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ABSTRACT 

 
In this paper we investigate the characteristics of the images 
relevant to fractal profiles: in particular, we show that the 
signal backscattered from a fractal profile modeled as a 
fractional Brownian motion (fBm) stochastic process is 
strictly related to the associated fractional Gaussian noise 
(fGn) process. Moreover, we compute in closed form the 
structure function and the spectrum of the image, 
highlighting their key properties and asymptotic behavior. 
An experimental validation of the above mentioned results is 
also provided. 
 

1. INTRODUCTION 
 
A new generation of sensors is providing a great amount of 
data that potentially could give the possibility to extract very 
valuable information. In particular, as far as geophysical 
applications are under concern, retrieving from remote 
sensing data significant parameters relevant to an observed 
surface is of open issue of key importance. The lack of 
adequate mathematical models supporting the retrieving is 
often one of the main problems when facing the 
development of inversion techniques. 
In this paper, we focus on natural landscapes, which are well 
described by fractal geometry [1]. In particular, an fBm ([1], 
[2]) model for the surface is used here to describe the 
observed surface. In the following we deal with the problem 
of the imaging of fractal profiles, i.e. on the evaluation in 
closed analytical form of some key properties of the image 
relevant to a fractal profile. In particular, we will show the 
need for the introduction of a smoothed process to 
circumvent the fbm lack of derivatives [1]. 
In literature the works coping with this issue are sparse and 
not always so accurate. Most of them refer to the early 
works by Pentland ([3], [4]), who studied the optical 
imaging of a fractal surface assuming a lambertian scattering 
behavior. A first evident limitation of the work by Pentland 
is the choice of this particular scattering behavior that is 
surely not adequate in every situation: for example, has been 
demonstrated that at microwave frequencies the scattering 
from natural surfaces is definitely not Lambertian-like [2]. 
Then, in this paper we present a more general approach to 
study the imaging of fractal profiles; this approach do not 
rely on any particular scattering model: results here 

presented apply to any scattering model provided that the 
scattering behavior, in the case of interest, can be considered 
to be linear as a function of the derivative of the profile. 
Hence, in Section 2 we briefly describe Pentland model. 
In this paper we focus on the (Euclidean) one-dimensional 
problem. In fact, the extension to the two-dimensional case 
is not straightforward, involving isotropy and depolarization 
issues. Hence, in Section 3 we briefly describe the fractal 
models used throughout the paper. 
In Section 4, assuming the validity of the Pentland model, 
we present some new relevant results on the characteristics 
of the radar image relevant to a fractal (fBm) profile. In 
particular, we show how the image can be related to the 
fractional Gaussian noise (fGn) process [5] associated with 
the fBm process used to describe the profile of interest. 
Main implications on the extraction techniques of the profile 
fractal parameters from the image are also stressed. 
In Section 5 we provide relevant simulation results, obtained 
by using the elaboration chain recently presented in 
literature by the authors [6]; the simulations fully support the 
analytical conclusions drawn in the previous section. 
 

2. PENTLAND MODEL 
 
In Refs. [3] and [4], Pentland copes with the problem of the 
imaging of fBm surfaces. His approach is based on a linear 
approximation of the radar cross section as a function of the 
partial derivatives of the surface. His work consists in the 
evaluation of the spectrum of the image, assuming a 
particular irradiation diagram (i.e., the Lambertian one) for 
the considered surface. 
We already noted that that the considered scattering 
behavior is not always adequate to describe the 
electromagnetic scattering from the considered surface: for 
instance, theoretical and experimental results ([2], [7]) show 
that at microwave frequencies the scattering from natural 
surfaces is definitely not Lambertian-like. 
However, the main weakness of Pentland analysis is in the 
fact that he formally works with the partial derivatives of the 
surface, despite the non-differentiability of the mathematical 
fBm. As a matter of fact, the features of the scene relevant to 
spatial scales much smaller than the wavelength one do not 
contribute to the scattering phenomenon: in this sense, the 
electromagnetic incident field acts as a low-pass filter on the 
surface. Furthermore, scales smaller and greater than the 
resolution one contribute in different ways to the formation 



of the image: anyway, this crucial issue deserve the 
maximum attention and is then fully clarified in the 
following sections. Note that this issue is strongly 
underestimated in all the existing literature on the subject 
[8], [9]. 

