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ABSTRACT

In this paper we present a technique for the analysis of low in-
tensity patches on SAR oceanic amplitude images, in particu-
lar oil slicks generated by moving ships. Oil presence on the
ocean surface causes a damping effect of the ocean spectrum
determining dark spots on observed SAR images accordingly
to the Bragg theory. Nevertheless, the use of SAR data is still
limited because similar dark areas in the images, said look-
alikes, can be due to several other phenomena: lack of wind,
natural oil, plankton and so on. So far, this ambiguity lim-
ited the development of automatic oil detection procedures.
Developed algorithm is based on multifractal analysis of the
edges of dark areas (here called Regions Of Interest, ROIs)
and can be used to identify and to distinguish oil slicks from
look-alikes. The core idea is that different physical-chemical
interactions of oil slicks and look-alikes with the sea sur-
face imply different fractal features for the edges of the ROIs
on the acquired images. Accordingly, proposed approach is
based on multifractal analysis of ROIs’ edges, which consists
in the estimation of their multifractal spectra and the “disper-
sion area” of these spectra. Proposed procedure is tested on
simulated SAR images; methods and results are extensively
discussed, with a focus on parameters and methods to be used
for a proper box counting algorithm. First results seem to in-
dicate that the observation of multifractal spectra is useful in
order to distinguish between oil slicks generated by moving
ships from look alikes, even when these phenomena have the
same degree of irregularity thus an estimation of the classical
fractal dimension is not suitable for discrimination purposes.
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1. INTRODUCTION

Synthetic Aperture Radar (SAR) systems offer incredible ca-
pability for earth observation; in particular for sea monitor-
ing it can fill the lack of in-situ pollution surveys of seas
and coasts, offering the ability to monitor oil slicks occur-
rences. In ocean environment SAR signal intensity is propor-
tional to the ocean spectrum at spatial frequencies according
to the Bragg theory; oil presence causes a damping effect of
the ocean spectrum determining dark spots on observed SAR
images. Nevertheless, the use of SAR data is still limited be-

cause similar dark areas in the images, said look-alikes, can
be due to several other phenomena, as lack of wind, natural
oil, plankton and so on. So far, this ambiguity limited the
development of automatic oil detection procedures.

In this framework, the fractal geometry is widely recog-
nized as the most appropriate instrument for the description
of natural shapes. In this paper we deal with multifractals, a
generalization of fractals which present different fractal be-
haviour at different observation scales [1]. Hence, while frac-
tal processes can be described by a single number, the fractal
dimension, multifractals present a continuous distribution of
fractal dimensions and are described more effectively through
some functions like multifractal spectrum [2]. The introduc-
tion of multifractals is convenient for the analysis of oil slicks
on the sea surface: in fact, different physical-chemical inter-
actions of oil slicks and look-alikes with the sea surface imply
different multifractal features of the edges of the dark spots
on the acquired images (in the following called Regions Of
Interest, ROIs). In particular, the shape of the oil slicks due to
illegal tank-cleaning from moving ships (at least those whose
generation is close to the time of observation) present fea-
tures determined by concurrent turbulent phenomena acting
at different scales of magnitude, i.e. ship movement (that de-
termines typical elongated shape of related oil slick), sea tur-
bulence due to ship’s engines and natural sea turbulence, thus
implying a multifractal feature of ROIs’ edges. Conversely,
look-alikes due to lack of wind present a shape that is related
to the wind turbulent behavior, implying a monofractal fea-
ture of ROIs’ edges. Moreover, oil slicks not generated by
moving ships or slicks staying on the sea surface for a long
time, present a shape dictated essentially by sea turbulence
only, implying a monofractal feature of ROIs’ edges, as well.

In this work is proposed the use of multifractal analysis
of oil slicks edges in order to identify oil slicks due to illegal
tank-cleaning and to distinguish them from look-alikes. Pro-
posed procedure is based on the estimation of the multifractal
spectra and the definition of the “dispersion area” parameter.
The procedure was tested on simulated SAR images, obtained
by a SAR Signal Simulator using a combination of deter-
ministic and stochastic models (the latter based on fractional
Brownian motion, fBm) in order to describe the contour of oil
slicks and look-alikes accounting the ocean description.[3].

Results and an extensive discussion on the methods used
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for the elaboration process is given. In particular, the box-
counting method is adopted for the evaluation of multifrac-
tal parameters and a study on the choice of boxes dimension
range is also performed, emphasizing the critical role of this
processing step.

2. GEOMETRICAL AND PHYSICAL MODELS

Fractal geometry is widely recognized as the most appropri-
ate instrument to model and analyse natural shapes. Fractals
allow the description of complex natural objects, both in the
one-dimensional and multi-dimensional cases (e.g., path of
a river, contour of islands or lakes, natural surfaces) using a
minimum number of independent parameters.

In order to generate slicks with fractal shapes on simu-
lated SAR data, the most appropriate function is the frac-
tional Brownian motion (fBm), a stochastic process described
in terms of the pdf of its increments [1].

We synthesized fBm processes by means of the two-
dimensional Weierstrass-Mandelbrot (WM) function, which
is a superposition of sinusoidal tones with random ampli-
tude, direction and phase, scaled through the Hurst coeffi-
cient 0 < H < 1 related to the fractal dimension Dyy s
through Dy = 3 — H; a cut of the WM function at
fixed level provides a curve with fractal dimension equal to
Djrac = Dway — 1. By this way we effectively obtainded
dark spots with fixed fractal dimension used to model the
behavior of some look alikes or man-made slicks (whose
acquisition is perfomed a long time after their generation).
Conversely, to model the typical elongated shape of the slicks
due to illegal tank-cleaning, we superimposed a bidimen-
sional Gaussian function to the WM function with a ratio
between the standard deviations in the two orthogonal di-
rections of one order of magnitude. In this case extracted
curves present different fractal behaviors at different spatial
scales and a multifractal description is necessary in order to
adequately describe this type of shapes.

