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ABSTRACT

In this paper, we present a novel method for mapping flooded
areas exploiting Sentinel-1 ground range detected products.
The work introduces two novelties. As first, the input prod-
ucts. In fact, as far we know, no applications using these prod-
ucts has been so far presented in literature. Secondly, a new
unsupervised methodology, based on the usage of opportune
layers combined in a fuzzy decision system, is presented. Ex-
perimental results, obtained both on the single SAR image
and on a couple of acquisitions in a change detection frame-
work showed that our method is able to outperform the most
popular classification techniques in terms of standard assess-
ment parameters.

Index Terms— Synthetic aperture radar, sentinel-1,
flooding, classification, fuzzy systems

1. INTRODUCTION

Floods are among the most serious and frequent natural haz-
ards in the world, causing high damages to people, infrastruc-
ture and economies. The UN estimated that about the 56%
of the total population affected by weather-related disasters
is involved in flood issues (see Figure 1). These events are
critical especially in developing countries, but not limited to
them. In fact, as an example, in US more than 225 people
were killed and more than 3.5 billion dollars in property were
damaged by heavy rainfall and flooding each year between
1993 and 1999 [1]. Effective response to floods requires the
availability of a map of the affected area in a short time [2].

Synthetic aperture radar (SAR) sensors represent a crucial
tool for rapid flooding mapping due to their all-weather and
all-time imaging characteristics, ensuring the imaging of the
Earth surface independently from illumination and weather
conditions. However, information extraction from SAR data
is typically considered more difficult by end-users, also due to
the lack of dedicated algorithms implemented in some avail-
able software suites. As a result, they often prefer to oper-
ate with optical/multispectral sensors. In fact, in this case,
beyond the possibility to handle images that can be immedi-
ately interpreted for visual inspection, very consolidated tech-
niques for the extraction of the flooded area exist, just think

Fig. 1. Number of people affected by weather-related disas-
ters between 1995 and 2015 (source UN).

to the exploitation of the normalized difference water index
(NDWI) by McFeeters [3].

However, despite their ease of use and popularity among
end-users, multispectral data are often not suitable for emer-
gency due to their sensitivity to weather and illumination con-
ditions. These problems can be overcome using SAR data [4].
In this case, the literature is mainly focused on thresholding-
based methods [5, 6]. Here, we introduce a double innovation.
The first is at product level. In fact, we exploit Sentinel-1
ground range detected (GRD) products, i.e. detected images
pre-processed by ESA and made available to users for down-
load through the Sentinels Data Hub. These products are to-
day still scarcely employed in the SAR literature, despite they
are raising a great interest among end-users because they are
available for cloud processing within the Google Earth En-
gine platform [7].

The second innovation is methodological. We propose
two processing chains providing maps with increasing res-
olution. Chain one is based on the analysis of a single GRD
product. It exploits classic Haralick textural features [8], and
the output is a low resolution map obtainable in few min-
utes. Chain two is based on change detection. It exploits
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the comparison between a couple of GRD products (pre and
post-event image) acquired on the same area. The output is
map with the same resolution of the input GRD products, i.e.
10 meters.

The work is organized as follows. In Section 2, the pro-
posed methodology is introduced. Experimental results are
discussed in Section 3. Conclusions are drawn at the end of
the work.

2. METHODOLOGY

Chain one workflow is depicted in Figure 2. The input ia a
Sentinel-1 GRD product with 10 meters spatial resolution. It
is treated with a 3× 3 multilook for speckle reduction, bring-
ing the image resolution to 30 meters. After multilooking,
histogram clip is performed to compensate the presence of
highly reflecting targets [9]. This allows for for relaxing the
pdf of the SAR image, thus enhancing the information content
of low reflectivity areas.

Fig. 2. Flood mapping, chain 1 (single image) workflow. Tex-
ture measures in combination with reflectivity information
feed a fuzzy classification system for flood area extraction.

Texture processing consists in the calculation of classic
Haralick features [8]. Both texture layers and detected image
feed the fuzzy decision system. This avoids the search for a
thresholding. In fact, the classes “Flood” and “No flood” are
automatically assigned through de-fuzzification of the proba-
bility maps generated by the fuzzy system. This step is im-
plemented with the maximum membership method [10]. Us-
ing a single SAR image, it is necessary to apply masks for
the permanent hydrography, otherwise indistinguishable from
flooded areas.

