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ABSTRACT

In this paper we present a technique for the analysis of low in-
tensity patches on SAR oceanic amplitude images, in particu-
lar oil slicks generated by moving ships. Oil presence on the
ocean surface causes a damping effect of the ocean spectrum
determining dark spots on observed SAR images accordingly
to the Bragg theory. Nevertheless, the use of SAR data is still
limited because similar dark areas in the images, said look-
alikes, can be due to several other phenomena: lack of wind,
natural oil, plankton and so on. So far, this ambiguity lim-
ited the development of automatic oil detection procedures.
Developed algorithm is based on multifractal analysis of the
edges of dark areas (here called Regions Of Interest, ROIs)
and can be used to identify and to distinguish oil slicks from
look-alikes. The core idea is that different physical-chemical
interactions of oil slicks and look-alikes with the sea sur-
face imply different fractal features for the edges of the ROIs
on the acquired images. Accordingly, proposed approach is
based on multifractal analysis of ROIs’ edges, which consists
in the estimation of their multifractal spectra and the “disper-
sion area” of these spectra. Proposed procedure is tested on
simulated SAR images; methods and results are extensively
discussed, with a focus on parameters and methods to be used
for a proper box counting algorithm. First results seem to in-
dicate that the observation of multifractal spectra is useful in
order to distinguish between oil slicks generated by moving
ships from look alikes, even when these phenomena have the
same degree of irregularity thus an estimation of the classical
fractal dimension is not suitable for discrimination purposes.
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1. INTRODUCTION

Synthetic Aperture Radar (SAR) systems offer incredible ca-
pability for earth observation; in particular for sea monitor-
ing it can fill the lack of in-situ pollution surveys of seas
and coasts, offering the ability to monitor oil slicks occur-
rences. In ocean environment SAR signal intensity is propor-
tional to the ocean spectrum at spatial frequencies according
to the Bragg theory; oil presence causes a damping effect of
the ocean spectrum determining dark spots on observed SAR
images. Nevertheless, the use of SAR data is still limited be-

cause similar dark areas in the images, said look-alikes, can
be due to several other phenomena, as lack of wind, natural
oil, plankton and so on. So far, this ambiguity limited the
development of automatic oil detection procedures.

In this framework, the fractal geometry is widely recog-
nized as the most appropriate instrument for the description
of natural shapes. In this paper we deal with multifractals, a
generalization of fractals which present different fractal be-
haviour at different observation scales [1]. Hence, while frac-
tal processes can be described by a single number, the fractal
dimension, multifractals present a continuous distribution of
fractal dimensions and are described more effectively through
some functions like multifractal spectrum [2]. The introduc-
tion of multifractals is convenient for the analysis of oil slicks
on the sea surface: in fact, different physical-chemical inter-
actions of oil slicks and look-alikes with the sea surface imply
different multifractal features of the edges of the dark spots
on the acquired images (in the following called Regions Of
Interest, ROIs). In particular, the shape of the oil slicks due to
illegal tank-cleaning from moving ships (at least those whose
generation is close to the time of observation) present fea-
tures determined by concurrent turbulent phenomena acting
at different scales of magnitude, i.e. ship movement (that de-
termines typical elongated shape of related oil slick), sea tur-
bulence due to ship’s engines and natural sea turbulence, thus
implying a multifractal feature of ROIs’ edges. Conversely,
look-alikes due to lack of wind present a shape that is related
to the wind turbulent behavior, implying a monofractal fea-
ture of ROIs’ edges. Moreover, oil slicks not generated by
moving ships or slicks staying on the sea surface for a long
time, present a shape dictated essentially by sea turbulence
only, implying a monofractal feature of ROIs’ edges, as well.

In this work is proposed the use of multifractal analysis
of oil slicks edges in order to identify oil slicks due to illegal
tank-cleaning and to distinguish them from look-alikes. Pro-
posed procedure is based on the estimation of the multifractal
spectra and the definition of the “dispersion area” parameter.
The procedure was tested on simulated SAR images, obtained
by a SAR Signal Simulator using a combination of deter-
ministic and stochastic models (the latter based on fractional
Brownian motion, fBm) in order to describe the contour of oil
slicks and look-alikes accounting the ocean description.[3].

