
The Effects of Acquisition Geometry on SAR 
Images of Natural Scenes 

Gerardo Di Martino#1, Antonio Iodice#2, Daniele Riccio#3, Giuseppe Ruello#4, Ivana Zinno#5

#Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni 
Università di Napoli “Federico II”, Via Claudio 21, 80125, Napoli, Italy 

1gerardo.dimartino@unina.it 
2iodice@unina.it 

3daniele.riccio@unina.it 
4ruello@unina.it 

5ivana.zinno@unina.it 

Abstract— In this paper we present novel results regarding the 
modeling of the SAR imaging process of natural scenes. The 
proposed model represents the extension to the two-dimensional 
case of the model previously proposed by some of the authors for 
the case of a one-dimensional fractal profile. Assuming a 
fractional Brownian model (fBm) for the observed surface and 
under a small slope hypothesis, we evaluate here, in closed form, 
the power density spectrum of the corresponding radar image. 
The proposed model effectively accounts for the effect of finite 
sensor resolution and for the peculiarity of SAR acquisition 
geometry. 
A numerical setup is implemented, based on sound physical 
models, allowing, on one hand, the validation of the small slope 
model and, furthermore, the empirical study of the general slope 
case. 

I. INTRODUCTION

In the past decades, the interpretation of SAR images has 
been prerogative of a small number of specialized people. In 
fact, the geometrical distortions and the coherent character of 
the SAR system strongly limited the use of this kind of data 
and the development of automatic or semi-automatic 
techniques for the extraction of value-added information from 
this images. In the last years, however, the advent of new 
generation sensors marked a strong increase in the resolution 
of SAR acquisitions. Anyway, this technological improvement 
has not yet been followed by an increase in the comprehension 
of the mechanisms of SAR image formation, which is a pre-
requisite for the development of un-supervised analysis 
techniques. 

Furthermore, the passage to high resolution not always 
implies an easier interpretation of the images. This is 
particularly evident in the case of SAR images of urban areas, 
where many new features begin to appear as the resolution 
increase: this situation claims for an effective modeling of the 
data in support of information extraction. Anyway, thanks to 
the man-made character of the scene, these images are often 
speckle-free and the information of interest is related to 
deterministic and punctual characteristics of the scene. 
Conversely, in this paper we deal with high resolution images 
of natural scenes: in this case value-added information is no 
longer related to deterministic and punctual features of the 
image but much more to its stochastic and global properties. 

Hence, any image processing technique aimed to the 
extraction of significant geophysical parameters or to 
segmentation and classification issues should be based on the 
development of a model able to relate the statistics of the 
image to those of the observed scene. 

In this paper we present a novel model for the SAR 
imaging process of natural surfaces. In fact, it is widely 
recognized in the literature that fractal models represent the 
best way to describe the irregularity of this type of surfaces 
[1], [2]. In order to minimize the number of independent 
parameters used for the characterization of the surface, a 
fractional Brownian model (fBm) for the observed surface is 
assumed [1]. Then, assuming a small slope regime for the 
observed surface, a novel imaging model is developed. The 
proposed model is focused on the extension to the case of a
two-dimensional fractal surface of the results obtained by 
some of the authors for one-dimensional fBm profiles [3]. 
With respect to the one-dimensional problem, in this case the 
effects of SAR acquisition geometry have to be taken into 
account. In particular, as detailed in the following sections, in 
the small slope model the characteristics of the image present 
a dependence only on the partial derivative of the surface 
evaluated along the range direction. Furthermore, the 
difference between range and azimuth resolutions is 
considered. Relevant analytical results for the small slope case 
are presented in Sections II and III. 

Finally, in Section IV the analytical results are validated via 
a numerical setup, based on a fully fractal framework. Note 
that this allows also the study of the general slope case. In fact, 
an SPM scattering model [2] is used to compute the signal 
backscattered from the fBm surface. 