The method is fully unsupervised and does not require the
application of thresholds. Its processing time is in the order
of 30 minutes using a 4-core 32 GB RAM machine.

The change-detection chain is depicted in Figure 3. In
this case, the input is a couple of calibrated and coregistered
Sentinel-1 GRD products representing the pre- and the post-
event scene situation. They are treated with standard despeck-
ling to enhance the contrast between water and land features
(here, the refined Lee filter is applied). Filtered images are
subject to cross-calibration using the variable amplitude level

equalization introduced in [9] in order to ensure that the same
object in different images exhibit the same reflectivity. Cross-
calibrated images are then used to compute a change index
map which, together with the post event image, is used as in-
put layer for the fuzzy decision system.

Fig. 3. Flood mapping, chain 2 (change detection) workflow.
A couple of calibrated, coregistered product (pre- and post-
event image) is exploited to build a change index which, to-
gether with post-event amplitude information, feed the fuzzy
flood classification system.

The output map has 10 meter spatial resolution, i.e. the
full resolution of the GRD product, neglecting possible losses
due to the applied despeckling. The method is fully unsuper-
vised , and its processing time mainly depends on the com-
plexity of despeckling. Using the refined Lee filter, the com-
putational time is in the order of one hour and half on a 4-core,
32 GB RAM machine.

3. EXPERIMENTAL RESULTS

The proposed methodology has been tested with several cases
taken from the activation list of the Copernicus Emergency
Management Service (EMS). This is a wide database, also
providing ground truths and masks for the permanent hydrog-
raphy of the area of interest.

An example of chain 1 result concerning the Jemalong
test site (Australia, activation code EMSR184) is reported in
Figure 4. In particular, in Figure 3(a), the input product, with
the relevant flood map overlaid in cyan color, is shown. The
ground truth provided by ESA is displayed in in Figure 3(b).

Qualitatively, a good agreement between the obtained
flood map and the available ground truth are registered. We
also assessed quantitatively the quality of the generated map
using four test sites taken from the Copernicus EMS database.
They are: Jemalong, Ballinasloe (Ireland, activation code
EMSR149), Selby (UK, activation code EMSR150), Poplar
Bluff (US, activation code EMSR176). Results are reported
in Table 1. They have been also compared with those given
by several literature methods such as k-means, support vector
machine (SVM), standard neural network (NN), maximum
likelihood (ML) and image thresholding. It arises that our
method outperforms the most popular classification tech-
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(a) (b)

Fig. 4. Jemalong test site, chain 1 results. (a) Retrieved flood
map overlaid to the input GRD product. (b) Ground truth
provided by ESA.

niques, allowing for obtaining a high accuracy with negli-
gible incidence of false alarms. In particular, the following
average values were obtained for overall accuracy (OA) and
false alarms (FA): Proposed method - OA: 93.5%, FA: 6.58%;
k-mean - OA: 80.3%, FA: 16.6%; SVM - OA: 78.7%, FA:
3.87%; NN - OA: 49.5%, FA: 3.00%; Threshold - OA: 58.5%,
FA: 2.49%; ML - OA: 42.8%, 2.37%.

(a) (b)

Fig. 5. Ballinasloe test site, chain 2 results. (a) Retrieved
flood map overlaid to the input GRD product. (b) Ground
truth provided by ESA.

As for chain 2 (change-detection oriented) processing,
some results, concerning the Ballinasloe test site (Ireland,
EMS activation code: EMSR149) are reported in Figure 5.
Even in this case, qualitatively, a good agreement with the
available ground truth can be appreciated. However, the
performance of the method have been evaluated also quanti-
tatively, as reported in Table 2, and compared with those of
other literature popular literature method like SVM, k-mean,
NN, ML, and threshold applied to the ratio image. From the
obtained results, concerning the aforementioned test sites, it
arises that our method shows the better results in terms of the
adopted quality parameters. In fact, average values registered
for OA and Fa re the followings: Proposed method - OA:
92.0%, FA: 8.1%; SVM - OA: 67.7%, FA: 4.24%; k-mean -
OA: 67.3%, FA: 15.9%; NN - OA: 75.0%, FA: 5.44%; Band

ratio - OA: 80.7%, FA: 13.6%; ML - OA: 64.6%, FA: 4.09%.
Summarizing, the both the proposed processing chains

give the best trade-off between detection rate and false alarms
with respect to the tested literature methods, introducing also
advantages concerning the lack of supervision and threshold-
ing.

