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ABSTRACT 

In this paper a first step toward a complete model of the 
fractal imaging process is taken: for the sake of simplicity 
the mathematical details are here provided for a fractal 
profile with topological dimension equal to one. In 
particular, we show how the signal backscattered from a 
fractal profile modeled as a fractional Brownian motion 
(fBm) stochastic process is strictly linked to an associated 
fractional Gaussian noise (fGn) process. We compute in 
closed form the power density spectrum of the received 
signal in the simplified hypothesis of a linear dependence 
of the backscattered signal on the profile derivative process. 
Our results apply to physical fBm processes, as dictated by 
the low-pass filtering introduced by both the incident 
electromagnetic field wavelength and the finite sensor 
resolution. 
In the last section a numerical study of the abovementioned 
is also provided.

Index Terms— Fractals, microwave scattering

1. INTRODUCTION 

In the last years, new generation sensors are supplying a 
huge amount of high resolution data relative to almost any 
part of the world. The absence of accurate analytical models 
connecting the image to the observed scene parameters is 
one of the main reasons limiting the extraction of 
information from these data. In fact, this type of direct 
modeling is of key importance not only to better understand 
radar images relevant to natural scenes, but could be of 
great support in the retrieving of geophysical parameters 
from this kind of images. 

In this paper we focus on the mathematical and 
numerical modeling of the radar imaging process of natural 
surfaces. We use here a fractal description for the imaged 
surface: indeed, in literature it is widely recognized that 
such a model describes the geometry of natural surfaces 
better than any other one based on Euclidean geometry [1], 
[2]. Among fractal models, we use the fractional Brownian 
motion (fBm) model [1], [2], because it provides one of the 

best mathematical characterizations of natural surfaces 
using a minimum set of independent fractal parameters. 
However, here we focus on the (Euclidean) one-
dimensional problem, highlighting our novel results 
without hampering the mathematical details. As a matter of 
fact, isotropy and depolarization issues would occur in the 
extension to the (Euclidean) two-dimensional problem. 

This kind of direct modeling is not widespread in 
literature: the main weakness of the existing works is that 
none of them puts forward a completely fractal framework. 
Conversely, in this work the fractal modeling involves both 
the geometric and the electromagnetic issues. 

First of all, assuming the validity of the linear model 
originally proposed by Pentland [3], we obtain an 
expression for the power density spectrum of the image, 
thus providing a closed form solution for the small slope 
regime. In particular, we show that the image relative to an 
fBm profile falling in this regime is strictly connected to 
the associated fGn [4], which describes the derivative 
process of the profile. These results are obtained 
introducing a smoothed version of the original, non-
differentiable profile: the rationale of this model allows 
taking into account the effects of finite sensor resolution on 
the final image. 

Finally, our analytical results are numerically validated 
through the fractal processing chain recently presented by 
the authors [5]. Note that in this case no simplifying 
hypothesis, such as the abovementioned linearity one, is 
assumed and use is made of a fractal SPM scattering model 
[2] to compute the signal backscattered from the fBm 
profile. 

2. FRACTAL MODELS 

In this paper we use an fBm stochastic process to model the 
profile. It can be defined through the statistics of its 
increments. In fact, a stochastic process z(x) is an fBm 
profile if, for every x and x', it satisfies the following 
relation: 
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where 'x xτ = − , H is the Hurst coefficient (0 < H < 1), 
related to the fractal dimension D, and s [m(1 - H)] is the 
standard deviation �� of the profile increments at unitary 
distance. 

The structure function V(�) (whose plot is termed the 
variogram) is defined as the mean square increment of 
elevation points placed at distance � and for an fBm profile 
can be evaluated in terms of the parameters H and s as: 

( ) 2 2HV sτ τ= . (2.2) 

It has been demonstrated [1], [2] that the power density 
spectrum S(k) of an isotropic fBm one-dimensional process 
exhibits appropriate power-law behaviors provided by: 
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Γ(.) being the Gamma function. 
Note that both the structure function (2.2) and the 

power spectrum (2.3) of an fBm profile exhibit a linear 
behavior in a log – log plane, allowing the use of linear 
regression techniques for the retrieving of the fractal 
parameters of the profile from measured data. 

