficient in Scenario A (coplanar, backward) as a
function of the receiver perpendicular baseline BR⊥ for different R1 look
angles.

and BT az = BRaz = 0. Accordingly, the simulation results
presented in this section are independent upon the surface
roughness, as discussed in Section III. Moreover, apart from
Scenarios C and E, all other scenarios consider a nonnull
transmitter perpendicular baseline, that is, two separated trans-
mitters or a single transmitter in a repeat-pass mode are
considered.

It is also worth mentioning that the imaging configuration
of Scenarios A and E are of particular practical interest,
as they are considered in some planned or proposed passive bi-
and multistatic SAR systems, namely, PLT-1/CSG (for which
both scenarios are of interest) [11] and SESAME (for which
Scenario E is of interest) [8].

Numerical results for the five scenarios are shown in
Figs. 7–11, where the correlation coefficient is reported as
a function of the main bistatic system geometry parameters.

In all the scenarios, the rate of change of the correlation
coefficient with the receiver baseline is larger with smaller
R1 look angle ϑR1.

In the coplanar geometries (Scenarios A and B) it can be
seen that, as stated in Section III-B and according to (45),
unitary correlation coefficient can be achieved with nonnull
orthogonal baselines. More specifically, the value of the
receiver orthogonal baseline for which this happens increases
(in absolute value) with increasing R1 look angle, fixed all
other system parameters, reaching absolute values slightly
larger than 1 km for the considered bistatic system.

From a practical viewpoint, it is worth noting that this
unitary-correlation receiver orthogonal baseline has the same
(opposite) sign of the transmitter orthogonal one in the
coplanar forward (backward) configuration. In other words,
the lower receiver must collect the signal transmitted by the
lower (higher) transmitter in the co-planar forward (backward)
geometry. By inspecting Figs. 7 and 8, it is also evident that a
symmetry does exist. Indeed, according to (34), the correlation
coefficient is invariant with respect to the formal changes
ϕR1 → π − ϕR1 and BR⊥ → −BR⊥. Similarly, no changes
take place by replacing ϕR1 with its opposite, that is, under
the hypothesis of (34) the sign of ϕR1 is unessential, which is
intuitive, assumed the isotropy of the scattering surface.

Let us move to the noncoplanar geometries, that is, Sce-
narios C and D. As noted in Section II, for the considered
system parameters, in Scenario C, the correlation coefficient is
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Fig. 8. Correlation coefficient in Scenario B (coplanar, forward) as a function
of the receiver perpendicular baseline BR⊥ for different R1 look angles.

Fig. 9. Correlation coefficient in Scenario C (noncoplanar with a single
transmitter) as a function of the receiver perpendicular baseline BR⊥ for
different R1 look angles.

independent of the R1 azimuth angle ϕR1. Additionally, as it
would be expected, in the presence of a single transmitter,
exchanging the receivers does not change the correlation
between the received fields. This reflects in the evenness
of the correlation coefficient with respect to the receiver
orthogonal baseline BR⊥ and, accordingly, in the maxi-
mum correlation achieved for null baseline, BR⊥ = 0, see
Fig. 9.

The case of two separated transmitters (Scenario D), that is,
nonnull transmitter orthogonal baseline BT ⊥, is considered in
Fig. 10, where we show the correlation coefficient for different
R1 azimuth angles ϕR1, namely 5◦, 30◦, and 60◦, which
correspond to y-coordinates of R1 equal to 31.20, 178.98, and
310 km, respectively. As T 1 and R1 share the same altitude
and look angle in the considered imaging geometry, the
y-coordinate of R1 approximately equals the distance between
the receiver and the corresponding transmitter.

