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Abstract-The fractal geometry proved to be the most
appropriate mathematical instrument in describing natural
scenes, by means of few effective and reliable geophysical
parameters. In this paper we describe a complete processing
chain for the retrieving of SAR image fractal parameters and for
change detection purposes. We present an overall framework
employing fractal based models, algorithms and tools to support
identification of natural area changes due to natural or man
made disasters. In addition., we test our fractal framework in a
simulated disaster scenario. In particular., we consider the case of
a simulated volcano eruption scenario to test the potentialities of
our technique for lava flow detection. We also compare the
performances of the proposed framework on different kinds of
disasters to stress the significant differences in the parameters
used for change detection purposes.

Index Tenns-Synthetic Aperture Radar, Fractals, Disaster
Monitoring

1. INTRODUCTION

In recent years the interest in the application of remote
sensing techniques for the monitoring and assessment of
natural disasters has been growing very fast. This is due to the
fact that remote sensing instruments provide a huge alnount of
data relevant to almost any area of the Earth.

In particular, SAR sensors are very well suited for the
observation of this type of phenolnena, because the microwave
frequencies employed ensure all-weather, all-time capabilities.
Furthermore the scales involved in the formation of the SAR
image are the same affected by dramatic changes in case of
disaster. However, the difficulty in interpretation of these data
still lilnits their use to expert observers.

Several approaches for data interpretation are presented in
literature [1]. Most of them are based on empirical analyses of
remote sensing data, essentially driven by user needs. These
analyses are generally supervised and, to be effective, should
be performed only by people with a remarkable level of
competence both on the sensors and on the effects of different
disasters on the environment. Indeed, when a disaster occurs it
dramatically modifies the surface profile of the observed scene
from scales comparable to the sensor resolution up to scales
comparable to the electromagnetic wavelength. Besides of
these geometrical changes, also the electrolnagnetic
characteristics of the scene abruptly change: consequently
remote sensing data are affected by textural modifications and,
at least in principle, it should be possible to detect these
changes on the images.
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In order to develop tools for the extraction of value added
information from remotely sensed images, a better insight into
the mechanisms and parameters governing SAR image
formation is necessary. In order to improve the understanding
of SAR images and to define the parameters of interest in case
of disaster it is of key importance to introduce appropriate
models for the description both of the imaged surface and of
the signal backscattered from it. Only in this way we can try to
relate significant parameters of the observed scene to textural
characteristics in the SAR image, thus preparing the way to
new detection techniques no more based simply on a
morphological analysis but on the definition of relevant
"physical" parameters on the image.

The fractal geometry [2] proved to be the most appropriate
mathematical instrument to quantitatively describe natural
surfaces. It simply accounts for the complexity of the scene, by
means of few effective and reliable geophysical parameters. In
this paper we assume a fractal model for the imaged surface
and we compute analytically the scattering from this kind of
surfaces as stated in [3]. The key concepts of these models are
presented in the next Section. All the above mentioned models
are part of the SAR raw-signal simulator developed and tested
at the University of Naples, Italy [4].

As for the inverse models, in this paper we describe a
complete processing chain for the retrieving of SAR image
fractal paratneters and for change detection purposes. Our
inverse chain allows the estimation of several fractal
characteristics of SAR images. From one side, we can retrieve
the fractal parameters of the ilnage and then compare between
pre- and post-crisis SAR image fractal parameters. In this way
we can develop and test several fractal-based change detection
techniques: as stated above, this approach presents a major
advantage with respect to the classical ones, i.e. the considered
parameters hold a physical Ineaning and could be related to
fractal parameters variations on the imaged scene.
Furthermore, in particular cases, we can evaluate the fractal
dimension of the contour of a region of interest (ROI), for
example in case of zones identified as hit by lava flows, it is
possible to discriminate between different kinds of lava
analyzing the fractal dimension of the contour.

Finally, in the last Section of the paper, we test our fractal
framework in a simulated disaster scenario. In particular, we
consider the case of a simulated volcano eruption scenario to
test the potentialities of our technique for lava flow detection.
We also compare the perfonnances of the proposed framework
on different kinds of disasters~ in particular, we consider the
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s(x',r') = ffdxdrr(x,r)g(x' -x,r' -r;r), (1)

identification of a flooded zone [5], to stress the significant
differences in the parameters used for change detection
purposes.

II. DIRECT MODELS

In this Section we present the fractal framework and we
outline the rationale of the proposed method.

where y(x, r) is the reflectivity pattern of the scene and
g(x '-x,r '-r;r) the unit impulse response of the SAR system [4],
[6]. Evaluation of the reflectivity pattern requires a description
of the observed surface as well as a model for their interaction
with the electromagnetic fields radiated by the SAR antenna
[4]. In this paper we use the models presented in the next two
paragraphs.

