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Abstract— Speckle noise is a major factor impairing synthetic aperture radar (SAR) imagery
interpretation and processing. In this paper, we propose a simple approach to deal with the
despeckling of multi-frequency SAR data acquired over bare soil surfaces. The basic idea is to
perform a proper normalization step in order to compensate the frequency dependence of the
SAR measurements and make histograms of the multi-frequency images comparable. Once this
pre-processing step is performed, conventional multi-temporal filtering can be applied. We tested
this simple approach on both simulated and real-world multi-frequency datasets. Obtained results
show that the proposed idea leads to increased speckle suppression capabilities with respect to
both single-channel filtering and pure multi-temporal despeckling.

1. INTRODUCTION

Appropriate reduction of the detrimental effects of speckle noise, which typically affects coherent
imaging systems, such as synthetic aperture radar (SAR), has been subject of intensive research
efforts in the last decades [1]. The presence of speckle makes data interpretation difficult, but it
also affects an accurate and reliable quantitative retrieval of scene physical parameters. Despeckling
algorithms are often the result of a tradeoff between speckle reduction and edge/details preservation
capabilities, the prior aspect depending on the application of interest. Several algorithms have
been developed in the last decades to smooth speckle effects while retaining subtle details and
preserving edge sharpness. Among other approaches, despeckling algorithms based on the non-
local paradigm have been widely demonstrated to be one of the most effective tools in retrieving
the scene reflectivity without loss of details and degradation of spatial resolution [2].

More recently, the availability of an unprecedented amount of SAR data at no cost, such as
those provided by the ESA Sentinel-1 mission, has stimulated the development of multi-temporal
SAR processing algorithms, including multi-temporal despeckling filters, e.g., De Grandi filter [17],
UTA [18], RABASAR [19], MSAR-BM3D [3], and 2S-PPB [4]. In particular, the last two filters
are the multi-temporal extension of single-channel despeckling algorithms, namely SARBM3D [5]
and PPB [6], respectively.

In the more general context of multi-dimensional SAR, multi-frequency radar imagery provides
more information about the surveyed scene compared with conventional single-frequency systems.
As a result, many applications can effectively take advantage of multi-frequency SAR data process-
ing, e.g., study and analysis of land cover types [9], classification [15] and snow cover analysis [14].
Different spaceborne and airborne SAR missions, such as the past SIR-C/X-SAR and AIRSAR
missions and the ongoing UAVSAR operated by NASA Jet Propulsion Laboratory, have multi-
frequency imaging capabilities. For instance, the AIRSAR system can simultaneously operate in
fully polarimetric mode in the P- (0.45GHz), L- (1.26 GHz), and C- (5.31 GHz) bands. The interest
in multi-frequency SAR data is expected to grow further after the launch of multi-bands sensors,
such as the NASA-ISRO SAR Mission (NISAR), which will gather SAR imagery of the Earth’
surface at L- and S-bands, simultaneously [13].

Notwithstanding, despeckling of multi-frequency SAR imagery has been investigated in very
few works, i.e., [8, 10]. In [8], a vector speckle filter which operates simultaneously in the polariza-
tion/frequency and spatial domains is developed. In [10], a non-local means method is developed
based on a space-frequency information joint covariance matrix. Indeed, speckle noise affecting
multi-frequency data could be faced in a näıve fashion by applying any single-channel despeckling
filter to each band separately. However, it is reasonable to expect that a multi-dimensional filtering
approach where all image bands are jointly filtered leads to improved speckle rejection and details
preservation, thus taking advantage of the larger information amount available. As a matter of fact,
multi-frequency data not only increase information content but also provide a further dimension
to reduce speckle effects. Similar considerations have motivated the development of techniques for
multi-temporal SAR despeckling [3].

As an alternative to single-channel filtering, multi-temporal despeckling filters might be directly
applied to multi-frequency SAR series in order to somehow exploit the higher dimensionality. How-
ever, the statistical distribution of SAR imagery is greatly affected by the operating frequency, which
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leads to mean bias and artifacts in most multi-temporal filter outputs, as it will be shown in our
analyses. To solve such issues, here we propose a simple approach to jointly filter multi-frequency
SAR data acquired over bare soil surfaces. The proposed approach consists in a pre-processing
step where a frequency-calibration procedure is carried out based on the use of scattering models
for compensating the dependence of SAR data upon the operating frequency. Once such a prelimi-
nary compensation step is performed, any multi-temporal filter might be applied with better mean
preservation and reduced artifacts. By following the proposed approach, multi-temporal filters can
more effectively applied to multi-dimensional data where the time coordinate is substituted by the
frequency one.