II. FRACTAL MODELS

Fractal models are widely considered the most appropriate 
ones to qualitatively and quantitatively describe natural 
surfaces [1]. In order to describe natural surfaces, we use the 
regular stochastic fBm process, which is characterized through 
the pdf of its increments [1], [2]. The two-dimensional 
stochastic process z(x, y) describes an isotropic fBm surface if, 
for every x, y, x', y', it satisfies the following relation: 
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where H is the Hurst coefficient (0 < H < 1), related to the 
fractal dimension D (D=3–H), and s is the standard deviation 
of surface increments at unitary distance measured in m(1 - H). 

The power density spectrum of the isotropic two 
dimensional fBm process exhibits an appropriate power-law 
behavior [1], [2]: 

0( )S k S k α−=  (2) 

wherein S0 and � are the spectral parameters [2]. 
From the equation (2) it’s possible to establish that the 

power spectrum holds a linear behavior in a log-log plane, 
allowing the use of linear regression techniques for the 
retrieving of the fractal parameters of the surface from 
measured data. 

Concerning the analytical part of this work, under the 
hypothesis of a small slope regime, the intensity of the 
backscattered signal is related to the partial derivative of the 
surface in the range direction. The fractional Gaussian noise 
(fGn) process is defined as the derivative process of the fBm; 
in our case, considering the lack of derivative of the fBm 
process, we introduce a smoothed version of it, obtained by 
convolving the original surface with an adequate kernel with 
support in [0,�x] x [0,�y]. 

   Therefore, the autocorrelation function of the range 
derivative process zp(x,y) can be evaluated and expressed as a 
finite difference, turning out to be stationary. 

The spectra evaluation of this process is performed on one-
dimensional cuts: 
- for the range cut, the autocorrelation and the power 

density spectrum of the derivative process exactly match 
those relevant to results introduced for a one-
dimensional profile [3]: 
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and, applying  the Wiener-Kintchine theorem: 
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  (4) 

- for the azimuth cut the following expression is obtained 
for the autocorrelation function:
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The evaluation of the power spectrum needs the resort to 
generalized Fourier transform; we finally obtain a closed form 
expression for the power density spectrum of the range 
derivative process for an azimuth cut of the surface: 
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where   is a modified Bessel function of second type of 
fractional order �.

III. IMAGING MODEL

Taking into account the particular geometry of radar 
acquisition, as well as the trigonometric relationships 
connecting the incidence angle to the directional derivatives of 
the surface in the two directions of range and azimuth, 
respectively p and q, we can evaluate the intensity of the 
backscattered field as a function of the aforementioned 
parameters. 

In our case, among the fractal scattering functions, the 
Small Perturbation Method (SPM) model is considered [2]. 
Expanding the SPM expression of the backscattered 
coefficient into a Mc Laurin series – in hypothesis of small 
slopes regime -  the intensity of the backscattered field i(x,y) is 
found to be a linear function only of the partial derivative p, 
whereas the dependence on q is negligible our approximation: 

0 1( , ) ( , ) ( , )i x y a a p x y o p q≅ + +  (7) 

where  and  are the coefficients that depend on the look 
angle of the sensor and on  the fractal parameters of the 
observed surface. 

Therefore, the imaging process can be seen as a system in 
which the input is the surface and the output is the radar image, 
which depends on the partial derivative p(x,y) of the surface, 
as shown in Fig. 1. 

Fig. 1 Block diagram of the linear imaging process.

This allows us to use the results obtained in the previous 
section, assuming that, in this case, the support of the kernel 
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used in the smoothing operation is connected to finite 
resolutions of the sensor that perform a sort of law-pass 
filtering on the surface. In particular we obtain 

�
x=�x, 

�
y=�y, 

where 
�

x and
�

y are the resolution in the azimuth and range 
direction, respectively. 