As for the coplanar scenarios, in the presence of two trans-
mitters, the largest correlation coefficient is obtained with non-
null orthogonal receiver baseline. This maximum-correlation
baseline decreases with increasing transmitter-to-receiver dis-
tance. However, for the considered system, the maximum
correlation is slightly lower than one and decreases with
increasing transmitter-to-receiver distance, as it would be
expected. Indeed, under the hypotheses of (34), it can be
shown that, if the additional hypothesis of equal system
resolutions is along x and y, that is, Ax = Ay = A, holds, the
receiver orthogonal baseline BR⊥,mc that ensures the largest

Fig. 10. Correlation coefficient in Scenario D (noncoplanar with two
transmitters) as a function of the receiver perpendicular baseline BR⊥ for
different R1 azimuth angles.

Fig. 11. Correlation coefficient in Scenario E (along-track bistatic geometry
with a single transmitter) as a function of the distance between the transmitter
T1 and the receiver R1 for different receiver perpendicular baselines BR⊥.

possible correlation coefficient can be expressed as

BR⊥,mc = −BT ⊥

rR1

rT 1

cos ϑT 1

cos ϑR1
cos ϕR1. (53)

The corresponding maximum correlation value is

ρmax = ρ
(

BR⊥ = BR⊥,mc
)

= exp
{

−
k2 A2

4
cos2 ϑT 1 B2

T ⊥

r2
T 1

(
1 − cos2 ϕR1

)}
. (54)

Equation (54) also demonstrates that a unitary correlation
coefficient is achievable only in coplanar geometries, that is,
for ϕR1 = 0, π , while the maximum value of the correla-
tion becomes smaller and smaller as ϕR1 approaches ±π/2.
It should be also noted that the correlation between the
received fields is much less dependent on the azimuth angle
than on the look angle.

Finally, let us move to the along-track bistatic geometry
(Scenario E, see Fig. 6). In this case, the R1 look and azimuth
angles are set according to the along-track T 1–R1 distance
dT 1R1 as follows:

ϑR1 = tan−1


√

d2
T 1R1 + (zT 1 tan ϑT 1)

2

zT 1

 (55)

ϕR1 = tan−1
(

dT 1R1

zT 1 tan ϑT 1

)
. (56)

Fig. 11 shows the correlation coefficient as a function
of dT 1R1 for different receiver perpendicular baseline BR⊥.
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Fig. 12. Difference between the correlation coefficient evaluated according
to (34) and (32) in (a) Scenario A and (b) Scenario E.

By recalling that in the considered geometry, the corre-
lation coefficient is an even function of BR⊥, see (34),
we limit our analysis to positive baseline values. As it would
be expected, the correlation coefficient improves with the
T 1–R1 distance regardless of the baseline, as the angular
separation between the receivers decreases with increasing
distance for a fixed baseline; analogously, the received fields
are less and less correlated with increasing baseline. How-
ever, correlation values larger than 0.9 are obtained with
receiver baseline up to 500 m, regardless of the T 1–R1
distance.

A final comment about the reliability of using (34) instead
of the more general formulation in (32) is in order. Fig. 12
shows the difference between the approximation in (34) and
the full expression in (32) for the scenarios A [Fig. 12(a)]
and E [Fig. 12(b)]. It can be seen that the error is lower
than 1.5 × 10−3 regardless of the varying parameters in both
cases.

V. CONCLUSION

In this article, we have presented a new analytical approach
for the evaluation of the spatial correlation coefficient for a
bistatic SAR interferometric system. The proposed methodol-
ogy makes use of electromagnetic scattering models for bare
soil surfaces which are modeled as normally distributed ran-
dom rough surfaces. By adopting a quite general formulation
of the scattering problem, we derived closed-form expressions
of the spatial correlation at the receivers which are valid under
both the KA and the SSA1, the latter exhibiting a much larger
applicability with respect to the former.

To this end, we considered a very generic bistatic imaging
geometry which includes two transmitters and two receivers.
Specific imaging cases of practical interest, including coplanar
and along-track bistatic geometries as well as well single-
transmitter systems, were analyzed, and simplified expressions
for both the correlation coefficient and the critical baseline
were derived. In such configurations, numerical results for
an X-band bistatic SAR system have been presented and
discussed.

