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Abstract — The fractal geometry is the most appropriate In this paper, we suggest the combined use of a SAR raw
mathematical instrument to describe the irregularity d a natural signal simulator [3] and of appropriate direct and inverse
scene, by means of few effective and reliable parameser models. As far as the models are under concern, th&lfrac
Therefore, fractal concepts can be used to model and identify geometry [2] has the required characteristics to manage the
geometrical changes occurred in areas hit by disasterdn overall problem at hand, because it simply accounts for georletrica
framework employing fractal based models, algorithms anddols  jrreqularity of the observed objects. On the other harBAR

to support ident!fication c_)f natur_al area changes_ dued natural data simulator is an important added-value tool to help
or man-made disasters is considered and applied on sifated  ggiantists and non-expert users in better understanding the
SAR imagery. Such a framework provides an innovative nochanisms underlying SAR image formation and in the

instrument for disaster monitoring applications and hédps to : . o
improve the understanding of the mechanisms underlyingsAR interpretation of this kind of data and phenomena.

image formation. In the last section, a case study is disssed,
showing the potentiality of our framework for flooding detection. Il.  THE PROPOSEDMETHOD

In this Section we present the direct and inverse models
involved in the fractal framework and outline the ratienaf
the proposed method.
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l. INTRODUCTION

Several approaches devoted to define instruments and tods Direct models
for data interpretation were presented in literatureNIdst of 1) The simulator
them are based on empirical analyses of remote sendimg da |, past years, a SAR raw signal simulator was develope

essentially driven by user needs. These analyses aeealign g tested [3], [4]. In this Section we describe britly key
supervised and, to be effective, it is often required tha Lssues for SAR signal simulation.
t

supervisor holds a remarkable level of competence wi
reference both to the remote sensors (and data), athieto Let x andr be the independent space variables, standing
effects of different disasters on the environment. respectively for azimuth and range. By using primed
coordinates for the independent variables of the SAR raw

When a disaster occurs, the scenario of the obseoeatke uﬁignal,S(X', ), this can be expressed as [3]:

dramatically changes, and remote sensing instrumentsdsho
be, at least in principle, able to detect the changtsiscenes.
These natural disasters modify (according to diffendes) the , ,

surface profile from scales smaller than the sermmrage but s(X, r)= J-J- ddeV( X r) g( x= xt-r r), (@)
comparable to the sensor resolution, up to scales cafipdo

the electromagnetic wavelength. ) o
wherey(X,r) is the reflectivity pattern of the scene ayet'—

We focus our attention on SAR sensors. The microwavg ¢'—r;r) the unit impulse response of the SAR system [3], [4].
frequencies employed by radar instruments and the obtaingdajuation of the reflectivity pattern requires a digsian of
geometric resolutions are better tailored to exploit thehe observed surface as well as a model for theiraictien

geometrical features of the area under survey: eadirstated, with the electromagnetic fields radiated by the SARewama
these features exhibits the major changes whenevestalisa [3].

take place. Anyway, the difficulty in interpretationtbfs kind ) i , )

of data often limits their use to expert observers. tig® I\!ote that the con&dergd simulator requires as mpu_tl\'A DE
development of unsupervised or semi-unsupervised tools féglative to the scene of interest, sampled W|th_§1lmben
the extraction of geometrical features from remosspsed —coherent with the considered sensor parameters: dtigerawe
images is a fundamental issue. To develop these tooss it eed to interpolate the available DEM [4].

crucial to introduce appropriate models to understand and2 Fractal surface model

quantitatively describe the physical phenomena that gakiern )
modification of the scenario textures.



Fractal models are widely considered the most apprepriaDiscussion on the retrieving techniques of these parasniste
to quantitatively describe natural surfaces [2]. Fragtaimetry  now then in order.
is able to simply account for the non-stationaritynattural
surfaces, as well as for their self-affinity. Theshused fractal
model is the fractional Brownian motion (fBm) [5]. Tfiam is
defined in terms of the probability density functiontsfheight
increments: a stochastic proceés y) is an fBm surface if, for

every X, y, X, VY, it satisfies the following relation:

For a given surface the structure function (variograftr),
is defined as the mean square increment of elevatiorispoin
placed at distance:

V()=((z(x -4 % 9)) ¥

C 15 'S
Pr{ zZ(x y)- A% Y)<Z} = \/2— H I exp{ ZSZTZHJ q The variogram of an fBm surface can be evaluateerins
S . @ of the parameterkl ands and expressed in logarithmic form
as:

wheret is the distance between the pointg)(and &,y), and
the two parameters that control the fBm behaviour are: logV (1) = 2logs+ 2H logr ©

H : the Hurst coefficient(O<H<1), related to the fractal

dimensionD by means of the relatioB=3-H. which defines in a log-log plane a linear behaviour sitipe

2H, and ordinate intercept 2lag Such dependence leads to
s: the standard deviation, measured ir(llrr’FO], of surface retrieve the fractal parameters with a linear resjoesover the
increments at unitary distance, a real parametetecel an  10g-log plots of measured values\4t) [6].
fBm .chara_lli:lt_%rlstlc length, the topothesy by means of the Note that the application of this technique to SAR images
relations= . someway critical, because it is necessary to takeaiatount
It has been demonstrated [2] that the spectrum of aff€non equal spacing of the data set. In this work wetedt
isotropic fBm process exhibits a power law behaviour. to deal with such a situation.

