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Abstract—Objective performance assessment is a key enabling factor for the development of better and better image processing 

algorithms. In SAR despeckling, however, the lack of speckle-free images precludes the use of reliable full-reference measures, leaving 

the comparison among competing techniques on shaky bases. In this work we propose a new framework for the objective 

(quantitative) assessment of SAR despeckling techniques, based on simulation of SAR images relevant to canonical scenes. Each image 

is generated using a complete SAR simulator that includes proper physical models for the sensed surface, the scattering, and the radar 

operational mode. Therefore, in the limits of the simulation models, the employed simulation procedure generates reliable and 

meaningful SAR images with controllable parameters. By simulating multiple SAR images as different instances relevant to the same 

scene we can therefore obtain, a “true” multilook full-resolution SAR image, with an arbitrary number of looks, thus generating (by 

definition) the closest object to a clean reference image. Based on this concept, we build a full performance assessment framework by 

choosing a suitable set of canonical scenes and corresponding objective measures on the SAR images that account for speckle 

suppression and feature preservation. We test our framework by studying the performance of a representative set of actual 

despeckling algorithms; we verified that the quantitative indications given by numerical measures are always fully consistent with the 

rationale specific of each despeckling technique, strongly agrees with qualitative (expert) visual inspections, and provide insight into 

SAR despeckling approaches. 

 
Index Terms—Synthetic aperture radar (SAR), speckle reduction, quality assessment, SAR simulation. 

 

I. INTRODUCTION 

With the increasing diffusion of remote sensing products, with fleets of satellites delivering a huge number of images of the 

Earth surface each day, the use of automatic analysis tools is ever more widespread. Homeland security, environmental 

protection, land resource management, to cite just some of the major applications, call for the analysis of a very large number of 

images, far exceeding the capacity of trained human personnel. The performances of many image processing tasks, such as 

image segmentation, or target detection and classification, heavily depend on the quality of the source images, which should 

provide reliable and easy to extract information. However, this is not the case of (single-look) Synthetic Aperture Radar (SAR) 
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images, given the inherent presence of speckle which can easily disguise small targets and hamper, in general, the detection of 

relevant features. On the other hand, SAR is such an important source of information, providing high-resolution images with all 

weather and illumination conditions, and complementing the set of features sensed by optical instruments, that renouncing it is 

simply unthinkable. These considerations motivate the increasingly intense quest for reliable despeckling techniques, which 

succeed in removing most of the speckle without impairing potentially valuable image data. Indeed, image despeckling has been 

an active field of research for almost thirty years, and many new algorithms are proposed each year which appear to provide a 

better and better performance. The assessment of performance, however, is by itself a very relevant and still open problem in 

SAR despeckling. No agreed upon protocol exists, to these Authors’ knowledge, to measure performance, nor there is a publicly 

available set of benchmark images that allows for an objective comparison of algorithms through simple and replicable 

experiments. These considerations motivate the present work1, aimed at proposing a new approach to performance assessment of 

despeckling techniques and providing a practical tool for the interested community.  

Before going into any technical detail, the very same meaning of performance, in this context, must be better clarified. SAR 

images are analyzed by human experts or by automatic programs in order to extract some information of interest for the final 

application. To this end, complex tasks are performed on the image, such as segmentation, detection, classification, parameter 

estimation, compression. Therefore, the effectiveness of a given despeckling algorithm should be measured a posteriori, by 

evaluating the success of the subsequent processing tasks [2]-[5]. So, for example, an algorithm could be credited to perform a 

“good” image despeckling if the processed images allow for an easier detection of targets, or a more efficient transmission on a 

narrowband channel, etc. Although this end-to-end approach is probably correct, it is also obviously impractical, except for some 

niche applications, as results depend strongly on the implementation of subsequent tasks (detection, classification, etc.) and on 

the experimental conditions (sensor parameters, observed scene, etc.). At the other end of the spectrum, there is the totally 

subjective approach to image quality assessment, relying on a panel of experts working in controlled experimental conditions 

that evaluate or rank filtered images based on their field experience [6], [7]. This kind of assessment would be really precious, 

given the ability of trained human personnel to take into account features that easily elude automatic measurements, and indeed 

there is a regrettable shortage of this kind of researches. However, it would also be very expensive, requiring the prolonged help 

of several expert interpreters under controlled conditions, and non replicable, because of its inherently subjective nature.  

Once barred the above approaches, both related, directly or indirectly, to the usefulness of images for the final applications, 

one is left with the (seemingly) less ambitious, but still valuable, and conceptually sound, goal of objectively measuring the 

fidelity of the despeckled image w.r.t. a reference speckle-free image. The problem, of course, is that no such thing as a speckle-

free version of a given real-world SAR image exists, barring the use of true full-reference measures. In some very simple cases 

 
1 Preliminary results of this research were presented in [1]. 
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one can guess the clean image by visual inspection, and then compute some meaningful measures of performance, like the 

equivalent number of looks (ENL) in the presence of a flat homogeneous region, or some edge preservation measures [8]-[10] 

when a straight border between homogeneous regions exists. However, this method cannot work in regions that exhibit texture, 

or multiple and variously oriented edges, or man-made structures. The approach commonly used in the literature to cope with 

this problem is to start from a virtually noiseless image (typically a natural optical image), which takes the role of the clean 

reference, and superimpose a speckle field with proper statistics to it. Leaving aside, for the moment, the problem of correctly 

modeling the speckle, the major weak point of this approach lies in the fact that these images are erroneous substitutes for the 

desired clean reference. Under a physical viewpoint there is no doubt about it, as even optical remote-sensing images differ from 

SAR images for sensed quantity, operational wavelengths, resolution, imaging modalities, etc. Even neglecting all this, and 

focusing only on the final products, seen as mere arrays of numbers, the statistics of a SAR image are obviously very different 

from those of other types of images, for dynamics, gray-level distribution, spatial correlation, power spectral density, etc. 

Despite all these drawbacks, the simulative approach has some strong positive sides, first of all the full reproducibility of 

experiments and the ability to provide an objective assessment of performance. One only needs to define in a meaningful way a 

clean SAR image, and find a way to generate it. Stated on physical bases, a “speckle-free SAR image” sounds like an oxymoron.  

For natural areas, speckle is the SAR image (coherent) contribution due to sub-resolution surface roughness; however, a 

significant radar return is acquired only if the surface is rough at electromagnetic wavelength scales. Accordingly, a speckle-free 

image could be obtained only if the SAR image could not! A different perspective is then required; a valuable hint to define 

speckle-free images comes from the despeckling literature itself, where the more common performance measure, the equivalent 

number of looks, suggests that the goal of any despeckling technique is to obtain the infinite-look version of the image under 

analysis. Ideally, if we were able to collect an arbitrarily large number of independent SAR images of the same scene, taken with 

exactly the same system parameters and in the same conditions, we could carry out a true multilook (that is, without resorting to 

spatial averages) with an arbitrarily large number of looks L. We can therefore think of the clean reference as the limit of this 

image as L grows towards infinity. Of course, such an image cannot be produced by a real SAR system, due to the prohibitive 

challenge posed by the invariance hypotheses. However, we can follow this line of thinking, and obtain some valuable results, in 

a simulative context, but of physical nature now, rather than statistical.  

Indeed, if we were able to describe in detail the imaged region on the ground, including its 3D geometry at all scales of 

interest (the minimum spatial scale being of the order of the electromagnetic wavelength), and its local electromagnetic 

properties, and also to replicate with reasonable accuracy the imaging process of a SAR system, we could obtain a SAR image 

with the same information content and characteristics of the image provided by a real system. Of course, this process could be 

repeated at will, producing an arbitrary number of looks of the same scene, differing only in the speckle component originated by 
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very-small scale details that can be described only in terms of random processes. Therefore, this physical simulation would solve 

the problem of the clean infinite-look reference image at its root.  

It goes by itself that this approach, as it has been described, calls for technological and scientific tools that are well beyond the 

current state-of-the-art. Both the faithful simulation of a SAR imaging system and a thorough description of a real ground scene 

are tasks of prohibitive complexity. However, if we scale back the goal to that of simulating a certain number of basic canonical 

scenes, which can provide reliable indications of the actual performance in more complex scenarios, the problem becomes 

manageable with well-established tools. As a matter of facts, these topics have been the object of intense research and rapid 

advances in the latest years, and researchers of this group have developed both accurate models of natural and man-made 

surfaces, and a complete SAR system simulator which has proven reliable in many practical tests. We are therefore in the 

position to propose and actually implement a new tool for the assessment of despeckling techniques via physical simulation, 

based on a set of canonical scenes and of related objective performance measures. Such measures, however, while representing a 

valuable help for the end user, are no substitute for visual inspection by an expert interpreter, and replacing human experts is 

declaredly beyond the scope of this work. 