It has been found that, in the case of a single transmit-
ter, as expected, the correlation coefficient decreases with
increasing orthogonal baseline. Interestingly, in the case of
two separate transmitters, it has been found that, in coplanar
imaging geometries, a unitary correlation coefficient can be
obtained with nonnull orthogonal baselines, while in out-of-
plane, that is, noncoplanar, geometries, the maximum value
of the correlation coefficient is slightly lower than unity
and is achieved for a receiver orthogonal baseline which is
proportional to the transmitter one.

The proposed models might be fruitfully exploited for
the design and the analysis of bistatic SAR systems, such
as SESAME and CSG/PLT-1, with a special emphasis on
the performance analysis of interferometric applications. It is
worth mentioning that, compared to numerical and experimen-
tal analyses, our analytical approach is flexible and allows
for a fast evaluation of the correlation coefficient for any
bistatic imaging configuration and natural scene, provided that
surface scattering is the dominant contribution, and that KA
or SSA-1 are applicable, such as in the presence of bare soil
surfaces or scarcely to moderately vegetated areas. Indeed,
both scattering theories ignore multiple scattering and do not
provide reliable evaluations of the scattered field if surface
scattering is not the dominant mechanisms, as in the case
of dense vegetation and urban areas. However, it should be
noted that InSAR application is of limited interest in the
latter cases, as well as DInSAR is problematic in densely
vegetated areas due to the low coherence. Additionally, the
proposed analytical formulation provides physical insights into
the scattering mechanisms ruling the correlation between the
received fields.

Possible further research activities might focus on the adop-
tion of more advanced surface models, such as those based on
the fractal geometry and/or accounting for surface anisotropy,
and electromagnetic scattering methods. Concerning this latter
point, the adoption of two-scale models might unveil dis-
tinct impacts of microscopic and macroscopic roughness on
the correlation, while polarimetric methods might enable the
analysis of bistatic polarimetric interferometric SAR systems.
Finally, it should be stressed here that a comprehensive val-
idation of the proposed formulations cannot be undertaken
so far, as neither the measurements nor the simulators of
bistatic interferometric SAR products are available. Indeed, the
obtained correspondence with the monostatic formulation is
encouraging, despite not being sufficient. Accordingly, future
research efforts should focus on proper validation activities
using real-world bistatic interferometric SAR measurements
as well as on the development of reliable numerical simulators
of such products.



2007113 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

ACKNOWLEDGMENT

The authors are grateful to Dr.-Ing. Giovanni Paolo Blasone,
Italian Space Agency, for his useful suggestions.

REFERENCES

[1] H. A. Zebker and R. M. Goldstein, “Topographic mapping from interfer-
ometric synthetic aperture radar observations,” J. Geophys. Res., vol. 91,
no. B5, pp. 4993–4999, Apr. 1986.

[2] E. Rodriguez and J. M. Martin, “Theory and design of interferometric
synthetic aperture radars,” IEE Proc. F Radar Signal Process., vol. 139,
no. 2, pp. 147–159, Apr. 1992.

[3] A. K. Gabriel, R. M. Goldstein, and H. A. Zebker, “Mapping small
elevation changes over large areas: Differential radar interferometry,” J.
Geophys. Res., Solid Earth, vol. 94, no. B7, pp. 9183–9191, Jul. 1989.

[4] A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in SAR
interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 1,
pp. 8–20, Apr. 2001.

[5] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algorithm
for surface deformation monitoring based on small baseline differential
SAR interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11,
pp. 2375–2383, Nov. 2002.

[6] R. Bamler, “The SRTM mission: A world-wide 30 m resolution DEM
from SAR interferometry in 11 days,” in Photogrammetric Week,
vol. 1999, R. Fritsch R. Spiller, Ed., Heidelberg, Germany: Wichmann
Verlag, 1999, pp. 145–154.

[7] M. Zink et al., “TanDEM-X: 10 years of formation flying bistatic SAR
interferometry,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 14, pp. 3546–3565, 2021.

