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Abstract — The fractal geometry proved to be the most 
appropriate mathematical instrument in describing natural 
scenes, by means of few effective and reliable geophysical 
parameters. In this paper we use fractal concepts to model and to 
identify geometrical changes occurred in areas hit by disasters. 
We present an overall framework employing fractal based 
models, algorithms and tools to support identification of natural 
area changes due to natural or man-made disasters. The 
proposed framework includes a SAR raw signal simulator, which 
is of key importance to improve the comprehension of the 
mechanisms underlying SAR image formation. In addition, we 
consider, as a case study, the simulation and detection of lava 
flows in a volcanic scenario. The potentialities of our technique 
for the discrimination between different types of lava are 
presented and discussed. 

Keywords – Synthetic Aperture Radar, Fractals, Disaster 
Monitoring 

I.  INTRODUCTION 
Natural disasters can be catastrophic for human beings, 

especially if a reliable response is not quickly organized. 
Remote sensing tools are extremely important for the definition 
of such a response because they provide a huge amount of data 
relevant to almost any area of the Earth. 

Several approaches devoted to define instruments and tools 
for data interpretation were presented in literature [1]. Most of 
them are based on empirical analyses of remote sensing data, 
essentially driven by user needs. These analyses are generally 
supervised and, to be effective, it is often required that the 
supervisor holds a remarkable level of competence with 
reference both to the sensors, and to the effects of different 
disasters on the environment. 

In this paper, we focus our attention on SAR sensors, 
because the microwave frequencies employed by radar 
instruments and the obtained geometric resolutions are better 
tailored to exploit the geometrical features of the area under 
survey. Furthermore, SAR all-weather, all-time characteristics 
are of fundamental importance for disaster observation 
purposes. Anyway, the difficulty in interpretation of this kind 
of data often limits their use to expert observers. 

When a disaster occurs, the observed scene dramatically 
changes, and remote sensing instruments should be, at least in 

principle, able to detect these changes. The natural disasters 
modify (according to different rules) the surface profile from 
scales smaller than the sensor coverage but comparable to the 
sensor resolution, up to scales comparable to the 
electromagnetic wavelength. 

To develop unsupervised or semi-unsupervised tools for the 
extraction of added value information from remotely sensed 
images it is crucial to introduce appropriate models to 
understand and quantitatively describe the physical phenomena 
governing the modification of the scenario textures. 

We suggest the combined use of direct and inverse fractal 
models. In this paper, we present an overall framework in 
which these element are combined into an appropriate 
elaboration chain. 

As for the direct models, the fractal geometry [2] has the 
required characteristics to manage the problem at hand, 
because it simply accounts for the complexity of the observed 
objects, by means of few effective geophysical parameters. In 
Section II, we outline our framework and present the above 
mentioned direct and inverse models. Note that a more detailed 
discussion on the algorithms and tools used in our elaboration 
chain can be found in [10]. 

As far as the inverse models are under concern, they are 
used to retrieve SAR image fractal parameters and for change 
detection purposes. In particular, the comparison between pre- 
and post- crisis SAR image fractal parameters and the 
determination of the fractal dimension of the contour of the 
region of interest provide value added information for change 
detection purposes, as detailed in Section III. 

In Section IV, we test the fractal framework in a simulated 
disaster scenario. In particular, we simulate lava flows with 
fractal contour and show the performance of our fractal change 
detection algorithm. In addition, an analysis of lava flow 
borders, performed on SAR simulated images and aimed at 
discriminating different types of lava, is presented. 

II. DIRECT MODELS 
In this Section we present the fractal framework and we 

outline the rationale of the proposed method. 
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A. SAR simulation 
In past years, a SAR raw signal simulator was developed 

and tested [3], [4]. A SAR data simulator is an important tool 
to help scientists in better understanding the mechanisms 
underlying SAR image formation and in the interpretation of 
SAR data textures and of their modifications. 

In the following we describe briefly the key issues for SAR 
signal simulation. Let x and r be the independent space 
variables, standing respectively for azimuth and range. By 
using primed coordinates for the independent variables of the 
SAR raw signal, s(x’,r’), this can be expressed as [3]: 

 ( ) ( )( , ) , , ;s x r dxdr x r g x x r r rγ′ ′ ′ ′= − −∫∫ , (1) 

where γ(x,r) is the reflectivity pattern of the scene and 
g(x’–x,r’–r;r) the unit impulse response of the SAR system [3], 
[4]. Evaluation of the reflectivity pattern requires a description 
of the observed surface as well as a model for their interaction 
with the electromagnetic fields radiated by the SAR antenna 
[3]. In this paper we use the models presented in the next two 
paragraphs.  