In the following of this paper we analyze in some depth the various elements that are relevant for the proposed tool. In Section 

2, we describe the SAR simulator used in the experiments, pointing out its potential and inherent limitations. In Section 3 we 

review the major ideas and approaches in despeckling, as well as the most common performance measures used in the field. 

Section 4 deals with the set of canonical scenes and the associated distortion measures, selected in order to test specific strengths 

and weaknesses of the tested techniques. In Section 5 we briefly describe the selected techniques and comment experimental 

results. Finally, Section 6 draws conclusions and outlines future research.  

II. SAR IMAGE SIMULATION 

The simulation framework introduced in the present section allows us generating a wide set of canonical SAR images, which 

can be used as a meaningful test-bed in order to define objective quality measures and assess the performances of the 

despeckling techniques. 

A. Motivations 

In order to provide a test-bed for the objective performance assessment of despeckling techniques, we propose to generate 

SAR images relevant to canonical scenes by means of simulation. From the viewpoint of speckle filtering, SAR signal simulation 

provides some major advantages. First of all, it represents the best way to obtain a wide set of canonical samples of actual SAR 

data. Moreover, it provides a reliable and effective method to get speckle-free images, necessary for the full-reference 

measurement of filters’ performance. In fact, at least in principle, the filter should remove as much speckle as possible from the 
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data and, therefore, to assess its effectiveness one needs to compute some measures of the distance between the output image and 

the ideal speckle-free reference. 

However, even the definition of a SAR image without speckle is a non-trivial issue. While in classical signal theory the noise 

is described as a disturbing signal distorting the original noise-free one, in the SAR case the speckle is an intrinsic characteristic 

of the original signal, thus implying that the speckle-free image is a distorted version of the original one. In fact, the presence of 

speckle is due to the microscopic characteristics of the observed surface, i.e. to its details at spatial scales lower than the 

resolution one [11], [12]. Anyway, in order to provide a meaningful definition for speckle-free images, we note that often the 

post-processing (e.g. segmentation, classification, target detection) performed on SAR data pertains only to the macroscopic 

features, i.e. to spatial scales greater than the resolution one. Hence, for post-processing purposes, we can define a "clean" image 

as an image whose macroscopic features are not affected by the presence of speckle, i.e. an infinite-look version of the image 

under analysis. 

Thanks to the SARAS simulator [13] described in the following, we are able to obtain a SAR image presenting a finite but 

very large number of looks, thus approximating with arbitrary precision the above defined clean image. In particular, we 

generated reference images by averaging 512 independent intensity SAR images, which guarantees a much stronger reduction of 

speckle than that provided by the best techniques known in the literature. It is worth underlining that such a goal cannot be 

reasonably met with real SAR images, due to technical hurdles, and that the final simulated image is not affected by any loss in 

spatial resolution, unlike with other procedures, also referred to as multilooking, but based on spatial averages. 

The proposed simulator is based on sound geometrical and electromagnetic models for the evaluation of the reflectivity 

function of the scene and on a model for the transfer function of the system, which are used for the evaluation of the SAR raw 

signal. These models are not dependent on the used despeckling technique, thus allowing an objective comparison of the selected 

filtering techniques. The models used for simulation are briefly outlined in the following, paying particular attention to 

geometric, electromagnetic and radar parameters of interest. 

B. Simulation Procedure 

Let x and r be the independent space variables, standing respectively for azimuth and range. By using primed coordinates for 

the independent variables of the SAR raw signal, s(x’,r’), this can be expressed as [13]: 

,ᇱݔ)ݏ  (′ݎ = ,ݔ)ߛ∬ ᇱݔ)݃(ݎ − ,ݔ ᇱݎ − ;ݎ  (1) ݎ݀ݔ݀(ݎ

 

where γ(x,r) is the reflectivity pattern of the scene, and g(x'-x,r'-r;r) the unit impulse response of the SAR system [13]. For the 

evaluation of the reflectivity function, electromagnetic scattering models, providing a solution which is function of the 
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considered sensor and surface parameters, are used. First of all, the description of the macroscopic aspects of the surface at the 

scale of the sensor resolution is required: this is accomplished by providing as input to the simulator a Digital Elevation Model 

(DEM). The behavior of the DEM is then approximated using a two-scale model [13], i.e. using plane facets, over which a 

microscopic random roughness is superimposed. Hence, the mean square value of the backscattered field can be evaluated 

providing an adequate stochastic description of the microscopic roughness. This random roughness can be described by using 

different parameters resulting from the introduction of different models for the geometry of the surface [14]: in the present paper, 

when a natural terrain is considered the roughness is supposed to be effectively described through a fractal fractional Brownian 

motion (fBm) process [14], i.e. using only two independent parameters, the Hurst coefficient H and the topothesy T [m]. 

Conversely, when the simulation of buildings is in order, the surface surrounding the building is assumed to be man-made (e.g. 

asphalt) and the roughness is described through classical geo-statistical parameters, the height standard deviation, σh [m], and 

the correlation length, lh [m]: the use of this model allows us evaluating in closed form the multiple reflection contributions, 

which are typical of urban areas [15]. Finally, in order to complete the description of the surface also the relative dielectric 

constant ε and the conductivity σ [S/m] of the observed surfaces must be provided as input to the simulator. 

Whenever a natural terrain is considered, the small perturbation model, with the appropriate power law spectrum, is used for 

the evaluation of the reflectivity function of the surface [14]. Conversely, for the evaluation of the reflectivity relevant to an 

isolated building, in order to compute in closed form the multiple reflection contributions, geometrical optics or physical optics 

solutions are required [15]. The reflectivity function is evaluated in a ground range - azimuth reference system and is necessary 

to project it in the sensor-centered slant range - azimuth reference system. Once this transformation is performed, the obtained 

reflectivity function can be filtered according to the impulse response of the SAR system, providing as output the raw signal, as 

shown in Eq. (1). In order to compute the impulse response the radar and orbital parameters are needed: pulse repetition 

frequency, chirp duration and bandwidth, satellite height and velocity, and so on. After focusing, the obtained raw signal 

provides the final simulated SAR image. 

With regard to the speckle phenomenon, its presence is accounted for in the simulator thanks to the above introduced two-

scale model for the imaged surface. In fact, in this approach the spatial scales smaller and larger than the resolution are 

differently treated: in particular, the signal macroscopic behavior is accounted for through the computation of the scattering from 

plane facets locally approximating the considered surface; electromagnetic roughness parameters of each facet are assumed 

known; the mean square value of the signal, and hence the normalized radar cross section [13], is evaluated through 

electromagnetic models adequate for the computation of the scattering from rough surfaces, as described above. The microscopic 

behavior, which determines the presence of speckle, is accounted for through a statistical model: in particular, assuming that the 

speckle can be considered as fully developed [11], [12], the amplitude value obtained for each facet is multiplied by one 
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realization of a Rayleigh random variable. Note that taking into account the speckle contribution at this early point of simulation 

guarantees that speckle is filtered by the SAR system impulse response just like the signal is. Therefore, the simulated image 

exhibits the expected spatial properties of a real-world SAR image, which is not the case when the speckle is superimposed on a 

pixel basis over the final simulated image [16]. 

Through the above described framework we are able to provide a wide set of simulation products, spanning from the 

reflectivity function to the Single Look Complex (SLC) image. In this paper we are interested in intensity images, i.e. the square 

modulus of the SLC image, which is usually simply referred to as SAR image. Analyzing this product, significant features of the 

observed scene can be visually inspected and effectively processed in order to retrieve relevant information. 

III. AN OVERVIEW ON SAR DESPECKLING 

In this Section we try to provide an overview of the major ideas relevant to SAR despeckling and to the assessment of filtered 

image quality. Techniques applicable to a single one-look (i.e., full-resolution) SAR image are considered. The analysis of the 

filtering methods will allow us to concisely describe the few techniques selected in the experimental part as a representative set 

of the available ones, and position them in the literature, while the study of the quality assessment will help us define the 

proposed performance measures on simulated SAR images. 

A. Despeckling Techniques 

Major trends in SAR despeckling closely follow the developments in AWGN denoising, with most ideas drawn from the more 

mature AWGN field and adapted to the challenging special case of speckle noise. Indeed, despeckling techniques typically 

convert the multiplicative noise problem to an additive noise one, by resorting to a log transformation or by rewriting the 

observable as the sum of the information signal plus signal-dependent noise. The first solution, known as the homomorphic 

approach, allows one to apply with minor modifications all AWGN techniques, although the results are affected by the distortion 

of the image dynamics and the non-gaussian nature of the noise. The second approach is more promising, in theory, but also 

more complex to deal with, and results do not always live up to the expectations. We will not discuss further the relative 

advantages of these two models, focusing instead on the major algorithmic approaches and grouping (loosely) the techniques in 

three broad categories, that is, spatial, wavelet-based, and nonlocal filtering. Furthermore, we will not analyze in depth any 

technique, because in this context we are only interested in the rationale of each approach and its typical pros and cons. 