The remainder of this paper is organized as follows: Section 2 briefly describes the scattering
model adopted in the frequency-compensation step, which is described in Section 3; the effectiveness
of the proposed approach is tested in Section 4 on both simulated and real-world multi-frequency
SAR data. Section 5 draws the main conclusions and hints for future research activities.

2. ELECTROMAGNETIC SCATTERING MODEL

In this paper, a bare soil surface is described by means of the fractal geometry, which has been widely
recognized as the best tool to describe self-similarity and self-affinity of natural land surfaces [7].

More specifically, the surveyed surface roughness is modelled as a two-dimensional (2D) frac-
tional Brownian motion (fBm) process, i.e., a 2-D stochastic process z(x, y) whose increments
z(x, y)− z(x′, y′) over a fixed horizontal distance τ =

√
(x− x′)2 + (y − y′)2 are zero-mean Gaus-

sian random variables with standard deviation T 1−HτH , T being the topothesy, measured in meters,
and H being the Hurst coefficient, with 0 < H < 1, which is related to the surface fractal dimension
D = 3−H.

In order to describe electromagnetic scattering at microwaves from such natural surfaces, here we
rely on the Small Perturbation Method (SPM), since it is described through analytical closed-form
equations and shows a range of validity adequate to SAR applications and frequencies. Additionally,
this method provides a very simple relation between fractals parameters and the backscattered field.

Under such assumptions, the backscattering coefficient reads as [7]

σ0
pq(k) = 2π8k2−2H cos4 θ |βpq|2 S0

(2 sin θ)2+2H
(1)

where the subscripts p and q denote the receiving and transmitting polarization channels, respec-
tively; k is the electromagnetic wavenumber, θ is the local incidence angle, βpq accounts for the
incident and reflected fields polarization and is a function of both the complex dielectric constant
εr of the surface and the local incidence angle; S0 characterizes the spectral behavior of the fBm
surface, is measured in [m(−2−2H)] and is related to T and H as follows:

S0 = πH21+2H Γ(1 + H)
Γ(1−H)

T 2(1−H) (2)

where Γ(·) is the Gamma function.

3. FREQUENCY-COMPENSATION STEP

The backscattering model in Eq. (1) states clearly and in a quantitative way the dependencies
of the backscattering coefficient on the operating frequency. Apart from the factor k2−2H , also
βpq implicitly depends upon frequency, due to the frequency variations of the complex dielectric
constant of the illuminated scene. In order to explicitly assess the frequency dependence of the SAR
image intensity, an image model, linking the SAR image sample intensity I to the backscattering
coefficient is required. Here we adopt the following simple image model:

I(km) = σ0
pq(km)Acell n, m = 1, ..., M (3)

where km is the wavenumber relevant to the mth operating frequency fm, Acell = ∆x∆r is the
resolution cell area, ∆x and ∆r being the azimuth and range resolution, respectively; n denotes
the speckle noise, M is the number of available image bands.

Before applying pure multi-temporal filtering to the multi-frequency dataset I(km), here we
propose to normalize all available bands to a common reference wavenumber k0, which can be
defined arbitrarily.
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Accordingly, the following frequency-compensation step is performed:

Im(k0) = I(km)
k2−2H

0

k2−2H
m

= σ0
pq(k0)Acell n, m = 1, ..., M (4)

Once (4) is applied to any image band, the normalized images Im(k0) can be regarded as the
collection of M independent measurements of the reflectivity of the same scene at a common
frequency f0 and, then, application of multi-temporal filtering is meaningful. Finally, once multi-
temporal filtering has been applied, the original dynamic of the intensity data can be easily restored
by inverting (4).

It is worth mentioning that the proposed compensation method could, at least in principle, be
followed by any multi-temporal despeckling filter, such as those discussed in Section 1. Despeckling
performance evaluation might be undertaken with the support of the benchmarking framework
developed in [16] for multitemporal SAR despeckling.