B. Fractal surface model 
Fractal models are widely considered the most appropriate 

to quantitatively describe natural surfaces [2]. Fractal geometry 
is able to simply account for the non-stationarity of natural 
surfaces, as well as for their self-affinity. The most used fractal 
model is the fractional Brownian motion (fBm) [5]. The fBm is 
defined in terms of the probability density function of its height 
increments: a stochastic process z(x, y) is an fBm surface if, for 
every x, y, x', y', it satisfies the following relation:
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where τ is the distance between the points (x,y) and (x',y'), and 
the two parameters that control the fBm behaviour are:  

H : the Hurst coefficient (0<H<1), related to the fractal 
dimension D by means of the relation  D=3–H. 

 s : the standard deviation, measured in [m(1–Η)], of surface 
increments at unitary distance, a real parameter related to an 
fBm characteristic length, the topothesy T, by means of the 
relation s=T(1-H). 

To compute the reflectivity function of the observed scene 
the considered simulator requires as input a DEM relative to 
the scene of interest, sampled with a resolution coherent with 
the considered sensor parameters: in practice, we need to 
interpolate the available DEM [4]. 

We use the fBm to model the surface imaged by the SAR 
sensor. Hence, the fractal parameters, retrieved from the 
considered DEM, are used to perform a stochastic fractal 

interpolation on the available DEM. In this way, the 
interpolated DEM inherits the fractal behaviour of the original 
surface [4].  

C. Fractal scattering model 
Theoretical [2] and experimental [7] studies suggest that 

use of fractal models improve the scattering method results. In 
this paper we use the fBm fractal model in describing the 
surface roughness and the small perturbation method (SPM) as 
scattering model for evaluating the reflectivity pattern [6].  

Comparison between simulated and actual SAR data was 
presented in [4] with respect to image single point normalised 
moments and autocorrelation function, thus assessing the 
simulator reliability. In those comparisons the fractal 
parameters accounting for the microscopic description of the 
scene were assumed to be constant. In this case the extension 
we propose allows considering for the microscopic scale (up to 
the electromagnetic wavelength scale) the fractal parameters 
estimated from the available DEM, so that in order to compute 
the reflectivity function we use fractal parameters varying all 
over the scene of interest [10].  

D. Results 
In order to show the ability of the presented simulator for 

reproducing SAR data, we show some meaningful simulation 
results. As an example, we provided as input for the simulator 
the digital elevation model (DEM) of Kilimanjaro volcano (2°S 
36°E), provided on a 90 x 90 m2 grid. The DEM was 
interpolated via the fractal approach introduced in [10], in 
order to be described on a rectangular grid, with pixel 
dimensions of 3.99 x 19.9 m2, in accordance with the ERS-1 
acquisition geometry. In Fig. 1 we present a 3D representation 
of the DEM.  

  
Figure 1.  3D representation of the Kilimanjaro volcano area. 

The microscopic roughness, responsible for the 
electromagnetic scattering, is provided  by estimating the local 
fractal dimension of the DEM. Therefore, we simulated the 
SAR image acquired by the ERS-1 sensor. The dielectric 
constant ε of the scene is set to ε=4ε0, and the conductivity σ is 
set to s=0.001 S/m. 

The simulated image is presented in Fig. 2  (near range is 
on the left). The SAR image was obtained from the simulated 
raw signal via standard processing and averaged with a 2 x 10 
multi-look, in order to obtain an azimuth-ground range 
approximately square pixel. Such an image represent a 
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reference for the situation, where it is assumed that the lava is 
not present in the scene 

 

  
Figure 2.  Simulated ERS-1 image of the Kilimanjaro area. Near range is on 

the left. 

III. INVERSE MODELS 
In the open literature, several methods for the extraction of 

information from SAR images relative to scenarios subject to 
changes are proposed. The majority of them are based on 
classical magnitude change detection techniques such as 
ratioing and differencing [8].  

In this paper we present a technique for the extraction of 
fractal parameters, whose use can bring value added 
information. In particular, we propose a twofold extraction of 
fractal parameters, one based on the intensity variation, the 
other on the extraction of the fractal parameters of a region of 
interest (ROI) contour.  

A. SAR image fractal dimension extraction 
An analytical relationship between the fractal dimension of 

a portion of surface and the fractal dimension of the 
corresponding SAR image is still unknown. Anyway, the use 
of the SAR simulator allows the definition of a wide set of 
canonical scenes, which can provide an empirical relatiponship 
[10].  