 Despeckling techniques working in the spatial domain estimate the signal by means of a weighted average of samples in a 

small window centered on the target pixel. Spatial multilook, still much used by practitioners for both despeckling and pixel-size 

equalization, can be regarded as a very primitive form of spatial-domain filtering, with equal weights in the window. It is 

therefore a low-pass filter, which cuts medium-to-high frequencies, thus reducing noise but also all high-frequency signal 
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components associated with edges, man-made structures, natural textures. Multilook epitomizes therefore the typical problem of 

spatial domain filters, that is, the loss of resolution in the despeckled signal corresponding to the suppression of high-frequency 

signal components. The resulting artifacts can be spotted easily by computing the image of ratio between original and speckled 

images, as signal-related structures superimposed to the uncorrelated speckle. Needless to say, filters proposed in the scientific 

literature, e.g., [17]-[19] are much more sophisticated than spatial multilook. Weights are computed based on accurate statistical 

models of signal and noise and, especially important, are modified adaptively to take into account the local statistics of the 

image. Therefore, intense smoothing is carried out only in homogeneous regions, while detail-rich areas, likely associated with 

valuable signal components, undergo a lighter treatment. Indeed, the segmentation of the image, either implicit or explicit, in 

homogeneous, heterogeneous, and strongly heterogeneous (man-made) regions, is one of the main tools that help reducing 

filtering artifacts. Several efforts have been done to improve the adaptive local filtering, as the techniques proposed in [20], 

where the local coefficient of variation is used to tell apart regions with different level of homogeneity, or in [21], which not only 

inhibits smoothing near edges but tries also to enhance them. Although enhanced filters have the potential to better preserve 

texture and edges, distinguishing homogeneous regions from texture or edges is a difficult task, and in fact, in recent years, 

research is focusing on this topic [22], [23].  

With the advent of wavelet transform, with all its variants and further developments, there has been a significant leap forward 

in AWGN denoising first, and then SAR despeckling. Wavelets are very well suited to represent images efficiently since most of 

the information content is captured by a relatively small number of coefficients, typically the baseband and some detail 

coefficients related to sharp transitions in the image. On the contrary, assuming orthogonal transforms, white noise keeps being 

white and evenly distributed on all coefficients. Therefore, it is relatively easy to tell apart coefficients carrying information 

about the signal from those, generally smaller, which contain only noise. In fact, plain scalar thresholding of wavelet coefficients 

already provides a surprisingly good performance [24], [25], especially if a shift-invariant undecimated wavelet is used. 

Encouraged by such good results, several researchers have proposed improved wavelet-domain techniques, using more 

sophisticated transforms, taking into account inter-band coefficient dependencies, and replacing deterministic thresholding with 

statistical shrinkage. Indeed, most of the techniques proposed in the last few years for SAR despeckling resort to statistical 

wavelet shrinkage with a MAP Bayesian approach, and focus on the selection of the most suitable prior for the signal 

coefficients [26]-[30]. In general, it seems safe to say that wavelet-based algorithms guarantee a better overall performance than 

spatial-domain techniques, and a superior ability to preserve signal resolution. Nonetheless, they present their peculiar kind of 

artifacts, in the form of ringing near the edges, or isolated patterns in flat areas of the image, which can result visually annoying. 

Recently, nonlocal filtering has been drawing a great deal of attention. It can be seen as a new way to carry out spatial-domain 

denoising. The main idea is to estimate the target pixel based on a carefully selected set of pixels: not just those closest to the 
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target but those more likely to have the same underlying signal. Actually, the idea is not so new, dating back to the ‘80s with the 

neighborhood filter, and later the bilateral filter, but only very recently, with the nonlocal means (NLM) algorithm [31] it proved 

its effectiveness and spawned intense research. In NLM, the target pixel is estimated as a weighted sum of all neighboring pixels, 

with weights that depend on the expected similarity between the target and the predictors. Such a similarity is measured, in turn, 

based on the patches surrounding each pixel. This idea is further developed in block-matching 3d (BM3D) [32] where only a few 

pixels with the most similar context are used for the estimation. In addition, BM3D resorts to wavelet-based thresholding, using 

the best tools from both approaches and providing the best performance to date. It is instructive to think of NLM and BM3D as 

clever attempts to mimic a true statistic average. In fact, by selecting as predictor those pixels that have the same context as the 

target, they sort of draw and average independent samples from the same abstract random process. Both NLM and BM3D have 

been extended to the SAR case [33]-[37]; in particular in [33] and [36] a suitable similarity measure, related to the speckle 

statistics, has been used in place of the original Euclidean distance valid for AWGN, and other processing steps have been 

modified to account for the specificity of the new domain. Obviously, the predictor selection is influenced by noise itself, 

especially in flat areas of the image, which can be dangerously self-referential. As a matter of fact, the typical artifacts 

encountered with this kind of algorithms are the so called “ghosts”, structured signal-like patches that appear in flat areas, 

originated by random noise and reinforced through the patch selection process. 

B. Quality Assessment 

In general, a good SAR despeckling technique should have the following characteristics [38]: 

• speckle reduction in homogeneous areas; 

• scene feature preservation (like texture, edges, point target, urban areas); 

• radiometric preservation; 

• absence of artifacts. 

To assess the capacity of a filter to achieve such results, a set of suitable measures have been used in the literature, which can be 

classified as no-reference measures (applied on real-world SAR images) and full reference measures (when a reference SAR 

image is generated by simulation). 

1) No Reference Measures 

Lacking a reference, such measures make sense only if referred to areas of the SAR image which can be clearly characterized 

in terms of their signal content as homogeneous, heterogeneous, or extremely heterogeneous regions.  

Homogeneous regions (constant and weakly textured areas) are the most simple to analyze since in these areas the randomness 

of the observed signal is only caused by speckle, which is fully developed, and for each pixel the multiplicative noise model is 

valid: 
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ݖ  = ݔ ∙  (2) ,ݑ

 

where z is the detected intensity, x the speckle-free reflectance and u accounts for the speckle that can be modeled as Gamma 

distributed with unit mean and variance equal to 1/L, where L is the number of looks. A very common tool used in the literature 

to measure speckle suppression is the Equivalent Number of Looks (ENL) [38]: 

 ENL = 	 ఓ೥మఙ೥మ, (3) 

 

with ߤ௭ and ߪ௭ the estimated mean and standard deviation of the signal, which represents the number of single-look images that 

should be incoherently averaged to obtain equivalent despeckling in perfectly uniform regions. The larger the ENL the better the 

speckle suppression, with infinity corresponding to ideal filtering. In a homogeneous region one can also evaluate the 

radiometric preservation by comparing the value of the local mean backscattering reflectivity in the original and filtered images. 

In fact, a successful speckle reducing filter should not significantly alter the mean intensity within a homogeneous region [20]. 

Another method of investigating the despeckling performance is to check the ratio between the noisy and the filtered images. For 

ideal filtering, the ratio image should be pure speckle. Thus, its mean should equal one, and its variance should be the inverse of 

the number of looks [39]. In addition, this comparison provides information regarding a possible bias and whether the speckle is 

insufficiently filtered (the variance is lower than the theoretical value) or the scene texture is smoothed (the variance becomes 

larger than the theoretical value) [6]. 

When dealing with heterogeneous regions (textured areas, edges) the analysis becomes more complex. Texture, which 

represents the intrinsic spatial variability of a natural scene, is a precious feature to discriminate among different land-use types. 

Measuring its preservation, however, is not an easy task, and one must settle for the less ambitious goal of studying some 

synthetic indicators, like the coefficient of variation, ܥ௫ = ௫ߪ ⁄௫ߤ , which accounts for the region heterogeneity. Good texture 

preservation can be obtained only if the coefficient of variation ܥ௫ො estimated for the filtered image by means of spatial averages 

is close to the value expected for the original image [40]. If signal and speckle are independent, and the latter has unit mean, the 

expected value of ܥ௫	can be computed as 

 

௫ܥ = ට஼೥మି஼ೠమଵା஼ೠమ  (4) 
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where ܥ௭ is estimated on the observed image z, and ܥ௨ equals the standard deviation of the speckle. A critical point of this 

measure is the selection of an area of constant statistical behavior, so as to actually measure only intra-texture and not also inter-

texture variability [41]. For what concerns edges, one can apply an edge detector on the filtered images and observe the resulting 

edge map. Also the visual inspection of the ratio image can provide information on the degree of edge preservation in a region, 

since the presence of structures in it indicates that they have been filtered out from the original data. The ratio image can also 

give important indications on filtering artifacts [38], often not so visible in the filtered image. In other approaches, despeckling 

quality is judged based on the results of subsequent tasks, such as classification or segmentation, but these are obviously 

application dependent and hence not very general. 