Results and an extensive discussion on the methods used

for the elaboration process is given. In particular, the box-
counting method is adopted for the evaluation of multifrac-
tal parameters and a study on the choice of boxes dimension
range is also performed, emphasizing the critical role of this
processing step.

2. GEOMETRICAL AND PHYSICAL MODELS

Fractal geometry is widely recognized as the most appropri-
ate instrument to model and analyse natural shapes. Fractals
allow the description of complex natural objects, both in the
one-dimensional and multi-dimensional cases (e.g., path of
a river, contour of islands or lakes, natural surfaces) using a
minimum number of independent parameters.

In order to generate slicks with fractal shapes on simu-
lated SAR data, the most appropriate function is the frac-
tional Brownian motion (fBm), a stochastic process described
in terms of the pdf of its increments [1].

We synthesized fBm processes by means of the two-
dimensional Weierstrass-Mandelbrot (WM) function, which
is a superposition of sinusoidal tones with random ampli-
tude, direction and phase, scaled through the Hurst coeffi-
cient 0 < H < 1 related to the fractal dimension DWM

through DWM = 3 − H; a cut of the WM function at
fixed level provides a curve with fractal dimension equal to
Dfrac = DWM − 1. By this way we effectively obtainded
dark spots with fixed fractal dimension used to model the
behavior of some look alikes or man-made slicks (whose
acquisition is perfomed a long time after their generation).
Conversely, to model the typical elongated shape of the slicks
due to illegal tank-cleaning, we superimposed a bidimen-
sional Gaussian function to the WM function with a ratio
between the standard deviations in the two orthogonal di-
rections of one order of magnitude. In this case extracted
curves present different fractal behaviors at different spatial
scales and a multifractal description is necessary in order to
adequately describe this type of shapes.

An estimation of the fractal dimension of the ROIs was
computed using a box counting technique (as detailed in [1])
performed by covering fractal set with non-overlapping boxes
such that

Nb(δ) ∼ δ−DBC (2.1)

where Nb(δ) is the number of non-empty boxes of size δ and
DBC is the box counting dimension obtained by a linear re-
gression.

Counting the number of ROI’s pixel belonging to each
box allowed us to compute the moments of order q

χ(q, δ) =

Nb(δ)∑
i=1

µi (δ)
q (2.2)

where µi (δ) is the percentage of pixels belonging to the frac-
tal edge, q is the order of the moment. Generalized fractal

dimension is defined as follow

D(q) =
1

q − 1
lim
δ→0

log [χ(q, δ)]

log(δ)
(2.3)

and it’s a monotonic decreasing function of q, presenting an
horizontal asymptote for q → ∞ while for monofractal sets
it’s constant with q. The box counting dimension is a particu-
lar case of D(q): D(0) = DBC .

Now let’s define the local Holder exponent

α(q) = d
dq (q − 1) lim

δ→0

log [χ(q, δ)]

log(δ)
(2.4)

It can be shown that for a simple monofractal it holds µi(δ) ∼
δα hence α equals the standard fractal dimension. For a mul-
tifractal, indeed, α may vary from point to point and is a lo-
cal quantity. It’s possible to determine the number Nα(δ) of
boxes having similar local scaling behaviour characterized by
the same index α; assuming self-similar scaling, the expres-
sion

Nα(δ) ∝ δ−f(α) (2.5)

defines multifractal singularity spectrum f(α), as the frac-
tal dimension of the set of index α.

In other words a multifractal set can be divided into sub-
sets of index α, whose fractal dimension is equal to f(α). For
a multifractal set the graph of f(α) is convex, with a maxi-
mum for q = 0 where it assumes a value equal to DBC . For
monofractal sets the multifractal spectrum degenerates into a
point due to the fact that α assumes a unique value. Thus
analysing multifractal spectra of ROIs’ edges we can distin-
guish oil slicks due to illegal tank-cleaning from look-alikes.