4. CONCLUSIONS

Rapid flood mapping is crucial for an effective event response.
SAR sensors, thanks to their all-weather and all-time imag-
ing capabilities, are a powerful instrument, able to provide
timely information to first responders and decision makers.
In this work, we presented a new methodology for unsuper-
vised mapping of flooded areas introducing innovation both
at product and at processing/methodological level. In fact, we
exploit pre-processed Sentinel-1 ground range detected prod-
ucts provided by the European Space Agency, which are still
poorly used in the SAR literature. They constitute the input
for two successive processing levels with increasing compu-
tational burden, giving as output event maps with increasing
resolution.

The first level accepts as input the post-event image,
which is analyzed for standard Haralick textural features.
Among them, the dissimilarity measure is exploited to feed
a fuzzy flooding classification system. The system output is
a map with 30 meters spatial resolution due to the applied
moderate multilooking for speckle reduction.

The second processing level is based on change detection,
exploiting a pre-event and a post-event GRD product. These
images are combined into a change index feeding, together
with the post-event amplitude information, the fuzzy classi-
fication system. The output is a flood map with 10 meters
spatial resolution (i.e. the full resolution of the input prod-
ucts). The processing time depends on the selected despeck-
ling algorithm. Both the level-one and level-two processing
chain are fully unsupervised and threshold-free thanks to the
adoption of fuzzy classification rules.

The performance of the proposed methodology were com-
pared with those of several literature methods, both super-
vised and unsupervised. We showed that our method was able
to outperform all of them providing the best trade-off between
overall accuracy and false alarms.

The proposed method aims at providing end-users and de-
cision makers with a new unsupervised tool for rapid flood
mapping to support the first response to this kind of events.
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Table 1. Comparison between RFP-L1 and other popular literature classification method: k-mean, support vector machine
(SVM), neural net (NN), maximum likelihood (ML), and thresholding. DR: detection rate (percentage). FA: false alarms
(percentage). Ground truth data available from the Copernicus Emergency Management Service. Bold characters indicate the
best registered performance.

Dataset Proposed k-mean SVM NN ML Threshold
DR FA DR FA DR FA DR FA DR FA DR FA

Ballinasloe 94.5 4.69 78.2 15.8 66.6 3.36 46.3 3.11 18.4 2.31 58.7 3.14
Selby 92.1 1.00 86.0 14.2 91.5 2.13 55.4 1.48 50.0 1.00 78.7 1.22
Poplar Bluff 96.2 7.33 91.7 15.7 92.2 5.00 62.7 3.00 67.5 1.84 63.7 1.30
Jemalong 91.2 13.3 65.4 21.0 64.6 5.00 33.6 4.44 35.6 4.33 33.1 4.31

Table 2. Comparison between RFP-L2 and other literature classification methods. SVM: support vector machine. NN: neural
net. ML: maximum likelihood. BR: Band ratio. DR: detection rate (percentage). FA: false alarms (percentage). Ground truth
data available from the Copernicus Emergency Management Service. Bold characters indicate the best registered performance.

Dataset Proposed k-mean SVM NN ML BR
DR FA DR FA DR FA DR FA DR FA DR FA

Ballinasloe 98.6 6.60 59.1 21.9 64.6 3.94 80.9 4.70 51.4 3.88 96.6 6.45
Selby 91.8 2.40 90.2 21.2 90.5 3.39 99.8 6.71 94.0 2.72 95.7 29.5
Poplar Bluff 84.1 11.1 69.6 11.4 49.0 3.53 46.8 3.76 41.0 3.19 49.5 6.28
Jemalong 93.6 12.3 49.5 9.04 66.9 6.11 72.6 6.62 72.0 6.57 81.3 12.4
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