Finally, extremely heterogeneous areas, like point targets, strong edges, or buildings, where the speckle does not obey to a 

fully developed model, should not be filtered at all, and their original value should be preserved. The work on this kind of 

regions has concentrated mostly on determining experimentally the target response by the analysis of real-world SAR images 

containing one or more corner reflectors [18], [20]. 

2) Full Reference measures 

The performance assessment becomes much simpler when a clean reference x is available. In the literature, both natural 

optical images and synthetic images with simple features like uniform regions, textures, edges or strong scatterers [42] have been 

used as references. Synthetic SAR images were then generated by applying a fully developed speckle field. In this case one can 

easily compute all sorts of full-reference global distortion measures on the filtered image ݔො, from the traditional mean-square 

error (MSE) 

 MSE(ݔ, (ොݔ = ݔ)]ܧ −  ො)ଶ], (5)ݔ

 

with E[·] denoting statistical mean, and related quantities like the signal-to-noise ratio (SNR) 

 SNR(ݔ, (ොݔ = 10 logଵ଴ ୚ୟ୰(௫)୑ୗ୉(௫,௫ො), (6) 

 

or the peak SNR (PSNR), up to most recent measures, like the Structural Similarity (SSIM) index  [43], which try to provide 

more meaningful information about the closeness of two images. The proposed measures can be calculated globally or locally, if 

one is interested on the performance on specified areas. Thanks to the clean reference, several objective measures have been 

proposed in order to assess the edge preservation capacity of the filters. In particular, one can generate synthetic images with 



TGRS-2012-00518.R1 12

edges of different slope, orientation and thickness and define indexes on a certain region of interest. This is the case of EPI (Edge 

Preservation index) [44], defined as 

 EPI = 	∑ ห௫ො೔,భି௫ො೔,మห೙೔సభ∑ ห௫೔,భି௫೔,మห೙೔సభ  (7) 

 

where ݔ௜,ଵ, ݔ௜,ଶ, ݔො௜,ଵ and ݔො௜,ଶ are the values of the reference and filtered images, respectively, observed on the one-pixel wide 

lines on both sides of the edge.  Larger values correspond to a better edge retaining ability of the filter. Recently a modified 

version has been proposed in [23] called EPD (Edge Preservation Degree) based on ratios rather than differences. Alternatively, 

one can evaluate the correlation index [45], called β-index or ECF (Edge Correlation Factor), between the high-pass versions of 

the original and filtered images. All these indexes, although quite empirical, provide some indications on the edge preservation 

ability of the filter. A deeper analysis can be conducted by examining the gray-level histograms for synthetic images with a 

single edge [46], observing the edge profile [47], [48] or the second-order correlation contours (SOGLC matrix) [46]. An 

approach closer to the applications for measuring edge-preservation ability involves the analysis of the edge map obtained with a 

specific edge detector [18]. The edge map, in fact, is an intermediate product in many image segmentation and classification 

algorithms. To this end, one can resort to the Figure Of Merit (FOM), introduced by Pratt [49], which measures the distance of a 

given edge map from the reference edge map, penalizing both the suppression of true edges and the detection of false ones. 

IV. PROPOSED FRAMEWORK 

Almost all the measures outlined in the previous section make sense when referred to specified areas of the image. Indeed, 

when they are used for actual SAR images, it is necessary to identify the regions of interest based on indicators like the 

coefficient of variation [6]. Therefore, to propose a robust framework for performance assessment, it is important to create test 

images that represent meaningful canonical cases, such as [50]: 

- homogeneous (water, bare soils, vegetated areas); 

- texture; 

- edges (roads, rivers, region boundaries); 

- isolated point target; 

- urban areas. 

Of course, one can think of many other insightful test areas, but this is probably the smallest set of canonical images that 

allows one to investigate all major features of interest in SAR despeckling, that is, respectively, 

- speckle reduction power; 
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- ability to tell apart speckle from texture (originated by a non-flat terrain); 

- preservation of contours (both location and edge profile) among different regions; 

- absence of radiometric distortion; 

- preservation of features related to man-made structures. 

To collect meaningful objective indications on the performance of competing despeckling techniques we have selected the 

following test images that account for the most common and relevant elementary scenes encountered in typical SAR images, that 

is, 

1. a single flat region with constant electromagnetic parameters (“Homogeneous”); 

2. a single region with constant electromagnetic parameters but non-flat orography (“DEM”); 

3. several regions on flat terrain, separated by straight contours, and characterized by different electromagnetic parameters 

(“Squares”); 

4. a corner reflector placed on a homogeneous background (“Corner”); 

5. an isolated building placed on a homogeneous background (“Building”). 

In the first four cases the sensor parameters are those typical of the ERS or ENVISAT sensors and provide images with ground 

and azimuth resolution of 19.9 m and 4 m, respectively. In the last case, the Cosmo/SkyMed high resolution sensor parameters  

have been used in order to ensure a resolution (3.6 m in range and 2.6 m in azimuth) adequate for the identification of a typical 

building. Note that the use of a low resolution sensor in the first four cases allows for a lower computational burden without 

affecting the generality of the results. In all cases, the simulator provides quite large images, corresponding to the actual 

extension of the imaged scene dictated by the parameters of the input sensor, ERS or Envisat most of the times. However, for 

practical reasons, we work only on small regions cropped by these images, of size 512x512 pixels for the square and DEM cases, 

and 256x256 pixels for the others. Moreover, although the simulator outputs single look complex images, the phase content is of 

no interest for our applications, since despeckling algorithms typically work either on the amplitude (modulus of the complex 

datum) or on the intensity (square of the amplitude). 

In the following of this Section we will more thoroughly describe the five test images and will point out the major features of 

interest for each of them. In order to allow for a simple comparison among techniques, we associate with each scene/feature 

couple only a few (actually the most representative) numerical measures of performance. This small set of measures will help 

gaining a clearer insight about the potential of a given despeckling technique in different applicative scenarios, and allow 

establishing a meaningful comparison with competing techniques. In the following of this section we will motivate for each test 

case the proposed performance measures. 
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A. Homogeneous 

In the first test case we simulate the SAR image obtained in the presence of a flat surface with a constant microscopic 

roughness, described via an fBm process with H=0.75 and T=0.0625 m, and constant electromagnetic parameters ε=4 and 

σ=0.001 S/m. In Fig.1 we show the first realization of the simulation (therefore a single-look image) and the clean reference 

obtained by averaging all 512 realizations. 

 

 

 (a) (b) 

Fig. 1 Homogeneous image: (a) 1-look; (b) 512-look. 

 

With this image we want to measure the speckle rejection ability of a filter. To this aim we consider a few bias indicators, that 

is, the mean value of the filtered image, and the mean value and variance of the ratio image and then two direct measures of 

performance, MSE and ENL. 

The bias indicators are useful to gain insight about the general behavior of the filter in terms of radiometric preservation and 

could point out its weaknesses and possible remedies. The mean value of the image (MoI), in particular, should be preserved 

through filtering. As for the ratio image, in principle it should contain only speckle, and hence have unit mean and variance equal 

1/L, with L the number of looks. While small deviations from these expected values can be mostly attributed to the intrinsic 

variability of sample measurements, larger deviations should ring a bell. A mean of ratio (MoR) significantly different from 1 

indicates, again, some radiometric distortion. Assuming MoR ≅ 1, the variance of ratio (VoR) provides insight about 

under/oversmoothing phenomena2. A VoR<1 indicates undersmoothing, that is, part of the speckle remains in the filtered image, 

while VoR>1 indicates oversmoothing, that is, the filter eliminates also some details of the underlying image. Of course VoR>1 

makes sense only for non-flat images.  

In the presence of a reference image, however, the obvious measure of choice for noise rejection is the MSE, with the 

statistical average replaced here by sample average, 

 
2 Notice that VoR is computed here as the squared error w.r.t. the estimated mean (MoR) and not w.r.t. its theoretical unitary value, as done in [38]. 
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 MSE(ݔ, (ොݔ = ଵsize(௫) ∑ ൫ݔ(݅, ݆) − ,݅)ොݔ ݆)൯ଶ௜,௝  (8) 

 

where ݔො is the filtered image and x the 512-look reference. To improve readability, however, we will show results on a 

logarithmic scale by means of the related despeckling gain measure (DG) defined here as 

 DG = 10logଵ଴(MSE(ݔ, (ݖ MSE(ݔ, ⁄(ොݔ ) (9) 

 

where z is the unfiltered image. Therefore, larger numbers indicate better speckle rejection. For example, a 20dB DG indicates 

reduction of speckle power by a factor 100. 

