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ABSTRACT 

 

Ocean GNSS-R is successfully being employed to retrieve 

wind speed from GNSS signals scattered by the sea surface. 

To obtain a sufficient scattered field intensity from the ocean 

surface, the receiver acquires data when it is located along the 

specular reflection direction. However, new applications of 

GNSS-R are being explored, among which ship-detection. In 

this case, scattering from the ocean represents the clutter to 

be suppressed, so that a different geometry, where the GNSS 

signals are received in backscattering configuration, is 

preferable to the forward scattering one. In this new 

geometry, the Geometric Optics, usually employed in the 

GNSS-R scientific community, is often no more appropriate 

to model scattering from the sea surface, and different 

scattering models must be used. To this aim, we here 

introduce the Polarimetric Two-Scale Model to evaluate the 

intensity of the GNSS backscattered signal. 

 

Index Terms— GNSS-R, sea surface scattering, two-

scale model, ship detection. 

 

1. INTRODUCTION 

 

In ocean Global Navigation Satellite System Reflectometry 

(GNSS-R) the transmitted signal, reflected in the specular 

direction by the ocean surface, is captured by a receiver and 

processed to obtain information about the sensed surface. 

Retrieval of wind speed represents the main product of such 

technique [1,2]. The signals of opportunity contain the ocean 

electromagnetic scattering properties and new applications 

have been explored to fully exploit such information. In this 

study, we consider a different geometry where the GNSS 

signals are received in backscattering configuration rather 

than in forward scattering, with the final purpose of detecting 

objects on the sea surface. Compared to possible target 

detection in usual forward scattering [3], the backscattering 

configuration appears more suitable for approaching such 

problem because the ocean radar cross section (RCS) is quite 

low for such geometry. There are few studies related to this 

problem. In [4] a first analysis demonstrates some advantages 

of backscattering geometry with respect to forward 

scattering. More recent investigations can be found in [5,6,7] 

where several detection strategies are assessed. The main 

conclusions of the previous studies are that the forward 

scattering returns from the sea surface and the resolution 

limits determined by the transmitted PRN sequence do not 

allow detection of targets with radar cross section 

corresponding to normal-size ships. Therefore, in this paper 

we analyze the detection performance by assuming that the 

target lies in the subspace in front of the receiver in the 

backscattering direction. We here focus on the sea clutter 

electromagnetic modelling: in fact, while for scattering 

directions not far from the specular one the Kirchhoff 

Approximation in the Geometric Optics (KAGO) allows to 

accurately evaluate the field scattered by the sea surface, this 

is not the case if the scattering direction is far from the 

specular one. This happens in the backscattering 

configuration if the considered GNSS transmitting satellite is 

not at near nadir. In the latter case, also the Bragg scattering 

component must be considered. To this aim, here it is 

assumed that the sea surface can be described using the two-

scale model (see, e.g., [8]) with wind-driven waves with 

power–law spectrum decay [9-11]. The closed-form 

analytical backscattering solution provided in [12-13] is here 

reformulated to adapt it to the circularly polarized signal 

radiated by GNSS transmitters. 

 

2. TWO-SCALE MODEL DEVELOPMENT 

 

The scattering model is based on a two-scale description of 

the sea surface, i.e. large-scale variations with small-scale 

roughness superimposed. The large scale-roughness is 

approximated using rough facets, large with respect to the 

wavelength and small with respect to sensor resolution. 

Accordingly, the surface height of a facet, as a function of 

azimuth x and range y, can be described as 

 

𝑧(𝑥, 𝑦) = 𝑎(𝑥 − 𝑥𝑖) + 𝑏(𝑦 − 𝑦𝑖) + 𝑧𝑖 + 𝛿(𝑥, 𝑦) (1) 

 

where x and y are GNSS-R reference coordinates, a and b are 

the local slopes along x and y, respectively; xi, yi, and zi are 

the coordinates of the ith facet center; 𝛿(𝑥, 𝑦) accounts for 

the small-scale roughness. 

Large-scale and small-scale roughness are modeled as 

independent stochastic processes. In particular, azimuth and 

range slopes are independent identically distributed zero-

mean σ2-variance Gaussian random variables, i.e., a, b ∼ 
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N(0,σ2). With regard to the small-scale roughness, it is of key 

importance to select a model able to adequately describe the 

sea surface roughness at the microwave frequencies of 

interest. In particular, from the viewpoint of scattering 

evaluation we need an expression for the power spectral 

density (PSD) of the sea surface. Several expressions of the 

sea spectrum are available in the literature [9-11]: among 

them the Elfouhaily omnidirectional spectrum provides an 

accurate description for the case of partially developed sea 

[9]. We are interested here in the spectrum at the Bragg 

resonant wavenumber 𝜅 = 2𝑘 sin 𝜃𝑙, where 𝑘 = 2𝜋/𝜆 is the 

electromagnetic wavenumber, 𝜆 is the electromagnetic 

wavelength, and 𝜃𝑙 is the local incidence angle of the facet. 