 
3. FRACTAL MODELS 

 
In this paper we use an fBm stochastic process to model the 
surface. The fBm is defined in terms of the probability 
density function of its height increments. A stochastic 
process z(x) is an fBm profile if, for every x and x' it satisfies 
the following relation: 
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where 'x xτ = − , H is the Hurst coefficient (0 < H < 1), 
related to the fractal dimension D by means of the relation D 
= 2 – H, and s [m(1 - H)] is the standard deviation of the 
profile increments at unitary distance, related to a 
characteristic length of the surface, the topothesy T, by 
means of the relation (1 )Hs T −= .   
The structure function (whose plot is termed the variogram), 
V(τ), is defined as the mean square increment of elevation 
points placed at distance τ and for an fBm profile can be 
evaluated in terms of the parameters H and s as: 
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It exhibits in a log – log plane a linear behavior with slope 
2H, and intercept with the vertical axis in 2log s [1], [2]. 
It has been demonstrated ([1], [2]) that the power density 
spectrum S(k) of an isotropic fBm one-dimensional process 
exhibits appropriate power-law behaviors provided by: 
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Γ(.) being the Gamma function. Note that also the fBm 
spectral dependence (3.5) provides a linear plot in a log(S) – 
log(k) plane. 
In the previous section we have shown that to employ 
Pentland approach we need an expression for the derivative 
of the surface. The fractional Gaussian noise (fGn) is 
defined as the derivative process of the fBm: the 
mathematical fBm is strictly non-differentiable, implying 
that its derivative process has to be handled with care. The 
most elementary way to deal with the fBm lack of derivative 

is to smooth the original process, discarding the high 
frequency effects responsible for the non-differentiability of 
the fBm [5]. Hence, starting from the standard fBm process 
z(x), we build the random function zϕ(x): 
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in which ε > 0. 
Thanks to our particular choice we obtain a simple 
expression for the derivative of the smoothed process and 
we can easily evaluate its autocorrelation function: 
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In the limit of τ ε>>  we obtain: 
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We can easily evaluate also the structure function of this 
process, being it a stationary one: 
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And in the limit of τ ε>> : 
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Being this process stationary, we can evaluate its spectrum 
by means of the Wiener-Kintchine theorem and express it as: 
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In the limit of 1kε << , Eq. (3.11) takes the relevant form: 
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From Eq. (3.13) follows that the fGn process is not a fractal 
process, because [0,1]H ∉ ; but this process presents the 
interesting property of being an asymptotically power law 
process with exponent 1 – 2H. 
It is worth noting that our asymptotic results are equal to 
those obtained by Pentland, due to the fact that he worked 
with ε = 0. 
 

4. FRACTAL MODEL FOR THE IMAGE 
 
The imaging process can be seen as a system whose input is 
the surface profile, and whose output is the radar image 
which is proportional, to the first order, to the derivative of 
the surface profile, as we have seen in Section 2. Hence, in 
the following we assume a first order series expansion of the 
image for small values of the derivative of the considered 
profile. Combining the results achieved in the previous 
section and setting ε = ∆x, where ∆x is the system resolution, 
we can compute the spectrum and structure function of the 
image as: 
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where a1 is the coefficient relevant to the first order term in 
the above mentioned image series expansion. 
It is evident that fractal parameters retrieval based on a 
linear regression on the log-log variogram is no longer 
possible. Conversely, in the asymptotic limit it is still 
possible to use the image to estimate these parameters by a 
linear regression on the log- log plot of the spectrum. 
 

5. EXPERIMENTAL RESULTS 
 
In this Section we provide an experimental validation of our 
analytical results. This validation is obtained availing of the 
processing chain recently presented by the authors [6]. 
Accordingly, we generated a fractal profile of known fractal 
dimension and imaged it through an SPM scattering model 
[2]. Hence we evaluated the power spectrum of the received 
signal, comparing it to the theoretical behavior (4.1). We 
had to pay particular care in estimating the spectra both of 
the surface and of its image: we used a Capon filter to 
circumvent leakage and high variance problems [10]. The 
obtained results are presented in Fig. 1. 
 

 
Fig. 1 Comparison between theoretical spectra of the surface (long 
dashed) and of the image (solid) and experimental ones (dotted and 

dash dot dot, respectively): H=0.95; s=0.01 m1 - H; ∆x=5 m. 
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