The normalization procedure in (4) is based on the assumption of negligible sensitivity of the
dielectric constant against frequency within the range [k1, km]. Additionally, it is worth mentioning
that the proposed frequency-compensation step requires a proper estimation of the Hurst coefficient
over the whole illuminated surface. To this end, the algorithm in [20] might be preliminary applied
in order to retrieve the H map from the noisy images. However, for most natural surfaces and multi-
temporal filters it is reasonable to assume H constant within the search window of the algorithm
(whose linear size is typically of few tens of pixels), and, hence, a reference value can be used for
H. Typical values of H for natural surfaces range from 0.55 to 0.95 [21].

4. RESULTS

In this Section, we test the proposed approach on both simulated and actual multi-frequency SAR
images. In order to better assess the benefits of the frequency-compensation step, we compare
our methodology, i.e., multi-temporal filtering applied on frequency-compensated data with pure
multi-temporal filtering, i.e., without frequency compensation and with single-channel filtering.
Additionally, for a fair comparison, the multi-temporal filter adopted is the extension to the multi-
temporal case of the single-channel despeckling filter, i.e., they both share the same despeckling
approach.
4.1. Simulated Data
Here we evaluate the benefits of the proposed normalization procedure on a simulated dataset
comprising four 512× 512 single-look complex images at L-, S-, C-, and X-bands. The dataset has
been simulated according to the surface, scattering, and imaging models discussed in Section 2.
More specifically, speckle noise is simulated as unitary-mean exponentially-distributed random
process. Simulation parameters are reported in Table 1.

Table 1: Simulation parameters.

Parameter Symbol Value
Hurst coefficient H 0.8

Topothesy T 0.01 m
Dielectric constant εr 4

Viewing angle θ 30◦

Frequency fm [1.20, 3.20, 5.40, 9.60]GHz
Polarization pq HH

Azimuth resolution ∆x 1m
Range resolution ∆r 1m

In the frequency-compensation step, we set the reference frequency f0 = 1 GHz.
Simulation results are shown in Figure 1, where for the sake of conciseness only results relevant to

the L-band are shown. Table 1 includes some synthetic quality indicators, namely mean of image
(MoI), coefficient of variation (Cx), and despeckling gain (DG), which are defined, e.g., in [16].
The proposed approach [Figure 1(c)] is compared with multi-temporal filtering without frequency
compensation [Figure 1(d)] and single-channel filtering [Figure 1(e)]. For single- and multi-channel
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filtering, here we rely on SARBM3D and MSARBM3D filters, respectively. The benefits of the
normalization procedure for speckle reduction are manifest, see Table 2.

(a) (b) (c)

(d) (e)

Figure 1: 512 × 512 L-band images: (a) noisy; (b) reference; (c) proposed approach; (d) multi-channel
filtering without frequency compensation; (e) single-channel filtering.

Table 2: Despeckling performance indicators on the simulated dataset.

MoI Cx DG
Reference 15.70 1.33 -
Proposed 15.44 1.35 8.71

Single-channel 15.18 1.18 6.49
Multi-Channel 15.35 1.36 8.23

4.2. Real Data

The proposed approach is here tested on a real dataset acquired from JPL AIRSAR on Flevoland on
June 15, 1991. The full multi-frequency HH image is shown in Figure 2(a), while a 512×512 subset
used for testing the algorithm is depicted in Figure 2(b). For this test case, we rely on 2S-PPB,
MSAR-BM3D being currently implemented to work with a number of bands which is a power of two.
Incidentally, this allows us to show the benefits of the frequency-compensation step on a different
multi-channel filter. Accordingly, for comparison purposes, single-channel filtering is performed
via PPB. Despeckling results are shown in Figures 3–5 for P-, L-, and C-band. For quantitative
despeckling quality description we evaluate MoI, MoR, and ENL [the latter evaluated in the white
box shown in Figure 2(b)], which are reliable no reference measures for assessing potential bias in
the filtered image, see Table 3 [16]. Due to the histogram correction in the frequency-compensation
step, the temporal averaging performed in 2S-PPB provides better despeckling results in terms of
both mean preservation and speckle suppression, see the quality indicators in Table 3, and of bright
targets maintenance especially at the lowest frequencies, see red contoured areas in Figures 3–4.
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(a) (b)

Figure 2: Flevoland AIRSAR HH image (R = C-band; G = L-band; B = P-band). (a) Full scene, the black
square denotes the (b) 512× 512 subset. The white box indicates the area used for ENL evaluation.