As stated in Section I, in the analytical part of our work 
we assume the model proposed by Pentland [3] to be valid. 
The hypothesis underlying to this model is that the
observed profile exhibits a small slope regime, at least at 
sensor resolution scale: if this is the case, we can assume a 
linear relation between the backscattered signal intensity 
and the profile derivative. Hence, we need an expression for 
the derivative process of the fBm profile, which is also 
known as fractional Gaussian noise (fGn). Obviously, this 
process has to be handled with care because of the fBm lack 
of derivative: a way to solve this problem is to smooth the 
original process by the means of an adequate kernel of 
support [0, �]. 

Thanks to the choice of an effective kernel, the 
autocorrelation function of the derivative process z’(x;ε) 
can be simply evaluated. Furthermore, after this filtering, 
the processes z(x;ε) and z’(x;ε) are stationary. Hence, from 
the autocorrelation function we can readily obtain the 
structure function of z’(x;ε). 

The next step is the evaluation of the power density 
spectrum of the process: being it stationary we can compute 
this spectrum via the Wiener-Kintchine theorem. 
Eventually, we obtain the following result: 

  

( ) (2 1)2 2
' ( ; ) 2 (1 2 )sin( ) 1 cos( ) H

zS k s H H k kε ε π ε − +−= Γ + −
                                                                              (2.4) 

and in the limit of 2
k
πε << : 

(2 1)2
' ( ) (1 2 )sin( ) H

zS k s H H kπ − −= Γ + . (2.5) 

From the results presented above we can draw two 
important conclusions. First of all, from (2.5) follows that 
the fGn process exhibits the interesting property of being an 
asymptotically power law process, with exponent 1 – 2H. 
This is equivalent to say that upon differentiation the Hurst 
parameter of the process is decreased by one, at least 
asymptotically. The other key conclusion, is that this 
process is not a fractal one, both looking at (2.4), and this is 
quite obvious, and looking at (2.5): in fact, as we 
mentioned above, for this process H ∉ [0,1] and, therefore, 
it is not possible to define an Hausdorff-Besicovitch 
fractional dimension for this class of processes [1].

3. IMAGING MODEL 

The relation between the images of natural profiles and the 
fGn process presented in the previous section is here 
shown. 

As we said in the first section of this paper, in our 
analytical computations we assume Pentland model [3] to 
be valid. According to that model, the imaging process can 
be seen as a system whose input is the surface profile, and 
whose output is the radar image, which depends on the 
derivative of the observed profile. As a matter of fact, this 
means that we are assuming a MacLaurin first order series 
expansion of the image intensity function with respect to 
the derivative of the considered profile. 

If this is the case, the image intensity is linearly related 
to the derivative of the profile and the results obtained in 
the previous section can be easily exploited. In particular, 
note that the smoothing effect obtained in the previous 
section by the means of the smoothing kernel can be related 
here to the effects of finite sensor resolution. In fact, system 
resolution has a low pass filtering effect on the profile: we 
can assume, without loss of generality, that the support of 
the abovementioned smoothing kernel is Δx, where Δx is 
the resolution cell dimension. A block diagram of this kind 
of imaging process is shown in Fig.1. 

If a1 is the coefficient relative to the linear term of the 
abovementioned MacLaurin expansion, we can write the 
power density spectrum SI of the image intensity as: 

2
1 '( ; ) ( ; )I zS k x a S k xΔ = Δ . (3.1) 
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Fig. 1 Block diagram of the linear imaging process: i(x) is the 
image intensity; a1 and a0 are the constant term and the coefficient 

of the linear term of the MacLaurin series expansion of i(x), 
respectively. 

The log – log plot relative to (3.1), compared to that of 
the profile, as described by (2.3), is presented in Fig. 1. The 
values of the parameters of interest are shown in Table I. 

It is worth noting that our asymptotic result is 
analogous to that obtained by Pentland [3], due to the fact 
that in his work he assumed ε = 0. Note that this is one of 
the main limitations of Pentland analysis, together with his 
heuristic use of the Lambertian scattering behavior. In fact, 
at least at microwave frequencies, the scattering is 
definitely not Lambertian-like and has been demonstrated 
that the use of adequate fractal scattering models, based for 
example on the Physical Optics or the Small Perturbation 
Method [2], [6], provides a huge increase in the accuracy of 
the backscattered signal evaluation. Anyway, as mentioned 
above it is possible to find this kind of weaknesses in 
almost all the works published on this subject (see, as an 
example, [7] and [8]). 