An estimation of the fractal dimension of the ROIs was
computed using a box counting technique (as detailed in [1])
performed by covering fractal set with non-overlapping boxes
such that

Ny(6) ~ 6~ Pre 2.1)

where N, () is the number of non-empty boxes of size § and
Dpc is the box counting dimension obtained by a linear re-
gression.

Counting the number of ROI’s pixel belonging to each
box allowed us to compute the moments of order q
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where p; (0) is the percentage of pixels belonging to the frac-
tal edge, ¢ is the order of the moment. Generalized fractal

dimension is defined as follow

L log[x(g,9)]
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and it’s a monotonic decreasing function of ¢, presenting an
horizontal asymptote for ¢ — oo while for monofractal sets
it’s constant with ¢. The box counting dimension is a particu-
lar case of D(q): D(0) = Dpc.

Now let’s define the local Holder exponent
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It can be shown that for a simple monofractal it holds p;(8) ~
0% hence « equals the standard fractal dimension. For a mul-
tifractal, indeed, ov may vary from point to point and is a lo-
cal quantity. It’s possible to determine the number N, () of
boxes having similar local scaling behaviour characterized by
the same index «; assuming self-similar scaling, the expres-
sion

Ne(6) oc 6=/ (2.5)
defines multifractal singularity spectrum f(«), as the frac-
tal dimension of the set of index «.

In other words a multifractal set can be divided into sub-
sets of index «, whose fractal dimension is equal to f(«). For
a multifractal set the graph of f(«) is convex, with a maxi-
mum for ¢ = 0 where it assumes a value equal to Dpc. For
monofractal sets the multifractal spectrum degenerates into a
point due to the fact that o assumes a unique value. Thus
analysing multifractal spectra of ROIs” edges we can distin-
guish oil slicks due to illegal tank-cleaning from look-alikes.

3. RESULTS

(b)

Fig. 3.1: Multifractal spectra: (a) look-alike monofractal
contour, (b) oil slick multifractal contour



Multifractal ~ Monofractal
Order of moment g€ 0,10]C N
Drac 1.3 1.3
Dpc 1.22 1.30
Ag 41.70-107*  1.65-1073

Table 1: Multifractal analisys

In figure (3.1) is shown one of the outputs of our analysis;
it shows multifractal spectra of simulated look-alike and oil
slick. It’s clear that in the monofractal case the multifractal
spectrum is concentrated around a point: in fact, as mentioned
above, it should ideally be a single point with a value equal
to the box counting dimension. In the multifractal case the
spectrum is much more dispersed. In order to measure this
dispertion, was defined dispersion area Ay as the product of
the standard deviations of the functions f(-) and «(+):

(3.1)

As shown in table (1) computed values of A, in the two
cases present a ratio greater than one order of magnitude. This
parameter should be used for automatic classification pur-
poses. Both simulated images have fractal dimension D4
set to 1.3, hence a proper classification is possible even when
they have contours with the same fractal dimension.

Boxes dimensions § used for the implementation of the
partition function 2.2 play a central role in the calculus; we
observed a great dependence of outputs from box dimensions
range used. This range must obviously be limited and in order
to achieve best results we realized that minimum and maxi-
mum box dimension must be properly set: the former must
be almost one order of magnitude greater than the minimum
dimension of the profile under test (which is the pixel, at least
when no interpolation or re-sampling has been performed on
the ROI); the latter must be one order of magnitude smaller
than ROI’s diameter. Whenever box dimensioning is done ac-
cording to these simple rules, the number of boxes used for
the analysis doesn’t represent a key parameter.

Due to great dependence from the number of computed
box Nj(8), that could vary due to different reasons, box
counting technique could fail, resulting in an incorrect frac-
tal dimension estimation even when computed over different
multifractal contours obtained from the same fractal surface.
Otherwise, partition funtion, and hence multifractal spectra,
is less dependent from this problem since they are global
indexes of the pixel distribution over the set. In fact x(g, d)
was obtained from (2.2) by setting

i(0) = m],v(:S)

where m; is the number of contour pixels belonging to the i-
th §-box and N, is the total number of contour pixels. So the
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standard box counting estimation is not an appropriate tech-
nique for classification purposes while multifractal analasys
is stable even when the simple box counting estimation fail.

Another key parameter of the multifractal analysis is the
order of moments ¢: in the proposed case study was set ¢ €
[0, 10] and only integer values were considered. We observed
a significant dispersion of the multifractal spectra for ¢ > 5;
otherwise, when the upper limit for ¢ is lower than 5 the dis-
persion area of the multifractal spectrum (relevant to the mul-
tifractal ROIs’ edge) significantly decreases, thus implying an
increased probability of missing oil slicks identification. Mul-
tifractal spectrum shown in fig 3.1a haven’t its typical convex
shape becouse it was computed using only positive values for
¢; results obtained for ¢ < 0, in fact, were not trustworthy due
to a well-known problem of this type of analysis [4].

4. CONCLUSIONS

In this paper we described the rationale of multifractal anal-
ysis applied to the analysis of dark spots contour on SAR
images relevant to oceanic scenes in order to distinguish oil
slicks due to illegal tank cleaning from look-alikes. The po-
tentiality of the multifractal spectrum as a slick classifier were
highlighted and tested on simulated images. Was defined the
dispersion area parameter to be used as a compact segmenta-
tion index in an automatic classification system. Finally, the
role of the multifractal analysis parameters and the criteria for
their optimum choice were investigated.
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