The value of 𝜅 in L-band for intermediate values of the 

incidence angle corresponds to wavenumbers between 15 and 

35 m−1. It can be shown that in this region Elfouhaily 

spectrum presents a power-law fractal behavior with a Hurst 

parameter Ht=0.75, and that its behavior as a function of the 

local wind is the same of the modified Pierson-Moskowitz 

omnidirectional spectrum [11], apart from a proportionality 

constant. For this reason, without loss of generality, we here 

use the modified Pierson-Moskowitz spectrum, since its 

expression is simpler than the Elfouhaily one. Therefore, we 

use the following one-dimensional omnidirectional PSD: 

 

𝑊(𝜅) =
𝐵𝑢∗

𝜅1+2𝐻𝑡
=

𝐵𝑢∗

𝜅2.5
    (2) 

 

where B [s/m1/2] is a dimensional constant and 𝑢∗ is the 

friction velocity. The two-dimensional spectrum can be 

obtained from the omnidirectional one using the following 

relation: 

 

𝑊(𝜅𝑥, 𝜅𝑦) =
1

𝜅
𝑊(𝜅)𝑓(𝜅, 𝜙) = 𝑢∗𝑊𝑛(𝜅𝑥 , 𝜅𝑦) (3) 

 

where 𝑓(𝜅, 𝜙) is the angular spreading function, 𝜙 is the 

wave direction relative to the wind, 𝜅𝑥 = 𝜅 cos𝜙, 𝜅𝑦 =

𝜅 sin 𝜙, and 𝑊𝑛 is the wind-independent part of the 

directional spectrum. Note that in the range of wavenumbers 

of interest f is practically constant with 𝜅 and only weakly 

dependent on 𝑢∗ [9-10]: in this paper we are neglecting both 

these dependencies. 

We now face the problem of scattering evaluation: here 

we focus on the backscattering case. The overall Normalized 

Radar Cross Section (NRCS) is given by the sum of two 

contributions: the specular contribution, arising from the 

usual KAGO formulation [10,12], and the Bragg 

contribution, that can be computed by using the Polarimetric-

Two-Scale Model (PTSM) [12-13], that we reformulate in the 

following to adapt it to the circular polarization case. The 

geometry of the problem is illustrated in Fig. 1. The facet 

random tilt gives rise to a random rotation  of the local 

incidence plane and to a drift of the local incidence angle 𝜃𝑙, 
where  and 𝜃𝑙 can be expressed as functions of the global 

incidence angle 𝜃, of x-slope a, and y-slope b [12]. The PTSM 

takes into account both these effects. In particular, the 

elements of the scattering matrix of the randomly-tilted 

randomly-rough facet can be evaluated using the first-order 

Small-Perturbation Method (SPM) and can be expressed as 

follows: 

 

𝑆𝑝𝑞 =
𝑘2 cos2 𝜃𝑙

𝜋
𝜒𝑝𝑞(𝜃𝑙 , 𝛽)𝛿(0,2𝑘 sin 𝜃𝑙)  (4) 

 

where 𝛿(𝑘𝑥 , 𝑘𝑦) is the Fourier transform of 𝛿(𝑥, 𝑦), p and q 

are the polarizations of incident and scattered fields, 

respectively; 𝜒𝑝𝑞  are the elements of the matrix 

 

𝜒(𝜃𝑙 , 𝛽) = 𝑅2(𝛽) ∙ (
𝐹𝐻(𝜃𝑙 , 𝜀) 0

0 𝐹𝑉(𝜃𝑙 , 𝜀)
) ∙ 𝑅2

−1(𝛽) (5) 

 

wherein 

 

𝑅2(𝛽) = (
cos 𝛽 sin 𝛽
−sin 𝛽 cos𝛽

)   (6) 

 

is the unitary rotation matrix, and FH and FV are the Bragg 

coefficients for horizontal and vertical polarization, 

respectively [10,12], depending on the sea water relative 

permittivity 𝜀. Therefore, the entries of the covariance matrix 

of the single facet can be written as follows: 
 