[8] P. López-Dekker et al., “Companion SAR constellations for single-pass
interferometric applications: The SESAME mission,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Fort Worth, TX, USA, Jul. 2017,
pp. 119–122.

[9] S. Duque, P. Lopez-Dekker, and J. J. Mallorqui, “Single-pass bistatic
SAR interferometry using fixed-receiver configurations: Theory and
experimental validation,” IEEE Trans. Geosci. Remote Sens., vol. 48,
no. 6, pp. 2740–2749, Jun. 2010.

[10] G. Farquharson et al., “The new capella space satellite generation:
Acadia,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Pasadena, CA,
USA, Jul. 2023, pp. 1513–1516.

[11] A. Renga et al., “Bistatic SAR techniques and products in a long
baseline spaceborne scenario: Application to PLATiNO-1 mission,” in
Proc. EUSAR, Munich, Germany, 2024, pp. 884–888.

[12] H. A. Zebker and J. Villasenor, “Decorrelation in interferometric radar
echoes,” IEEE Trans. Geosci. Remote Sens., vol. 30, no. 5, pp. 950–959,
Sep. 1992.

[13] G. Franceschetti, A. Iodice, M. Migliaccio, and D. Riccio, “The effect
of surface scattering on ifsar baseline decorrelation,” J. Electromagn.
Waves Appl., vol. 11, no. 3, pp. 353–370, Jan. 1997.

[14] A. Ishimaru and J. S. Chen, “Scattering from very rough surfaces based
on the modified second-order Kirchhoff approximation with angular
and propagation shadowing,” J. Acoust. Soc. Amer., vol. 88, no. 4,
pp. 1877–1883, Oct. 1990.

[15] M. E. Knotts, T. R. Michel, and K. A. O’Donnell, “Angular correlation
functions of polarized intensities scattered from a one-dimensionally
rough surface,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 9, no. 10,
pp. 1822–1831, 1992.

[16] T. R. Michel and K. A. O’Donnell, “Angular correlation functions
of amplitudes scattered from a one-dimensional, perfectly conduction
rough surface,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 9, no. 8,
pp. 1374–1384, 1992.

[17] C. T. C. Le, Y. Kuga, and A. Ishimaru, “Angular correlation function
based on the second-order Kirchhoff approximation and comparison with
experiments,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 13, no. 5,
pp. 1057–1067, May 1996.

[18] G. Zhang, L. Tsang, and Y. Kuga, “Studies of the angular correlation
function of scattering by random rough surfaces with and without a
buried object,” IEEE Trans. Geosci. Remote Sens., vol. 35, no. 2,
pp. 444–453, Mar. 1997.

[19] G. Di Martino, A. Di Simone, and A. Iodice, “An analytical formulation
of the correlation of GNSS-R signals,” IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 2005913.

[20] G. Di Martino, A. Di Simone, and A. Iodice, “A novel analytical
formulation of the correlation of GNSS-R signals scattered by a natural
fractal surface,” IEEE Geosci. Remote Sens. Lett., vol. 21, pp. 1–5, 2024.

[21] G. Di Martino, A. Di Simone, and A. Iodice, “An analytical formulation
for the correlation of surface-scattered fields at two bistatic radar
receivers,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Kuala
Lumpur, Malaysia, Jul. 2022, pp. 4969–4972.

[22] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing,
vol. 2. Reading, MA, USA: Artech-House, 1982.

[23] A. Voronovich, “Small-slope approximation for electromagnetic wave
scattering at a rough interface of two dielectric half-spaces,” Waves
Random Media, vol. 4, no. 3, pp. 337–367, Jul. 1994.

[24] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
3, Ed., New York, NY, USA: McGraw-Hill, 1991.

Gerardo Di Martino (Senior Member, IEEE) was
born in Naples, Italy, in 1979. He received the
Laurea degree (cum laude) in telecommunication
engineering and the Ph.D. degree in electronic and
telecommunication engineering from the University
Federico II, Naples, in 2005 and 2009, respectively.