Some observations on the profile fractal parameters 
retrieving are now in order. As previously mentioned, the 
fractal parameters of an fBm profile can be estimated via a 
simple linear regression on measured height data, where 
use can be made of the expressions presented in (2.2) and 
in (2.3). Conversely, when the retrieving of these 
parameters from the image intensity is under concern 
equation (3.1) testifies that a simple estimation technique 
can no longer be used. However, in the asymptotic limit of 
(2.5) the estimation of the fractal parameters can be still 
performed via the standard technique. 

4. NUMERICAL RESULTS 

In the present section an experimental framework, based on 
effective direct geometric and electromagnetic models, is 
presented. This framework is essentially based on the 
fractal processing chain recently presented by the authors 
[5]. 

We generated a fractal fBm profile using the 
Weierstrass-Mandelbrot (WM) function: under some 
hypothesis, the WM effectively approximates an fBm 
profile [2], [3]. Furthermore, this is a predictable random 
function and this makes it easier to control the behavior of 
the profile, acting on its parameters. 
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Fig. 2 Power density spectrum of the profile (full line) and of 
its image. 

Table I 
Values of the parameters of interest for the figures. 

 H s [m1 – H] Δx [m] a1

Fig. 2-3 0.95 0.01 5 10 
Fig. 4 0.55 0.01 20 10 

Once the profile was synthesized, we evaluated the 
backscattered signal via an SPM fractal scattering model 
[2]. The geometrical model used in this section is based on 
the assumption that the observed profile shows the same 
fractal parameters at all the scales of interest: in particular, 
at scales greater and lower of the resolution one. Note that, 
if this was not the case, the parameters H and s used in 
(3.1) would refer to the fractal parameters of the profiles at 
resolution scale [5]. 

To validate the results presented in the previous 
sections, we estimated the power density spectra of the 
profile and of the backscattered signal. Note that particular 
care has to be taken in the evaluation of these power law 
spectra, because they are subject to extreme leakage and 
high variance problems. Hence, we used a Capon filter to 
circumvent these problems [9]. 

In Fig.3 significant numerical results are presented: the 
values of the involved parameters are shown in Table I. 

Note that the particular choice of the parameters, both 
those relative to the surface (H and s) and to the system 
(Δx), determines a good agreement between theoretical and 
experimental spectra. If those parameters are changed, so 
that the linearity hypothesis on which is based this work 
falls, such a degree of agreement is not reached. As an 
example, in Fig. 4 we show the same plots of Fig. 3 with 
different values of the parameters, still shown in Table I. 
From Fig. 4 it is evident that the fit between the spectrum 
of the image and the theoretical behavior is not as good as 
in the previous case. 

Smoothing 
 Δx

Derivation i(x)
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5. CONCLUSIONS 

In this paper we presented the first steps toward a complete 
analytical model of the imaging process of a fractal surface. 

First of all, we provided a closed form analytical 
solution for the case of a profile satisfying a small slope 
regime. For this case we have shown that the asymptotic 
behavior of the power density spectrum of the image 
intensity is power law, but its exponent is such that this 
image cannot be said to be fractal. 

As for the numerical results, we have shown that, when 
the parameters of interest, relevant to both the profile (in 
particular, H) and the remote sensing system (in particular, 
the system resolution Δx), are chosen in a way such that the 
linear model assumed in the analytical computations can be 
considered satisfied, there is a good agreement between the 
experimental and analytical results. Conversely, if this is 
not the case, the goodness of fit between the two behaviors 
begins to decrease. 

The main strength of the presented approach is the use 
of a completely fractal framework: in fact, the authors are 
aware that this is the only way to avoid inaccurate results, 
as is frequently the case in the existing literature on this 
subject.
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Fig. 3 Theoretical spectra of the surface (long dashed) and of the 
image (full line) vs. estimated ones (dotted and dash dot dot, 

respectively). 

Fig. 4 Theoretical spectra of the surface (long dashed) and of the 
image (full line) vs. estimated ones (dotted and dash dot dot, 

respectively). 
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