We use the fBm to model the surface imaged by the SAR
sensor. We utilize the fractal parameters, retrigveth the i lll. THE CASESTUDY )
considered DEM (see Section 11.B), to statisticafijeipolate In the following, we present a case study, showing the
the available DEM. In this way, the interpolated DEM iitser Potentiality of our framework applied to the monitoring of
the fractal behaviour of the original surface [4]. flooding.
3) Fractal scattering model The region of interest is the area of Maratea, Italgpstal

Theoretical [2] and experimental [7] studies suggest thai'€a surrounded by steep mountains: A digital eIevatiqtetno
use of fractal models improve the scattering methadltgesn (DEM) of a 20x 20 Knt area was available for the considered
this paper we used the fBm fractal model for describing théf€a-
surface roughness and the small perturbation method)(8&M As first, we used our DEM as input for the simulatbe t

scattering model for evaluating the reflectivity pattéjn DEM was fractally interpolated and the fractal paranseter

Comparison between simulated and actual SAR data w&Strieved from the available DEM were used in the satmr
presented in [4] with respect to image single point nogedli Process to model the microscopic behaviour of théaser
moments and autocorrelation function, thus assessing tH&€n. the SAR image was obtained from the simulated raw
simulator reliability. In those comparisons the faac S'gnal via standard processing and averaged with a 2 x 10
parameters accounting for the microscopic descriptiothef Multi-look, to obtain an azimuth-ground range approxiryatel
scene were assumed to be constant. In this casetérsien  Sduare pixel (see Figure 1).

we propose allows considering for the microscopic Seadeo The second step was the modification of the originaWiDE
the electromagnetic wavelength scale) the fractarpaters tg simulate a flooding: to obtain this, we created eris/spate
estimated from the available DEM so that in orderdmjgute iy 3 valley. In order to appropriately simulate thesence of
the reflectivity function we use fractal parametersyivey all  \yater in the flooded region, we modified the microscopic

over the scene. roughness and the dielectric parameters as well. Assftliea
microscopic fractal parameters are concerned, in teasa
B. Inverse models affected by the flooding we sét to a typical value for the

In the open literature, many methods for the extractib ~ Water surfaceH{=0.75), and we setto one half of the value in
information from SAR images relative to scenarios sutbfo  the pre-crisis scenario. As for the dielectric chiration,
changes are proposed. The majority of them are based Hif area affected by the flooding is assumed to haielextic
classical magnitude change detection techniques such e@@nstant of 2&, and a conductivity of 1 S/m, which are typical
ratioing and differencing [8]. In this paper we suggest a novelalues for extremely wet terrain; the surrounding area is
approach based on change detection technigues applied assumed to have a dielectric constantegfadhd a conductivity
fractal parameters retrieved from pre- and postsciisiages.  of 10°S/m, typical of terrains with low water content [9].



Figure 1. Simulated SAR image relative to the area of Mardtedy.

In order to define a reference map, we exploited the L8t B He o e e i tite: 330, alse alarm rate:
simulator facilities of simulating the SAR image in almenf s oo, ©) . A :
ma 15.4%); d) Combined tech hit rate: 90.2%sdal £ 0.6%).
speckle. Such an approach allows the definition of theuftd ©): d) Combined technique (hit rate eatlarm rate )
truth” in the SAR image by differencing pre- and post-crisis  Finglly, a change detection approach for the identifinatio
intensity images in absence of speckle, and the creaftitte  of 5 flooded area was presented, by combining the cidssic
reference mask of Figure 2a, where flooded regions arggnal magnitude differencing technique and an innovative
identified by white pixels. fractal technique, based on the differencing of the fractal

Then, we implemented a change detection technique, basg@rameters of the pre- and post-crisis area. Theneltaesult
on the fractal framework presented in the previouticsex In ~ shows that the proposed combined technique leads to a

Figure 2c we show a classification map obtained by thaignificant perfo_rmance_improvement because it explbits
difference between the fractal dimensions of pre- and- postomplementary information extracted by the two methods.

crisis scenes. In Figure 2b the result obtained wittassical
magnitude differencing technique is shown.

Observing Figures 2b and 2c, we note that the distributiol!]
of misclassified pixels is completely different, due te th
different causes that generate it. In fact, the imagesditye
difference is very sensitive to the signal magnitude asng 2]
therefore most of the misclassified pixels are groupethén
layover areas (it is consistent with the fact that Sgighal 3
decorrelation increases in layover areas). Convergely
fractal dimension is more sensitive to gradientshef signal,
therefore most of the noise is gathered in correspmedef the  [4]
grazing angle areas, where the differences betweesidiee
lobes of the layover areas create steep gradienbeveA
considerations suggest to combine the obtained resudtslén
to get a significant improvement on the detection
performances.

[5]

A simple multiplication of the obtained masks and ahfert 6]
low complexity processing consisting in a smoothing aIIowé
deleting most of the misclassified pixels, causing angtro
reduction of the false alarm rate, corresponding to then
classification mask presented in Figure 2d.

IV. CONCLUSIONS 8]

In this paper was shown how fractal concepts can be used
both for describing the formation of the SAR signal &od
extracting information from it. An overall framework sva (ol
presented, providing a procedure whose implementatiorbe
tailored on several disaster monitoring cases.
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