(a) (b) (c) (d)

Figure 3: Despeckling results (P-band): (a) noisy; (b) proposed approach; (c) multi-channel filtering without
frequency compensation; (d) single-channel filtering.

(a) (b) (c) (d)

Figure 4: Despeckling results (L-band): (a) noisy; (b) proposed approach; (c) multi-channel filtering without
frequency compensation; (d) single-channel filtering.

Thanks to the normalization step, 2S-PPB recovers the mean preservation capabilities of PPB,
whose results, however, presents visible widespread artifacts resembling watercolor strokes and an
excessive edge smearing. In the meantime, the availability of a larger number of bands allows to the
frequency-compensated multi-temporal filtering to achieve a larger ENL w.r.t. the single-channel
filter.
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(a) (b) (c) (d)

Figure 5: Despeckling results (C-band): (a) noisy; (b) proposed approach; (c) multi-channel filtering without
frequency compensation; (d) single-channel filtering.

Table 3: Despeckling performance indicators on the AIRSAR dataset.

MoI MoR ENL
P-band L-band C-band P-band L-band C-band P-band L-band C-band

Noisy 0.0076 0.062 0.240 1 1 1 12.2 14.0 10.5
Proposed 0.0071 0.063 0.241 0.938 0.972 1.044 1049.4 911.1 830.2

Multi-channel 0.0119 0.105 0.187 0.842 0.704 1.313 716.0 297.0 154.6
Single-channel 0.0075 0.062 0.238 0.983 0.982 0.986 615.9 359.4 227.9

5. CONCLUSION

In this paper, we present a simple approach to the despeckling of multi-frequency SAR imagery
acquired over bare soil surfaces. We demonstrated that, by performing a straightforward frequency-
compensation procedure as a preliminary step, it is possible to improve despeckling performance
of multi-temporal filters, i.e., despeckling algorithm specifically designed to deal with speckle re-
duction in SAR time series. Frequency calibration is based on advanced surface and scattering
models which provide closed-form relationships for the modelling of the dependence of the mi-
crowave backscattered energy from surface and sensor parameters, including operating frequency.
In particular, the surveyed surface is described via fractal geometry as a 2-D fBm with assigned
topothesy and Hurst coefficient; surface scattering is modeled via a formulation of SPM suited to
fractal surfaces. A simple image model is adopted to relate the measured SAR data intensity to
the surface backscattering coefficient and then to the surface and sensors parameters. As a result,
an analytical description of the dependence of SAR image intensity to the operating frequency is
obtained and exploited in the frequency-compensation procedure. The compensated SAR image
series can then be regarded as the series of multiple measurements of the scene reflectivity at the
reference wavenumber. Accordingly, any multi-temporal despeckling filter can then be applied to
the normalized dataset to obtain the filtered data.

The benefits of the calibration step have been proven on both simulated and actual multi-
frequency datasets and also on different non-local means multi-temporal filters. Simulation and
experimental results have shown that by properly normalizing the input image bands it is possible to
improve despeckling results in terms of mean and details preservation as well as speckle suppression
in homogeneous areas. With respect to multi-channel filtering, single-channel filtering does not
suffer from frequency dependence of input data. However, it does not fully exploit the larger
amount of information available in multi-frequency data.

It is worth noting that the exploitation of electromagnetic scattering models provides a physical
basis for the extension of the proposed calibration approach to the despeckling of different multi-
dimensional SAR data, e.g., multi-polarization, multi-angle, multi-sensor SAR data.

However, extension to multi-angle and/or multi-sensor data calls for the non-trivial problem of
coregistering images acquired under different acquisition geometries, e.g., different viewing angles
and spatial resolution. The coregistration step, unnecessary when dealing with multi-frequency
sensors, such as AIRSAR, becomes crucial in such cases as it might have a non-negligible impact
on the speckle statistical properties, which should be properly accounted for in the despeckling
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chain. Additionally, a poor coregistration step might result in spatial resolution degradation and
reduced speckle filtering capabilities.
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