〈𝑆𝑝𝑞𝑆𝑟𝑠
∗ 〉𝛿 =

𝐴𝑘4 cos4 𝜃𝑙
𝜋2

𝜒𝑝𝑞(𝜃𝑙 , 𝛽)𝜒𝑟𝑠
∗ (𝜃𝑙 , 𝛽)𝑊(0,2𝑘 sin𝜃𝑙)       (7) 

 

wherein 〈∙〉𝛿 stands for statistical mean with respect to the 

random variable 𝛿 and A is the area of the facet projected on 

the azimuth-ground range plane. In the hypothesis that the 

returns from the facets can be considered uncorrelated and for 

small values of the facets’ slope, the covariance matrix of the 

whole surface can be obtained from the one of the single facet 

averaging over the surface slopes a and b, after a second-

order expansion around a=0 and b=0. In particular, the 

following expressions are obtained [12-13]: 
 

{
 
 
 

 
 
 〈|𝑆ℎℎ|

2〉𝛿,𝑎,𝑏 = 𝐶0,0
ℎℎ + (𝐶2,0

ℎℎ + 𝐶0,2
ℎℎ + 2

Re{𝐶0,0
ℎ𝑣}−𝐶0,0

ℎℎ

sin2 𝜃
)𝜎2    

〈|𝑆𝑣𝑣|
2〉𝛿,𝑎,𝑏 = 𝐶0,0

𝑣𝑣 + (𝐶2,0
𝑣𝑣 + 𝐶0,2

𝑣𝑣 + 2
Re{𝐶0,0

ℎ𝑣}−𝐶0,0
𝑣𝑣

sin2 𝜃
)𝜎2      

〈𝑆ℎℎ𝑆𝑣𝑣
∗ 〉𝛿,𝑎,𝑏 = 𝐶0,0

ℎ𝑣 + (𝐶2,0
ℎ𝑣 + 𝐶0,2

ℎ𝑣 + 2
𝐶0,0
ℎℎ+𝐶0,0

𝑣𝑣−2𝐶0,0
ℎ𝑣

sin2 𝜃
) 𝜎2

〈|𝑆ℎ𝑣|
2〉𝛿,𝑎,𝑏 = (𝐶0,0

ℎℎ + 𝐶0,0
𝑣𝑣 − 2Re{𝐶0,0

ℎ𝑣})
𝜎2

sin2 𝜃
                   

      (8) 

 

where the expressions of the 𝐶𝑘,𝑛−𝑘
𝑝𝑞

 Taylor series expansion 

coefficients are reported in [12]. Note that 〈|𝑆ℎ𝑣|
2〉𝛿,𝑎,𝑏 =

〈|𝑆𝑣ℎ|
2〉𝛿,𝑎,𝑏 and 〈𝑆𝑣𝑣𝑆ℎℎ

∗ 〉𝛿,𝑎,𝑏 = 〈𝑆ℎℎ𝑆𝑣𝑣
∗ 〉𝛿,𝑎,𝑏

∗ , whereas the 

other entries of the covariance matrix are zero in the 

considered configuration. 

We want now to evaluate the PTSM expression of the 

covariance matrix elements for circular polarization. We 

apply an appropriate change of polarimetric basis [14]. In 

particular, we are interested in the following diagonal 

elements of the covariance matrix for circular polarization: 
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{
4〈|𝑆𝑅𝑅|

2〉 = 〈|𝑆ℎℎ − 𝑆𝑣𝑣 + 𝑗2𝑆ℎ𝑣|
2〉

4〈|𝑆𝑅𝐿|
2〉 = 〈|𝑆ℎℎ + 𝑆𝑣𝑣|

2〉                 
   (9) 

i.e. 

 

{
4〈|𝑆𝑅𝑅|

2〉 = 〈|𝑆ℎℎ|
2〉 + 〈|𝑆𝑣𝑣|

2〉 − 2Re{〈𝑆ℎℎ𝑆𝑣𝑣
∗ 〉} + 4〈|𝑆ℎ𝑣|

2〉

4〈|𝑆𝑅𝐿|
2〉 = 〈|𝑆ℎℎ|

2〉 + 〈|𝑆𝑣𝑣|
2〉 + 2Re{〈𝑆ℎℎ𝑆𝑣𝑣

∗ 〉}                       
(10) 

 

where to obtain (10) from (9) the mentioned properties of 

covariance matrix entries have been exploited. We note also 

that 〈|𝑆𝑅𝑅|
2〉 = 〈|𝑆𝐿𝐿|

2〉. Using (7-8) in (10) we obtain 
 

{
〈|𝑆𝑅𝑅|

2〉 = 𝑢∗𝑓𝑠[|1 − 𝛽𝑟|
2 + 𝑓𝑅𝑅𝜎

2]