From 2014 to 2015, he was with Italian National
Consortium for Telecommunications (CNIT),
Naples, andwith the Regional Center Information
Communication Technology (CeRICT), Naples,
in 2016. He is currently an Associate Professor of

electromagnetic fields with the Department of Electrical Engineering and
Information Technology, University of Naples Federico II. His research
interests include microwave remote sensing and electromagnetics, with
focus on electromagnetic scattering from natural surfaces and urban areas,
synthetic aperture radar (SAR) signal processing and simulation, information
retrieval from SAR data, and electromagnetic propagation in urban areas.

Prof. Di Martino is an Ex-Officio Member of IEEE GRSS Administrative
Committee (AdCom). He is a Lead Editor of IEEE GEOSCIENCE AND
REMOTE SENSING SOCIETY (GRSS) Section within IEEE ACCESS and an
Associate Editor of IEEE JOURNAL OF SELECTED TOPICS ON APPLIED
EARTH OBSERVATIONS AND REMOTE SENSING.

Alessio Di Simone (Member, IEEE) was born in
Torre del Greco, Italy, in 1989. He received the
B.Sc. and M.Sc. Laurea degrees (cum laude) in
telecommunication engineering and the Ph.D. degree
in information technology and electrical engineering
from the University of Naples Federico II, Naples,
Italy, in 2011, 2013, and 2017, respectively.

In 2016, he joined the Universitat Politècnica
de Catalunya, Barcelona, Spain, as a Visiting
Researcher. In 2017, 2018, and 2023, he was a
Visiting Researcher with the NATO Science and

Technology Organization, Centre for Maritime Research and Experimentation
(CMRE), La Spezia, Italy. From 2017 to 2021, he was a Research Fellow
with the Department of Electrical Engineering and Information Technology,
University of Naples Federico II, where he has been an Assistant Professor of
electromagnetic fields, since 2022. His main research interests are in the field
of microwave remote sensing and electromagnetics including modeling of the
electromagnetic scattering from natural surfaces, urban areas, and artificial
targets, and simulation and processing of synthetic aperture radar (SAR) and
global navigation satellite system reflectometry (GNSS-R) data.

Dr. Di Simone received the Prize for the Best Master Thesis in Remote
Sensing by the IEEE South Italy Geoscience and Remote Sensing Chapter
in 2015 and the 2022 Best Young Researcher in Oceanic Engineering
Award from the IEEE Oceanic Engineering Italy Chapter. In 2023, he was
awarded with the National Scientific Qualification as Associate Professor of
Electromagnetic Fields.



DI MARTINO et al.: BASELINE DECORRELATION IN BISTATIC INTERFEROMETRIC SAR SYSTEMS 2007113

Antonio Iodice (Senior Member, IEEE) was born
in Naples, Italy, in 1968. He received the Laurea
degree (cum laude) in electronic engineering and the
Ph.D. degree in electronic engineering and computer
science from the University of Naples “Federico II,”
Naples, in 1993 and 1999, respectively.

In 1995, he was with the Research Institute for
Electromagnetism and Electronic Components of the
Italian National Council of Research (IRECE-CNR),
Naples, and from 1999 to 2000 with Telespazio
S.p.A., Rome, Italy. He was at the University of

Naples “Federico II” as a Research Scientist, from 2000 to 2004 and as a
Professor of electromagnetics, from 2005 to 2018. He is currently a Full
Professor of electromagnetics at the Department of Electrical Engineering and
Information Technology, University of Naples “Federico II,” where he is also
the Coordinator of the B.S. and M.S. degree programs in telecommunications
and digital media engineering. He has been involved as a Principal Investigator
or Co-Investigator in several projects funded by European Union (EU),
Italian Space Agency (ASI), Italian Ministry of Education and Research
(MIUR), Campania Regional Government, and private companies. He has
authored or coauthored two books and more than 350 papers, of which over
100 were published in refereed journals. His main research interests are in
the field of microwave remote sensing and electromagnetics: modelling of
electromagnetic scattering from natural surfaces and urban areas, simulation
and processing of synthetic aperture radar (SAR) signals, and electromagnetic
propagation in urban areas.