Hence, we can estimate the power spectral density of the 
image intensity: 
- the image spectrum of a range cut of the surface is: 

2
1( ; ) ( ; )I y p yS k y a S k yΔ = Δ  (8) 

- the image spectrum of an azimuth cut of the surface is: 

2
1( ; ) ( ; )I px xS k y a S k yΔ = Δ  (9) 

Starting from the closed form expressions of the spectra for 
the two cuts of the image, we can implement inversion 
techniques to retrieve the fractal parameters of the 
correspondent observed surface. In particular, it has been 
shown [3] that, at least for sufficiently low frequencies, the 
range cut image spectrum shows a linear behavior in a log-log 
plane, thus providing the possibility to retrieve the fractal 
parameters of the observed surface via linear regressions on 
measured values of the image spectrum. The plots relevant to 
Eqs. (8) and (9) are presented in Fig. 2 and 3, respectively. 

IV. NUMERICAL SETUP

To validate the theoretical results shown in the previous 
section, hereafter we present a numerical framework, based on 
effective direct geometric and electromagnetic models. Note 
that use is made of a fully fractal approach: this is one of the 
key strengths of this work. 

We implemented the complete chain that carries out the 
following steps: starting from fractal parameters arbitrarily 
chosen by the user, the corresponding two-dimensional fractal 
surface is generated by means of the Weierstrass–Mandelbrot 
function (WM) [2], [4]. Let us note that, in this case, we 
worked in the hypothesis that the observed surface shows the 
same fractal parameters at all the scales of interest. Then, we 
evaluated the field backscattered from the synthesized surface, 
using an SPM scattering model [2]. 

First of all, we verified the linear dependence of the 
backscattered signal on the range derivative p of the surface, 
and, vice versa, the lack of such a dependence on the partial 
derivative q, in case o a small-slope regime. For this purpose 
we compared the behaviors of the signal backscattered from 
two arbitrary cuts of the surface, one in range and one in 
azimuth, with the behaviors of the partial derivatives  p(x,y)
and q(x,y) of the selected profiles. 

Then, in order to validate the results obtained in the 
previous section, we estimated the power density spectra of 
the two profiles and those of the corresponding backscattered 
signals. 

Fig. 2 Log – log plots of range cut power density spectra of the observed 
surface (blue) and of the corresponding image (red) ) for H= 0.9, s=0.01 m1-H,  
�

x=
�

y=5 m, a1=10. 

Fig. 3 Log – log plots of azimuth cut power density spectra of the observed 
surface (blue) and of the corresponding image (red) for H= 0.9, s=0.01 m1-H,  �

x=
�

y=5 m, a1=10. 

In Fig.4 and in Fig.5 a comparison between the plots of 
theoretical and estimated spectra of the surface and of the 
image is presented. The considered range of frequencies is
such that the spectra hold a power law behavior (i.e., the 
frequencies are sufficiently low). In Fig. 6 and 7 the 
possibility to set different resolutions for range and azimuth is 
shown. Values of the involved parameters for all the presented 
figures are shown in Table I. 

TABLE I 
PARAMETERS USED IN THE NUMERICAL SETUP. 

H s [m1-H] �x [m] �y [m] a1 

Fig.4-5 0.9 0.01 5 5 1

Fig.6-7 0.9 0.01 10 5 1

Fig.8-9 0.9 1 5 5 1

The good agreement between the behavior of theoretical 
and experimental spectra is due to the specific choice of the 
parameters, both those relative to the surface (H and s) and to 
the system (�x and �y), that ensure the validity of the linear 
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hypothesis on which the theoretical results are based.  If those 
parameters are changed, such a degree of agreement is not 
reached. In Fig. 8 and 9, we show the same plots of Fig. 4 and 
5 for different values of the fractal parameters. In particular, in 
this case the small slope hypothesis for the surface begins not 
to hold any longer and, as can easily be noticed from the 
figures, the fit between the spectrum estimated on the image 
and the theoretical one is not as good as in the previous cases.  

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 
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Fig. 4, 5, 6, 7, 8, 9  Log-log plots of theoretical spectra (broken lines) and estimated ones (full lines) of the profile relevant to range and azimuth cuts of the 
surface (grey) and of the correspondent Image (black). 
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