3. RESULTS

(a) (b)

Fig. 3.1: Multifractal spectra: (a) look-alike monofractal
contour, (b) oil slick multifractal contour
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(a) (b)

Fig. 3.1: Multifractal spectra: (a) look-alike monofractal
contour, (b) oil slick multifractal contour
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Multifractal Monofractal

Order of moment q ∈ [0, 10] ⊂ N

Dfrac 1.3 1.3

DBC 1.22 1.30

Ad 41.70 · 10−3 1.65 · 10−3

Table 1: Multifractal analisys

In figure (3.1) is shown one of the outputs of our analysis;
it shows multifractal spectra of simulated look-alike and oil
slick. It’s clear that in the monofractal case the multifractal
spectrum is concentrated around a point: in fact, as mentioned
above, it should ideally be a single point with a value equal
to the box counting dimension. In the multifractal case the
spectrum is much more dispersed. In order to measure this
dispertion, was defined dispersion area Ad as the product of
the standard deviations of the functions f(·) and α(·):

Ad = σf · σα (3.1)

As shown in table (1) computed values of Ad in the two
cases present a ratio greater than one order of magnitude. This
parameter should be used for automatic classification pur-
poses. Both simulated images have fractal dimension Dfrac

set to 1.3, hence a proper classification is possible even when
they have contours with the same fractal dimension.

Boxes dimensions δ used for the implementation of the
partition function 2.2 play a central role in the calculus; we
observed a great dependence of outputs from box dimensions
range used. This range must obviously be limited and in order
to achieve best results we realized that minimum and maxi-
mum box dimension must be properly set: the former must
be almost one order of magnitude greater than the minimum
dimension of the profile under test (which is the pixel, at least
when no interpolation or re-sampling has been performed on
the ROI); the latter must be one order of magnitude smaller
than ROI’s diameter. Whenever box dimensioning is done ac-
cording to these simple rules, the number of boxes used for
the analysis doesn’t represent a key parameter.

Due to great dependence from the number of computed
box Nb(δ), that could vary due to different reasons, box
counting technique could fail, resulting in an incorrect frac-
tal dimension estimation even when computed over different
multifractal contours obtained from the same fractal surface.
Otherwise, partition funtion, and hence multifractal spectra,
is less dependent from this problem since they are global
indexes of the pixel distribution over the set. In fact χ(q, δ)
was obtained from (2.2) by setting

µi(δ) =
mi(δ)

Nc
(3.2)

where mi is the number of contour pixels belonging to the i-
th δ-box and Nc is the total number of contour pixels. So the

standard box counting estimation is not an appropriate tech-
nique for classification purposes while multifractal analasys
is stable even when the simple box counting estimation fail.

Another key parameter of the multifractal analysis is the
order of moments q: in the proposed case study was set q ∈
[0, 10] and only integer values were considered. We observed
a significant dispersion of the multifractal spectra for q > 5;
otherwise, when the upper limit for q is lower than 5 the dis-
persion area of the multifractal spectrum (relevant to the mul-
tifractal ROIs’ edge) significantly decreases, thus implying an
increased probability of missing oil slicks identification. Mul-
tifractal spectrum shown in fig 3.1a haven’t its typical convex
shape becouse it was computed using only positive values for
q; results obtained for q < 0, in fact, were not trustworthy due
to a well-known problem of this type of analysis [4].

4. CONCLUSIONS

In this paper we described the rationale of multifractal anal-
ysis applied to the analysis of dark spots contour on SAR
images relevant to oceanic scenes in order to distinguish oil
slicks due to illegal tank cleaning from look-alikes. The po-
tentiality of the multifractal spectrum as a slick classifier were
highlighted and tested on simulated images. Was defined the
dispersion area parameter to be used as a compact segmenta-
tion index in an automatic classification system. Finally, the
role of the multifractal analysis parameters and the criteria for
their optimum choice were investigated.
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ABSTRACT 

 
In this paper, the wind speed retrieval is carried out over X-
band COSMO-SkyMed© Synthetic Aperture Radar (SAR) 
data by means of the SAR wind speed algorithm based on 
the Azimuth cut-off procedure. Experimental results are 
successfully compared with the ground truth provided by 
QuikSCAT Scatterometer data, demonstrating the soundness 
of the proposed approach and the suitability of COSMO-
SkyMed© SAR data for wind speed estimation purposes. 
 