Together with the MSE we also report the ENL, for several good reasons: 1) it is the measure people are most used to in this 

field, providing immediate insight about speckle reduction ability; 2) it has a compelling physical meaning as the number of 

looks needed to reach the same speckle suppression level guaranteed by filtering; 3) it can be computed also in the absence of a 

reference image, provided a flat region can be identified, which allows comparisons beyond the present framework. On the down 

side, ENL depends on the presence and detectability of a relatively large flat region of the image. As a matter of facts, not even 

our simulated scene, homogeneous by definition, has a constant mean: in fact, because of the variation of the incidence angle 

between near and far range, it exhibits a slight amplitude variation along the range direction, which obviously affects the ENL 

measures. We take this fact into account by proposing a refined version of ENL, referred to as ENL*, which removes the image 

amplitude variation along range, by dividing values on each fixed-range line by their average, before computing the measure. 

When the despeckling is very effective ENL* can differ significantly from the conventional measure: as a matter of facts, for our 

clean image (512 true looks) ENL=437 but ENL*=510. 

B. DEM 

In the second test case, the simulated SAR image is obtained w.r.t. a region with constant electromagnetic parameters ε=4 and 

σ=0.001 S/m and constant microscopic roughness, H=0.75 and T=0.0625 m, but non-flat orography. In particular we generate an 

artificial canonical fractal DEM by using the Weierstrass-Mandelbrot fractal function [14] and provide it as input to the 

simulator. In Fig. 2, the first 1-look realization and the 512-look reference image are shown while Fig. 3 portrays the DEM used 

for the simulations. 
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gain, in particular, remains fully informative and even more precious now, in the absence of the ENL which cannot be defined in 

this case. Also the bias indicators provide useful information although they might depart from theoretical values obtained for 

Rayleigh distributed speckle. In addition, we also compute the coefficient of variation ܥ௫ො, which is a widespread indicator of 

texture preservation. If ܥ௫ො departs significantly from ܥ௫ the texture has been certainly altered, either because of insufficient 

speckle rejection (ܥ௫ො > ௫ොܥ) ௫) which increases the data dynamics, or because of excessive smoothingܥ <  .௫) which reduces itܥ

On the other hand, ܥ௫ො ≅  ௫ does not guarantee the preservation of textural properties, since the coefficient of variation dependsܥ

on first-order statistics only. We do not address the complex problem of texture classification, here, leaving it for future studies. 

In the next Section, though, we show and comment some interesting results concerning the autocovariance function (ACF) of 

reference and filtered images 

 ACF௫(∆݅, ∆݆) = ଵsize(௫) ∑ ,݅)ݔ)] ݆) − ݅)ݔ)(௫ߤ − ∆݅, ݆ − ∆݆) − ௫)]௜,௝ߤ  (10) 

 

C. Squares 

In the third test case we simulate the SAR image obtained in the presence of a flat surface, with the same microscopic 

roughness of the first case, but divided in four regions, with straight contours aligned to the range and azimuth coordinates, 

having different electromagnetic parameters. Therefore, the simulated image is made up of four areas presenting different mean 

intensity values. In Fig. 4 we show again the first realization together with the reference obtained by sample averaging. 

 

 

 (a) (b) 

Fig. 4 Squares image: (a) 1-look; (b) 512-look. 

 

Our main goal, here, is to assess the degradation of edges through the filtering process. To this end, we propose in this work a 

new direct measure of edge smearing (ES), and use also an indirect measure, Pratt’s figure of merit (FOM), which tells us 
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whether the edges are still recognizable as such in the filtered image by an automatic detection algorithm, and hence useful for 

subsequent processing.  

The ES, is computed as the weighted square error between the edge profiles of the filtered and reference images 

 ES = ݐ)݃׬ − (ݐ)଴)(EP௫ොݐ − EP௫(ݐ))ଶ݀(11) ݐ 

 

where the Gaussian kernel g(t−t0) allows us to assign a larger weight to errors that occur near the edge location t0. The Edge 

profiles (EP), in their turn, are computed by averaging the image in the along-edge direction over a homogeneous region, so as to 

obtain a virtually speckle-free signal. This is necessary to prevent the residual speckle from affecting the edge degradation 

measure: the original noisy image z, for example, should have a small ES figure, because no smearing occurs, even though each 

pixel can differ significantly from its expected value because of speckle. Edge profiles are upsampled to obtain smoother 

functions and the integral is approximated by a sum. 

Edge degradation can be immaterial for subsequent applications if edges can be detected anyway. Therefore we also consider 

the FOM, defined [49] as 

 FOM =	 ଵ୫ୟ୶	(௡೏,௡ೝ) ∑ ଵଵାఊௗ೔మ௡೏௜ୀଵ  (12) 

 

which quantifies edge-preservation by looking at the output of a suitable detection algorithm. Here, ݊ௗ and ݊௥ are the number of 

edge pixels detected in the despeckled and reference image, respectively, ݀௜ is the Euclidean distance between the i-th detected 

edge pixel and the nearest reference edge pixel, and the parameter γ modulates the cost of edge displacement. Therefore, FOM 

penalizes both the suppression of true edges and the detection of false edges, ranging from 0 to 1, with larger values indicating 

superior edge rendition. In particular we use the well-known Canny algorithm [51], selecting separately for each image the 

parameters (variance of the smoothing kernel and thresholds TL and TH=4TL) which maximize the FOM, so as to free the image 

quality measure from the influence of a badly tuned detection algorithm. It is worth underlining that FOM penalizes both missing 

edges (nd < nr) and false ones (nd > nr), as well as edges displaced w.r.t. their actual position (di>0). We selected γ=1/9 so as to 

assign a ½ score to a slightly (3 pixel) displaced edge. Although no theoretical proof supports the use of FOM, it has been shown 

[52] to provide more discriminating results than other measures proposed in the literature and to enable more clear-cut decisions. 
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D. Corner 

In the fourth test case we consider a corner reflector placed at the center of a flat homogeneous scene. In practice, we use the 

same setting of the first case except for the center pixel whose value is modified so as to mimic the behavior of a corner reflector. 

These data are then processed by the SAR simulator to provide the various realizations, the first of which is shown in Fig. 5 

together with the 512-look reference. 

 

 

 

 (a) (b) 

Fig. 5 Corner image: (a) 1-look; 512-look. 

 

In this case we want to assess the radiometric preservation through the filtering process. To this end, we propose two intensity 

contrast measures. Let xCF be the intensity observed in the corner reflector site, xNN the average intensity in the surrounding 

region formed by the 8-connected nearest neighbors and xBG the average intensity of the background. Then we define, 

NNܥ  = 10logଵ଴ ௫CF௫NN (13) 

 

and 

BGܥ  = 10logଵ଴ ௫CF௫BG. (14) 

 

In the filtered images, these figures3 should be as close as possible to the corresponding numbers computed on the reference 

image. 

 
3 We note in passing that CBG is a discrete geometry equivalent of the well-known PSLR computed when complex data are available. 
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E. Building 

In the last test case we simulate the SAR image obtained in the presence of an isolated building over a homogeneous flat 

surface. The building is modeled as a parallelepiped with square plant of 40 x 40 m2 and height of 20 m and is placed with one 

wall parallel to the line of flight of the sensor. The observed surface is modeled as a random rough surface described through the 

standard deviation, σh=0.02 m, and the correlation length, lh=0.07 m, of the height; the building walls and rooftop are supposed 

to be flat and speckle-free. The same electromagnetic parameters, ε=4 and σ=0.001 S/m, are used for the terrain and the building. 

The proposed urban simulator is able to take into account and to correctly place on the image all the contributions due to the 

interaction between the rough terrain and the building walls. In particular, it accounts for double and triple reflection 

contributions: note that in case of smooth walls multiple reflection of order higher than three are not present [53]. Fig. 6 shows 

the first realization of the simulation together with the reference. The presence of the double reflection contribution is evident 

and appears as a very bright line placed at the point of intersection between the rough terrain and the building walls. 

 

 

 (a) (b) 

Fig. 6 Building image: (a) 1-look; (b) 512-look. 

 

As a matter of fact, built-up areas on high resolution SAR images are usually very involved, presenting extreme distortion 

effects (layover, shadow) and, above all, many contributions related to multiple scattering mechanisms due to the presence of 

man-made objects on the scene under survey. In fact, contributions associated to different buildings may overlap implying that 

the return from each building can mix with those relevant to neighboring structures. For this reason, even if different from an 

actual man-made situation, the proposed case is of fundamental importance in many applications because it represents the basic 

element of an urban area and, more in general, of man-made structures.  

Due to the presence of dihedral structures, this can be seen as a generalization of the former case to an extended man-made 

target. Note that the intense double reflection line can be used to obtain estimates of the position and geometry of the observed 

building. In particular, the height of the building can be estimated from calibrated radiometric values of the double reflection line 
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[54]. It is therefore important that both the position and the radiometric characteristics of the building radar return are preserved 

by the applied despeckling technique. Concerning radiometric precision, we compute a contrast figure, 

DRܥ  = 10logଵ଴ ௫BR௫BG, (15) 

 

between the average intensity computed on the double reflection segment, xDR, and the average intensity of the background xBG. 