〈|𝑆𝑅𝐿|
2〉 = 𝑢∗𝑓𝑠[|1 + 𝛽𝑟|

2 + 𝑓𝑅𝐿𝜎
2]

  (11) 

where 

𝑢∗𝑓𝑠 =
𝐴𝑘4 cos4 𝜃

4𝜋2
 |𝐹𝑉(𝜃, 𝜀)|

2𝑊(0,2𝑘 sin 𝜃) = 𝐶0,0
𝑣𝑣  (12) 

𝛽𝑟 =
𝐹𝐻(𝜃,𝜀)

𝐹𝑉(𝜃,𝜀)
     (13) 

𝑓𝑅𝑅 =
𝐶2
𝐻𝐻

𝑓𝑠
+

𝐶2
𝑉𝑉

𝑓𝑠
− 2

Re{𝐶2
𝐻𝑉}

𝑓𝑠
   (14) 

𝑓𝑅𝐿 =
𝐶2
𝐻𝐻

𝑓𝑠
+

𝐶2
𝑉𝑉

𝑓𝑠
+ 2

Re{𝐶2
𝐻𝑉}

𝑓𝑠
   (15) 

𝑢∗𝐶2
𝑃𝑄 = 𝐶2,0

𝑝𝑞
+ 𝐶0,2

𝑝𝑞
    (16) 

 

The expressions in (11) show that 〈|𝑆𝑅𝑅|
2〉 depends on 

the difference between the horizontal and vertical Bragg 

coefficients and, therefore, the backscattering of the sea 

surface in this polarization is very low. Conversely, 〈|𝑆𝑅𝐿|
2〉 

is related to the sum of the Bragg coefficients, thus 

maximizing the return from the sea surface, and minimizing 

potential double-bounce (more in general, even-bounce) 

contributions related to the presence of ships. Therefore, we 

can conclude that RR polarization should be used to 

maximize the contrast between the ship and the sea 

background. Finally, note that the expressions obtained in 

(11) are casted in such a way to highlight the dependence on 

the large-scale roughness of the sea surface, through the mean 

square slope   and the linear dependence on the friction 

velocity 𝑢∗. Both these quantities can be related to the wind 

speed at the height of 10 m: the former by using the Katzberg 

model [15] and the latter by using the relation reported in [9]. 

 

3. SIMULATION OF GNSS SCATTERING 
 

In the backscattering configuration the transmitter, the 

receiver and the backscattering point lie on the same line. 

Figure 2 shows iso-delay and iso-Doppler lines with the 

receiver marked in red and the backscattering point marked 

in green. The delay-Doppler cells are the surface regions 

inside contiguous iso-delay and iso-Doppler lines. The area 

of these regions determines the resolution of the system that 

increases towards the far range from receiver. Figures 3 and 

4 show simulation of the overall scattered power in dBW 

using a TDS-1 acquisition for geometry and satellite 

positions. Transmitter and receiver are aligned along the 

same line with the origin of the coordinate system in the 

backscattering point. The reference system is defined by the 

z-axis normal to the Earth ellipsoid, the y-axis in the plane 

defined by the z axis and the vector form origin to receiver 

(global incidence plane, see Fig. 1) and the x-axis orthogonal 

to both. TDS-1 acquisition is on June, 20, 2015, 06 hours, 

 
Fig. 1: Geometry of the problem. 

 
Fig. 2: Iso-delay and iso-Doppler lines. The receiver location is 

marked in red and the backscattering point is marked in green.  

 

 
Fig. 3: Overall scattered power in backscattering configuration with 

Left-Hand Circular receiver antenna polarization (RL polarization). 
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Track 62 acquisition 44 with GPS space vehicle 62. The 

incidence angle is 7.3 degrees, so that KAGO is dominant at 

this small angle. However, results clearly show that in this 

configuration the received sea-scattered signal is much 

weaker than in the forward scattering case, and that at RR 

polarization it is particularly weak. By using the PTSM model 

developed here, we can verify (see Fig. 5) that this is true also 

at higher incidence angles, for which the GNSS backscattered 

signal is dominated by the Bragg scattering component. 
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(a) 

 
(b) 

Fig. 5: Sea backscattering NRCS as a function of the incidence angle 

for GPS L1 incident field, and for RL (red solid line) and RR (blue 

dashed line) polarizations. Wind speed: 2 m/s (a), 20 m/s (b).  

 
Fig. 4: Overall scattered power in backscattering configuration with 

Right-Hand Circular receiver antenna polarization (RR polarization). 
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