1. INTRODUCTION 
 
COSMO-SkyMed©, commissioned and funded by both the 
Italian Space Agency (ASI) and the Italian Ministry of 
Defense (MoD), is one of the most important space-borne 
missions in the context of Earth Observation (EO) [1]. It 
consists of four Low Earth Orbit (LEO) mid-sized satellites 
each one equipped with an X-band microwave, high-
resolution multi-mode Synthetic Aperture Radar (SAR) able 
to provide both day- and night-time high-resolution 
normalized radar cross section (NRCS) measurements of the 
observed scene, with a very short revisit time (<12h) [1]. 
The multi-mode SAR sensor mounted on board of each 
satellite can operate in different acquisition modes (i.e. 
Spotlight, StripMap and ScanSAR) and it allows providing 
both a ground coverage, ranging from hundred to tenths 
kilometer scales, and a spatial resolution up to few meters 
[1]. As a matter of fact, there is an increasing interest in 
investigating the capabilities of COSMO-SkyMed© for both 
oceanographic applications and the retrieval of interesting 
geophysical parameters, such as the wind speed at sea.  
The high-spatial and temporal resolution provided by each 
SAR sensor, together with both the ground coverage and the 
short revisit-time provided by means of the SAR 
constellation, make COSMO-SkyMed© constellation a key 
alternative source of wind information able to integrate 
classical wind speed estimation techniques, such as 
meteorological models, in situ observations and 
scatterometers [1-2]. Classical SAR wind speed retrieval 
approaches are based on the use of a tailored Geophysical 
Model Function (GMF), which relates SAR NRCS 
measurements of the rough sea surface to the local wind 

field [2]. This approach is able to retrieve the wind speed at 
sea once that both well-calibrated SAR NRCSs and the a 
priori wind direction information are available [2]. The 
latter can be provided from either external information (e.g. 
meteorological model, buoys measurements, etc.) or SAR-
based wind direction retrieval techniques (e.g. spectral-, 
Wavelet- and Gradient-based approaches) [2]. Recently, a 
SAR wind speed algorithm based on the Azimuth cut-off 
procedure has been developed, which is able to provide 
accurate wind speed retrievals at sea based on the 
relationship between the local wind field and the spectral 
properties of SAR imagery [3-4]. Although this approach 
has been tested on C-band ERS SAR data only, it has the 
great advantage to not require both the a priori wind 
direction information and the calibration accuracy that 
characterize GMF-based SAR wind speed retrieval methods. 
In this paper, the SAR-based wind speed estimation is 
accomplished over a large data set of X-band COSMO-
SkyMed© SAR data, gathered in the Mediterranean Sea on 
2009 and acquired in Level 1B Detected Ground Multi-look 
(DGM) StripMap HImage mode. The wind speed retrieval is 
carried out by means of the SAR wind speed algorithm 
based on the Azimuth cut-off procedure, which has been 
properly extended to the X-band case and therefore 
calibrated over StripMap HImage COSMO-SkyMed© SAR 
data. Experimental results are properly compared with the 
ground truth provided by timely and spatially co-located 
25km×25km QuikSCAT Scatterometer data. 
The paper is organized as follows: in Section 2, the 
proposed approach is briefly provided. Experimental results 
relevant to X-band SAR wind speed estimation based on the 
Azimuth cut-off procedure are described and conclusion are 
finally drawn in Section 4.  
 

2. THEORETICAL BACKGROUND 
 
In this section, the theoretical background of the SAR wind 
speed algorithm based on the Azimuth cut-off procedure is 
described and detailed for X-band SAR data.  
The physical rationale at the basis of the Azimuth cut-off 
procedure lies on the azimuthal Doppler mis-registration, 
which affects the sea surface SAR imaging due to the orbital 
motion of sea surface waves [3-4]. This effect can be simply 