Moreover, in analogy with the ES measure used for the Square image, we propose here a building smearing (BS) figure, defined 

as 

 BS = Πቀ௧ି௧బ்׬ ቁ |logଵ଴(BP௫ො(ݐ) + (ߝ − logଵ଴(BP௫(ݐ) +  (16)  ,ݐ݀|(ߝ

 

with ߝ a small positive value, to measure the distortion of the radiometric profile of the building in the range direction. The 

building profile is computed by averaging along the azimuth direction, then we take the log to prevent the double reflection line 

from dominating the measure, and integrate the absolute difference w.r.t. to the clean profile in a small range centered on the 

double reflection line. 

V. EXPERIMENTAL RESULTS 

In this section we carry out and discuss numerical experiments using some of the despeckling techniques proposed in the 

literature. It is worth reminding that our goal, here, is not to rank these techniques in terms of performance, and possibly single 

out the best one, but rather to gain insight about the proposed assessment procedure and its ability to shed light on the potential 

and limits of each approach and algorithm. Therefore, our primary goal in the selection was to have at least one technique for 

each of the major approaches (spatial filtering, wavelet shrinkage, nonlocal filtering) and possibly well-known to the community 

of users. Another important criterion was the availability of software code. The expected performance instead, although 

important, had a minor weight in the decision. In the end, we selected the following techniques and choose the parameter settings 

proposed in the original works: 
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1) Kuan filter [19]. This is a MMSE linear adaptive filter, with multiplicative noise converted in signal-dependent additive 

noise, which requires the estimate of the local mean and local variance in the neighborhood (5x5) of a pixel.  

2) Γ-MAP filter [20]. This is a classification-based filter. Based on the estimated local coefficient of variation and the output of 

a ratio filter it decides whether to filter (with a MAP approach) the point or not, and with which local window (maximum 

window size is set to 11x11). Given a correct classification it preserves well the edge structure.  

3) Spatially adaptive wavelet-based Bayesian estimator based on minimum mean absolute error criterion (SAWBMMAE) [27]. 

This technique works in the wavelet domain and follows the homomorphic approach assuming a Cauchy prior distribution 

for the coefficients of the log-transformed reflectance. The Bayesian estimation process takes into account also spatial 

dependency among wavelet coefficients by means of a linear predictive model. In order to reduce artifacts, the wavelet 

transform is implemented in the cycle-spinning mode.  

4) Segmentation-based MAP filter (MAP-S) [28]. Speckle is modeled as a signal-dependent noise and a Bayesian maximum a-

posteriori filter in the undecimated wavelet domain is derived assuming a Generalized Gaussian prior distribution for the 

wavelet coefficients (in order to reduce artifacts, a Haar basis has been used by the Authors unlike in [28]). Furthermore, 

wavelet coefficients are classified according to their texture energy into several heterogeneity classes, and different models 

are used for each class. Strong scatterers are detected in advance and not filtered.  

5) Probabilistic patch-based filter (PPB) [33]. This is an extension of the non-local means algorithm proposed in [31]. The 

Euclidean distance between patches is replaced by a more general probabilistic measure which depends on the noise 

distribution model, and the patch-based weights are iteratively refined based on both the similarity between noisy patches 

and the similarity of patches extracted from the previous estimates. We used the iterative version of the algorithm (25 

iterations) with a 21x21 search area and a 7x7 similarity window, and the default parameters for α and T proposed by the 

Authors. 

6) SAR-BM3D [36]. This is the SAR oriented non-homomorphic version of the original block-matching 3D algorithm proposed 

in [32] for AWGN images. The main modifications concern the distance used in the block-matching and the local linear 

minimum MSE estimator used in both steps of the procedure. Parameter setting is the default one proposed in the original 

work. 

TABLE I 
INFORMATION ON THE SELECTED TECHNIQUES 

 References Approach Theory complexity Software  

Kuan [19] spatial low  http://www.grip.unina.it/ 

Γ-MAP [20] spatial low http://www.exelisvis.com/ProductsServices/ENVI.aspx 

SAWBMMAE [27] wavelet medium Matlab source code sent by the authors  

MAP-S [28] wavelet medium experiments run by the authors 

PPB [33] nonlocal high http://www.ceremade.dauphine.fr/~deledall/ppb.php 

SAR-BM3D [36] nonlocal high http://www.grip.unina.it/ 
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Synthetic information about the selected algorithms is reported in Tab. I.  

All test images are stored in intensity format, with double precision and normalized to the spatial average of the corresponding 

clean image, which therefore has unit average intensity by definition. When visual inspection is required, we use images in 

amplitude format, in order to have a manageable dynamic, and use the same visualization scale (not just the same type of 

stretching) for all images of the same type. For images of different scenes or different origin, instead, we use in general different 

scales. All data and scripts are available for download at http://www.grip.unina.it/. All numbers reported in the following tables 

are obtained by averaging results over 8 independent single-look images of the same scene. We also computed the corresponding 

standard deviations. However, these are usually very small w.r.t. the mean, not surprising considering the large amount of data 

available in a single image, and therefore not reported in the tables, for the sake of readability, but discussed in the text only in 

the presence of atypical behaviors. 

A. Homogeneous 

This is the simplest, yet most important, canonical scene, as it gives information on the speckle reduction ability of a 

technique.  

In Tab. II we report bias indicators (MoI, MoR, VoR) and performance measures (ENL, ENL*, DG) while in Fig. 7 we show a 

256x256-pixel section of a 1-look test image, of the 512-look reference, and of the output of the despeckling filters applied to the 

test image. Ratio images, instead, are not much informative in this case and are not shown.  

None of the filters introduces a significant bias on the mean, while only SAWBMMAE presents a biased value for the mean of 

ratio. The variance of ratio is always smaller than one, due to imperfect removal of speckle, especially for Kuan and 

SAWBMMAE. For this very simple scene, the bias indicators are very informative, and in fact the performance measures 

confirm their indications. The best ENL, over 200, is guaranteed by MAP-S, followed by PPB and SAR-BM3D exceeding 100, 

while the others remain much under 100. All values become a bit larger when the more accurate ENL* is considered, accounting 

for the near-range far-range phenomenon. In particular, the reference image has ENL* very close to the expected value of 512. 

As for the despeckling gain, similar considerations apply, with the best three filters providing about 20 dB of improvement over 

the noisy original. Note that this latter measure suffers from the fact that the reference is not really clean but presents a residual 

variance of its own, which acts as an initial plateau for the computed MSE. For our design choices, however, this plateau is 

significantly smaller than the ideal MSE of the best despeckling technique. 
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Visual inspection allows for a subjective assessment of performance and, in addition, provides some insight on the structure of 

the filtered image, and especially the presence of artifacts, which are not easily captured by synthetic measures. Kuan and Γ-

MAP show clearly the presence of a strong residual noise, with a significant short-range correlation due to the sliding-window 

filtering. SAWBBMAE and MAP-S, instead, present the footprints typical of wavelet-based techniques, much stronger and at 

higher frequencies in the first case, barely distinguishable in the second. Non-local techniques, finally, are affected by ghost 

artifacts, due to the attempt to recognize structures even when they are absent. This is more evident for SAR-BM3D, while PPB 

exhibits only some smooth “brushstrokes”. It seems safe to say that, in general, visual inspection confirms closely the indications 

given by the objective measures. However, it provides some more information, calling for the adoption of other indicators that 

quantify the abundance and nuisance of artifacts generated in the filtered images. Some interesting ideas have been recently 

proposed, for example, in [55], where candidate artifacts are identified as off-diagonal clusters in the scatterplot of original to 

filtered data. We will certainly focus on this topic in future research. 

 

 

 (a) SAR image (b) “Clean”           (c) Kuan         (d) Γ-MAP 

TABLE II 
MEASURES FOR HOMOGENEOUS 

 MoI MoR VoR ENL ENL* DG 

Clean 1.000 0.998 0.987 436.97 510.36 - 

Noisy 0.998 - - 1.00 1.02 0 

Kuan 0.998 0.971 0.732 15.95 16.42 11.91 

Γ-MAP 1.023 0.959 0.824 54.00 57.80 16.64 

SAWBMMAE 1.017 0.920 0.706 34.40 35.76 14.94 

MAP-S 0.998 0.998 0.930 205.93 237.38 21.87 

PPB 0.997 0.960 0.820 127.68 140.89 20.29 

SAR-BM3D 0.978 0.979 0.814 102.44 111.91 19.40 
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 (e) SAWBMMAE (f) MAP-S          (g) PPB         (h) SAR-BM3D 

Fig. 7 Homogeneous: test, reference and output of the six filters. 

 

B. DEM   

This case is of great interest not only for its frequent occurrence in real-world SAR images but, under a more abstract point of 

view, because the signal itself is highly textured, with a rich spectrum. Therefore, signal variations occur at different scales, some 

of which very short, comparable with that of the speckle. Telling apart the speckle from such high-frequency signal components 

is a very challenging task. Moreover, just because of its random-like nature, one cannot devise a meaningful simple model of the 

signal, and is left basically with no tool for measuring the likely impairment of high-frequency components. In this case, 

therefore, more than all the others, the availability of the infinite-look version of the signal represents a precious and probably 

unmatchable tool. 