Prof. Iodice received the “2009 Sergei A. Schelkunoff Transactions Prize
Paper Award” from the IEEE Antennas and Propagation Society, for the
best paper published in 2008 on IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION. He was recognized by the IEEE Geoscience and Remote
Sensing Society as a 2015 Best Reviewer of IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING. He is the Past Chair of the IEEE
Geoscience and Remote Sensing South Italy Chapter and a Senior Member
of the URSI.

Daniele Riccio (Fellow, IEEE) was born in Naples,
Italy. He received the Laurea degree (cum laude) in
electronic engineering from the University of Naples
Federico II, Naples, in 1989.

His career has been developing at the University
of Naples Federico II, where he is a Full Professor
of electromagnetic fields with the Department of
Electrical Engineering and Information Technology.
He was a Research Scientist with Italian National
Research Council from 1989 to 1994, a Guest Scien-
tist with German Aerospace Centre (DLR), Germany

from 1994 to 1995, and a Research Affiliate to NASA, Washington, DC,
USA from 2010 to 2018. He lectured abroad (Spain, Czech Republic) in
Ph.D. Schools. He is a member of the Cassini Radar Science Team and
Italian Space Agency Platino-1 Mission Advisory Group. At the University of
Naples Federico II, he is a Rector Delegate for Ph.D. Schools, and coordinates
the Ph.D., School in information and communication technology for health.
He is a Board Member for the Ph.D. Programme on Space at the Scuola
Superiore Meridionale, Naples. He is a member of the Board of Directors
for the RESTART Foundation in Charge of the Telecommunications of the
Future PNRR Programme. He is an Athenaeum Representative with Italian
Society of Electromagnetism (SIEm), where he was a member of the Board of
Directors appointed with a Secretary role. He is the Director of the National
Laboratory on Multimedia Communications. He has authored four books and
500 scientific papers. His research interests include electromagnetic theory,
remote sensing, electromagnetic scattering from complex media and surfaces,
synthetic aperture radar techniques, application of fractal geometry to remote
sensing, and propagation of electromagnetic fields for wireless communication
networks planning.

Prof. Riccio was a recipient of the 2009 Sergei A. Schelkunoff Transactions
Prize Paper Award for the Best Paper Published in 2008 on IEEE TRANSAC-
TIONS ON ANTENNAS AND PROPAGATION. He has been the General Chair
of the 5G International Ph.D. School, since 2018. He is an Associate Editor
for some journals on Remote Sensing.

Giuseppe Ruello (Senior Member, IEEE) received
the Laurea degree (cum laude) in telecommunication
engineering and the Ph.D. degree in information
engineering from the University of Naples Federico
II, Naples, Italy, in 1999 and 2003, respectively.

He is an Associate Professor at the Department of
Electrical and Information Technology Engineering,
University of Naples Federico II. In 2019, he was
appointed as a Fulbright Scholar at the Department
of Radiology, New York University, New York, NY,
USA. In 2002, 2004, and 2005, he was a Visiting

Scientist with the Department of Signal Theory and Communications, Univer-
sitat Politecnica de Catalunya of Barcelona, Barcelona, Spain. He has authored
or co-authored more than 200 publications, including more than 50 articles in
peer-reviewed journals. His main research interests include synthetic aperture
radar (SAR) remote sensing, modelling of electromagnetic scattering from
natural surfaces, fractal models, SAR raw signal simulation, modelling of
electromagnetic field propagation in urban environment, and radiofrequency
field modelling in magnetic resonance applications.

Open Access funding provided by ‘Università degli Studi di Napoli "Federico II"’ within the CRUI CARE Agreement