Such a result can be reached if an appropriate fractal 
dimension extraction technique is applied. For a given surface, 
the structure function (variogram), V(τ), is defined as the mean 
square increment of elevation points placed at distance τ : 

 ( ) ( ) ( )( )2
, ,V z x y z x yτ ′ ′= − , (3) 

The variogram of an fBm surface can be evaluated in terms 
of the parameters H and s and expressed in logarithmic form 
as: 

 ( )log 2 log 2 logV s Hτ τ= + , (4) 

which defines in a log-log plane a linear behaviour with slope 
2H, and ordinate intercept 2log s. Such a dependence leads to 
retrieve the fractal parameters with a linear regression over the 
log-log plots of measured values of V(τ) [6]. 

Note that the application of this technique to SAR images is 
someway critical, because it is necessary to take into account 
the non equal spacing of the data set. In this work we enlarged 
the available technique validity to deal with such a case.  

B. Extraction of the ROI contour fractal dimension  
In several applications, different regions of interest can be 

classified in accordance with the roughness of their contour. To 
this aim, a box counting algorithm can be employed, provided 
that the region of interest was previously defined.  

This operation can be not straightforward on SAR images 
due to the presence of speckle. Therefore, a pre-processing 
step, possibly based on the techniques presented in the previous 
section, is required. We exploited here the simulator ability of 
generating a training set for understanding the technique 
performances and limitation. As an example, we generated two 
areas of different contour fractal dimension, as presented in 
Fig. 3. The left and the right areas have a contour fractal 
dimensions of  D=1.27, and D=1.3, respectively. 

  
Figure 3.  Simulated areas with fractal dimension D=1.27 (on the left) and 

D=1.3 (on the right). 

These masks can be used to define areas with different 
geometrical (fractal dimension and topothesy) and dielectric 
(permittivity and conductivity) parameters with respect to an 
homogeneous background. Then, we estimated the 
corresponding area (via the techniques presented in the 
previous section) in the SAR image and we obtained that the 
their contour fractal dimensions DS  are: DS=1.23 and DS =1.27, 
respectively. As expected the fractal dimension is almost the 
same. An underestimation is mainly due to the filtering of the 
speckle necessary to extract the area from the SAR image. 

IV. THE CASE STUDY 
In the following, the potentiality of the chain presented in 

the previous section is tested on a case study, focused on the 
monitoring of volcanic areas. In particular, a novel approach is 
proposed, based on change detection techniques applied to 
fractal parameters retrieved from pre- and post-crisis images. 

The region of interest is the area of the Kilimanjaro 
volcano, presented in Section II. In order to estimate the ability 
of the proposed technique, we simulated a lava eruption, by 
setting the simulation parameters of a given region to the 
typical values for the most common lava flows (AA and 
pahoehoe).  

In order to appropriately account for the presence of lava, 
we gave the region parameters the values defined in Table I. 
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Two kinds of lava are defined: a smoother one, recalling the 
properties of the pahoehoe lava flows and a rougher one, 
recalling the properties of the AA lava flows. In Fig. 4 and Fig. 
5 the two simulated SAR images are presented. 

TABLE I.  SAR SENSOR PARAMETERS 

Lava  parameters AA Pahoehoe 

Dielectric Constant 8 20 

Conductivity [S/m] 0.01 1 

Hurst coefficient 0.6 0.85 

s [m^(1-H))]  0.1 0.2 

 

  
Figure 4.  Simulated ERS-1 image of the Kilimanjaro area. The area 

surrounding the crater is covered by pahoehoe lava. Near range is on the left. 

  
Figure 5.  Simulated ERS-1 image of the Kilimanjaro area. The area 

surrounding the crater is covered by AA lava. Near range is on the left. 

On the obtained SAR images we applied the variogram 
method, obtaining the maps of the fractal parameters of the two 
scenarios for comparison purposes. By comparing the image 
intensity, as well as the fractal parameter values, the region 
covered by the lava can be extracted.  

In order to quantify the performance of the technique, a 
reference map can be generated, by simulating the SAR data in 
absence of speckle in the pre- and post- eruption cases. Their 
difference defines the “ground truth” for the case study. 

In Fig. 6 and Fig. 7 the ground truth and the map obtained 
with the proposed approach are shown. 

   
Figure 6.  Comparison between ground truth map (on the left) and the 

classification obtained with the proposed technique (on the right). 

V. CONCLUSIONS 
In this paper we presented a complete framework of fractal 

models whose use allows to improve the comprehension, 
interpretation, and information extraction from SAR images.  A 
case study was faced, regarding a volcano area. The presence 
of lava flows was simulated, with the goal of understanding the 
SAR data formation mechanisms and improving the parameter 
retrieving algorithms. The obtained results show that the 
proposed techniques lead to a significant performances in the 
extraction of information from SAR data. 
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