In Tab. III we report the objective measures for this case, while Fig. 8 shows a zoom (128x128) of the test, reference and 

filtered images. In addition, for the same section, we also show in Fig. 9 the ratio images. Filtered images are not significantly 

biased except for the SAWBBMAE case, while larger biases are observed for the ratio image. In particular, the VoR indicators 

for Γ-MAP and MAP-S stand out, suggesting some malfunctioning. In the first case, Γ-MAP classifies most of the image as 

“strongly heterogeneous” refraining from performing any filtering in such regions, as dictated by the algorithm. This is obvious 

in the ratio image which, for Γ-MAP, is mostly constant, hence VoR≈0. This problem appears to be intrinsic of the algorithm, 

and can be solved only with the use of a better classifier. The wavelet-based MAP-S, instead, happens to produce some negative 

values after filtering (clipped to the machine ε) due to the oscillating basis functions. We keep the output as is, but the problem in 

this case could be easily solved by a smarter form of clipping or through the use of robust statistics. Even barring these 

pathological cases, most techniques present small values of VoR, which testifies their inability to fully reject speckle in this 

challenging situation. On the other hand, even a unitary value does not guarantee good despeckling, as the VoR is influenced 

also by the unwanted filtering of signal component. For this image, therefore, the despeckling gain is definitely more 

informative. The best performance is provided by SAR-BM3D, over 5 dB (but compare it with the 20 dB of the homogeneous 
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case) with SAWBMMAE just under 5 dB and the others further back. In terms of coefficient of variation, SAR-BM3D is again 

the best, with a value of 2.43, very close to the 2.40 of the 512-look image. 

In this case, the visual inspection of ratio images is especially insightful, as these clearly show traces of signal-related 

structures, proving that part of the signal has been filtered away. In fact, leaving aside the pathological case of case of Γ-MAP, 

vertical structures are recognizable in all ratio images, with the notable exception of SAR-BM3D. 

Concerning the preservation of structural properties of the image, it is worth analyzing briefly the behavior of the ACF along 

the range direction, reported for all images in Fig. 10. In fact, preserving its shape can be reasonably considered as a basic 

condition for texture preservation. On the other hand, the ACF provides valuable information by itself on the underlying texture, 

even allowing the accurate estimation of the fractal dimension of the imaged natural surface, as recently shown in [56] and [57]. 

Fig. 10 shows clearly that, for almost all filtered images, the ACF behaves like that of the clean image at large spatial scales, 

while it becomes markedly different at shorter scales, where textural properties can be therefore expected to differ significantly 

from those of the clean image. The extent of the range of scales where the ACF of the filtered image fits that of the clean 

reference makes therefore an interesting candidate for a synthetic index of structure preservation. However, to define such an 

index, a deeper analysis is necessary which goes beyond the scope of this paper, and we leave it to future work. 

  

TABLE III 
MEASURES FOR DEM 

 MoI MoR VoR Cx DG 

Clean 1.000 1.001 0.999 2.40 - 

Noisy 1.003 - - 3.54 0 

Kuan 0.995 0.745 0.517 1.95 4.07 

Γ-MAP 1.011 0.981 0.033 3.48 0.08 

SAWBMMAE 0.781 0.914 0.929 2.14 4.75 

MAP-S 1.004 2.404 7933 3.35 0.31 

PPB 0.998 0.911 0.560 2.71 3.68 

SAR-BM3D 0.968 0.833 0.415 2.43 5.32 

 



TGRS-2012-00518.R1 27

 

 (a) SAR image (b) “Clean”          (c) Kuan         (d) Γ-MAP 

 

 (e) SAWBMMAE (f) MAP-S         (g) PPB          (h) SAR-BM3D 

Fig. 8 DEM: test, reference and output of the six filters. 

 

 

  (b) “Clean”          (c) Kuan         (d) Γ-MAP 

 

 (e) SAWBMMAE (f) MAP-S         (g) PPB          (h) SAR-BM3D 

Fig. 9 DEM: ratio images for the reference and the six filters. 
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Fig. 10 DEM: Mean autocovariance function along the range direction for test, reference, and the six filters. 

 

C. Squares 

In Tab. IV we report the edge smearing (ES) figures for the two vertical edges, characterized by lower (up) and higher (down) 

contrast, together with the figure of merit (FOM) for the detected edges. Fig. 11 shows the test, reference and filtered images. 

Visual inspection tells us that, in order to avoid edge blurring, the best we can do is to avoid filtering altogether. All filtered 

images, in fact, exhibit edge smearing, in varying degree, particularly annoying for Γ-MAP which exercises the strongest 

smoothing. This impression is confirmed by looking at the profiles of the upper edge, plotted in Fig. 12. For the sake of clarity, 

we plotted EPs separately for each filtered image, with 6-times oversampling and spline interpolation, reporting each time the 

512-look image EP as a reference. Notice that, due to the point-spread function of the system, the latter is not a simple step edge. 

In this case the sharpest edges are provided by Kuan, which carries out a lighter filtering, and SAR-BM3D thanks to the non-

local approach. This is obviously confirmed by the ES figures, which are different for the up and down edges because of the 

different contrast, but provide consistently the same ranking of filters. It must be pointed out, however, that the ES measures 

present a significant standard deviation over the 8 test images, up to 1/3 of the mean value, because of the limited data available, 

consisting of the few lines along the edges. As such, they are somewhat less reliable than other indicators.  

Of course, edge smearing provides only part of the information of interest. It does not say whether the edge will be ultimately 

recognized as such, and in the right position, by a detector, nor it takes into account false edges originated by unfiltered speckle 

or by filtering artifacts. If we look at the output of the Canny edge detector, in Fig.13, it is clear that no image guarantees a 

perfect edge rendition. The edges are never perfectly straight and in some cases, markedly for the linear filters and 

SAWBMMAE, large parts of the low-contrast horizontal edges are missed toward the center of the image. This phenomenon, 

due to the presence of stronger edges nearby, is less severe for the other techniques. This empirical ranking is well captured by 
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the FOM, as MAP-S provides the best numerical result, 0.868 on the average (standard deviations are always negligible) 

followed closely by the non-local techniques and Γ-MAP. Kuan is ineffective and SAWBMMAE even detrimental, with a FOM 

of 0.770 against 0.792 for the noisy images. It is worth remembering, however, that, in order to decouple the potential edge 

information conveyed by each image from the specific edge detector details, we selected for each single image the Canny 

parameters that maximize the FOM (which is also why we never observe false edges). In particular, the Canny detector includes 

a Gaussian low-pass filter which sort of equalizes the performance of different filters. Note that, the selected σ parameter is over 

20 (strong filtering) for noisy, Kuan, Γ-MAP and SAWBMMAE and below 10 (light filtering) for the others.  

 

 

 (a) SAR image (b) “Clean”          (c) Kuan        (d) Γ-MAP 

 

 (e) SAWBMMAE (f) MAP-S          (g) PPB         (h) SAR-BM3D 

Fig. 11 Squares: test, reference and output of the six filters. 

 

TABLE IV 
MEASURES FOR SQUARES 

 
ES 
(up) 

ES 
(down) 

FOM 
 

Clean   0.993  

Noisy 0.010 0.029 0.792  

Kuan 0.043 0.118 0.797  

Γ-MAP 0.118 0.297 0.825  

SAWBMMAE 0.079 0.211 0.770  

MAP-S 0.062 0.187 0.868  

PPB 0.070 0.209 0.837  

SAR-BM3D 0.036 0.113 0.847  
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 (a) Kuan (b) Γ-MAP       (c) SAWBMMAE    (d) MAP-S       (e) PPB    (f) SAR-BM3D 

Fig.12 Squares: edge profiles (upper edge) obtained for the six filters (red) compared with the clean one (black). 

 

 

 (a) SAR image (b) “Clean”          (c) Kuan        (d) Γ-MAP 

 

 (e) SAWBMMAE (f) MAP-S         (g) PPB          (h) SAR-BM3D 

Fig. 13 Squares: edge maps for test, reference and the six filters. 

 

D. Corner 

This situation occurs in SAR images for the presence of artificial corner reflectors used in the framework of measurement 

campaigns and, much more frequently, because trihedral structures of appropriate dimension act as corner reflectors, implying 

high intensity returns on the images. This phenomenon is much more evident in very high resolution images, where also trihedral 

structures of small size can act as corner reflectors. In this case a good despeckling technique should not significantly modify the 

corner reflector response: in fact, both the contrast of the corner main lobe with respect to the background intensity value and the 

contrast with regard to the nearest neighboring pixels are of interest for calibration and image registration purposes. Hence, as 

already stated in Section IV.D, in this case the measures of interest are aimed at evaluating radiometric preservation. 

−8 −6 −4 −2 0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

−8 −6 −4 −2 0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

−8 −6 −4 −2 0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

−8 −6 −4 −2 0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

−8 −6 −4 −2 0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

−8 −6 −4 −2 0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1



TGRS-2012-00518.R1 31

In Tab. V we report the contrast values CNN and CBG, while Fig. 14 shows a zoom (128x128) of the test, reference and filtered 

images. In this case, as already said for edge preservation, the best strategy is to avoid any filtering in the easily detected corner 

reflector region (see contrast values for the noisy image). Γ-MAP and MAP-S both follow this strategy, although in different 

ways, obtaining very good contrast indicators and preserving fairly well the shape of the point target response, as shown in Fig. 

15, where a range profile of the corner response is presented. On the other hand, they both produce visible artifacts in the output 

image due to the sharp transition between the filtered and non-filtered regions. Among the other techniques, not based on prior 

classification, SAR-BM3D provides good results in terms of both numerical indicators and visual quality, with no annoying 

artifacts, Kuan and PPB appear to be still acceptable, despite an appreciable loss in contrast, while SAWBMMAE is certainly 

inadequate as it strongly affects the radiometric properties of the corner signature, giving rise to a severe smoothing effect easily 

appreciated in Fig. 14 (e) and Fig. 15 (c). 

 

 

 (a) SAR image (b) “Clean”           (c) Kuan        (d) Γ-MAP 

 

TABLE V 
MEASURES FOR CORNER 

 CNN CBG 

Clean 7.18 30.54 

Noisy 7.19 30.52 

Lee 7.00 30.13 

Frost 7.19 30.52 

SAWBMMAE 1.81 16.30 

MAP-S 7.38 30.36 

PPB 5.70 27.29 

SAR-BM3D 6.83 29.55 

 

TABLE V 
MEASURES FOR CORNER 

 CNN CBG 

Clean 7.75 30.54 

Noisy 7.77 30.48 

Kuan 6.36 27.33 

Γ-MAP 7.77 30.37 

SAWBMMAE 3.13 15.84 

MAP-S 7.80 30.48 

PPB 3.75 26.67 

SAR-BM3D 7.39 29.43 
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 (e) SAWBMMAE (f) MAP-S          (g) PPB         (h) SAR-BM3D 

Fig. 14 Corner reflector: test, reference and output of the six filters. 

 

 

     (a) Kuan    (b) Γ-MAP   (c)SAWBMMAE   (d) MAP-S     (e) PPB    (f) SAR-BM3D 

Fig. 15 Corner reflector: range profiles obtained for the six filters (red) compared with the clean one (black). 

 

E. Building 

In Fig. 16 a zoom (128x128) of the ratio image for the test, reference and filtered images is presented while Tab. VI provides 

the CDR and the BS values defined in (15) and (16), respectively. Almost all techniques preserve the double reflection line quite 

accurately, either because of prior classification or thanks to an effective feature-preserving filtering, the only exception being 

Kuan, which loses more than 3 dB in the contrast indicator. The building smearing measure points out more significant 

differences as it takes into account the whole building profile. Such different behaviors can be also visually appreciated by 

looking at Fig. 17, where average range profiles (obtained averaging over the range lines interested by the presence of the 

building) are shown in logarithmic scale, in red for the filtered images and in black for the reference (512-look). In particular, 

while MAP-S identifies correctly the whole building region and preserves it integrally, with BS very close to 0, Γ-MAP fails to 

recognize the long-range effects of the building on the image, smoothing the low contrast lobes to the left of it, as testified by the 

much larger smearing indicator, BS=6.35. SAR-BM3D and PPB also perform very well, despite the lack of a prior classification, 

while SAWBMMAE and especially Kuan tend to smooth the signal pattern related to the presence of the building. It is worth 

underlining that these, or similar, profiles can be used to retrieve physical information on the observed building by means of 

pattern recognition algorithms, see for instance [58]. The BS measure is therefore an effective index of the preservation of the 

characteristic building pattern on the SAR image. 

The visual inspection of the ratio images in Fig. 16 confirms the above consideration, with regular pattern appearing where the 

filtering smears the building profile.  
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  (b) “Clean”           (c) Kuan        (d) Γ-MAP 

 

 (e) SAWBMMAE (f) MAP-S          (g) PPB         (h) SAR-BM3D 

Fig. 16 Building: ratio images for the reference and the six filters. 

 

 

      (a) Kuan   (b) Γ-MAP     (c) SAWBMMAE   (d) MAP-S     (e) PPB    (f) SAR-BM3D 

Fig. 17 Building profiles: range profiles obtained for the six filters (red) compared with the clean one (black). 
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TABLE VI 
MEASURES FOR BUILDING 

 CDR BS 

Clean 59.88  

Noisy 59.88 0.09 

Kuan 56.80 15.59 

Γ-MAP 59.77 6.35 

SAWBMMAE 58.22 7.38 

MAP-S 59.88 0.30 

PPB 58.88 3.13 

SAR-BM3D 59.89 1.46 

 

 

TABLE V 
MEASURES FOR CORNER 

 CNN CBG 

Clean 7.18 30.54 

Noisy 7.19 30.52 

Lee 7.00 30.13 

Frost 7.19 30.52 

SAWBMMAE 1.81 16.30 

MAP-S 7.38 30.36 

PPB 5.70 27.29 

SAR-BM3D 6.83 29.55 

 



TGRS-2012-00518.R1 34

VI. CONCLUSIONS AND FUTURE WORK 

SAR despeckling is drawing an ever increasing attention in the scientific literature, with several new techniques proposed each 

year. At present, however, performance assessment is carried out either by visual inspection on proprietary SAR images or by 

using optical images with simulated speckle, both unsatisfactory tools for different reasons. The absence of established 

benchmarking tools leaves researchers and practitioners alike with little clues on the actual performance of techniques, and 

represents a major obstacle to progress in this field, preventing a healthy competition of ideas. 

To fill this gap, in this work we proposed a new paradigm for the assessment of SAR despeckling techniques, based on 

physical-level SAR image simulation. This approach allows us to obtain objective and fully replicable results on canonical 

scenes that, in the limits of the simulation model, can be considered as the realistic output of a SAR system. The opportunity to 

generate repeated instances of the same scene provides us with “true” full-resolution multilook images with an arbitrary number 

of looks, and hence with a fully reliable and meaningful reference image for each scene. 

After outlining the general approach, we also proposed a practical implementation of it by selecting a set of canonical scenes 

that cover most of the typical cases occurring in SAR imagery, and a corresponding set of performance measures, some well-

known, some proposed for the first time in this paper, that capture in numbers the behavior of a given technique in terms of 

speckle suppression and feature preservation ability.  

Finally, to gain insight about the actual potential of this tool we also selected a set of representative despeckling algorithms, 

including some of the most widespread and well-understood in the user community, and conducted sample numerical 

experiments, comparing numerical results with the information gathered by the visual inspection of images. Early results are 

extremely encouraging: the indications given by numerical measures are always fully consistent with the rationale specific of 

each considered despeckling technique, strongly agree with qualitative (expert) visual inspections, and provide insight into SAR 

despeckling approaches. 

The proposed set of images and norms, available to the interested community [59], can be considered as the first nucleus of a 

complete benchmarking tool that will allow researchers and practitioners to test and compare existing techniques, and to develop 

and fine-tune new ones. 

Nonetheless, we are well aware that most of the work on this topic is still ahead, further investigation is needed, and a number 

of critical decisions must be made before trying to define an actual benchmark for despeckling techniques based on this 

approach. Indeed, the choices made in this work, although maybe reasonable, can be considered only as a starting point for the 

definition of a more thorough assessment protocol, and a number of questions must be first addressed: What canonical scenes 

should be selected to enable a comprehensive study of performance? And what numerical measures better account for the 

different behavior of techniques? How can one objectively take into account the artifacts introduced with different approaches? 
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Is it possible to define an overall index of performance, or more likely one specific index for each application, which provides a 

meaningful ranking of competing techniques? We are certainly bound to explore some of these topics in the near future, but it 

became increasingly clear to us, as this research proceeded, that most of the answers to these questions should come from a 

broad consensus of opinion in the scientific community, and we hope that other research groups and interested parties will indeed 

contribute to this effort. 

On the other hand, this large number of open issues is the direct consequence of the many degrees of freedom allowed by this 

approach. The proposed physical simulation enables the generation of SAR images and corresponding “speckle free” 

counterparts for any choice of the scene (dielectric constants, dimensions of the objects, contrast between objects and 

background) and sensor parameters (wavelength, resolution, operational mode). Therefore it provides the methodology to define 

and implement not just one, but any sort of benchmark, as suggested by the title of this paper, that might be deemed useful to test 

present and future SAR despeckling techniques. 
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