C. Fractal scattering model

Theoretical [2] and experimental [8] studies suggest that
use of fractal models improve the scattering method results. In
this paper we use the mm fractal model in describing the
surface roughness and the small perturbation method (SPM) as
scattering model for evaluating the reflectivity pattern [3].

Comparison between simulated and actual SAR data was
presented in [6] with respect to image single point nonnalised
moments and autocorrelation function, thus assessing the
simulator reliability. In those comparisons the fractal
parameters accounting for the microscopic description of the
scene were assumed to be constant. In this case the extension
we propose allows considering for the microscopic scale (up to
the electromagnetic wavelength scale) the fractal parameters
estimated from the available OEM, so that in order to compute
the reflectivity function we use fractal parameters varying all
over the scene of interest [5].

D. Comparison vvith actual SAR bnages

In order to show the ability of the presented siITIulator in
reproducing SAR data, we show some meaningful simulation
results. In particular, for one of the simulations the actual SAR
image relevant to the simulated scenario is available. The
region of interest is the area of Maratea (39°59'N 15°42'E),
South of Italy, a coastal area surrounded by steep mountains. A
digital elevation ITIodel (DEM) of a 20 x 20 Km:! area, with 20
x 20 m:! pixel spacing was available for the considered area, as
well as an ERS-l C-band SAR image, acquired in descending
orbit on the 30 of January 1996, with a view angle of 24.88°.
The DEM was interpolated via the fractal approach introduced
in [5], in order to be described on a rectangular grid, with pixel
dimensions of 3.99 x 19.9 m:!, in accordance with the ERS-l
acquisition geometry. The microscopic roughness, responsible
for the electromagnetic scattering, is provided by estimating the
local fractal dimension of the OEM. Therefore, we simulated
the SAR image acquired by the ERS-l sensor. The dielectric
constant £ of the scene is set to £=4Eo, and the conductivity (j

is set to 0=0.001 S/m.

The image obtained from the simulated raw signal via
standard processing, is presented in Fig. 1 and compared with
the actual image provided by the ERS-l SAR of Fig. 2 (near
range is on the left). The images are averaged with a 2 x 10

To compute the reflectivity function of the observed scene
the considered SiITIulator requires as input a DEM relative to
the scene of interest, sampled with a resolution coherent with
the considered sensor parameters: in practice, we need to
interpolate the available DEM [6].

We use the mm to model the surface imaged by the SAR
sensor. Hence, the fractal parameters, retrieved from the
considered DEM, are used to perfonTI a stochastic fractal
interpolation on the available OEM. In this way, the
interpolated OEM inherits the fractal behaviour of the original
surface [6]. The use of this particular interpolation technique
provides the possibility to use, for example, the interferometric
DEMs from SRTM (freely downloadable on the internet) or
any low resolution DEM, if a higher resolution one is not
available.

(2)
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A. SAR sinlulation

In past years, a SAR raw signal simulator was developed
and tested [4], [6]. A SAR data simulator is an important tool
to help scientists in better understanding the mechanisms
underlying SAR image formation and in the interpretation of
SAR data textures and of their modifications.

In the following we describe briefly the key issues for SAR
signal simulation. Let x and r be the independent space
variables, standing respectively for azimuth and range. By
using primed coordinates for the independent variables of the
SAR raw signal, s(x' ,r'), this can be expressed as [3]:

where t is the distance between the points (x,y) and (x',y'), and
the two parameters that control the mITI behaviour are:

H : the Hurst coefficient (O<H< I), related to the fractal
dimension D by means of the relation D=3-H.

s : the standard deviation, measured in [m(1-H)], of surface
increments at unitary distance, a real parameter related to an
mm characteristic length, the topothesy T, by means of the
relation S=T'-H).

B. f'ractal sUl:lace lnodel

Fractal models are widely considered the most appropriate
to quantitatively describe natural surfaces [2]. Fractal geometry
is able to reliably account for the non-stationarity of natural
surfaces, as well as for their self-affinity. The most used fractal
ITIodel is the fractional Brownian ITIotion (mm) [3]. The mm is
defined in tenns of the probability density function of its height
increments: a stochastic process z(x, .v) is an mm surface if, for
every x, y, x', y', it satisfies the following relation:
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other on the extraction of the fractal parameters of a ROJ
contour.

The variogram of an mm surface can be evaluated in terms
of the parameters Hand s [3] and expressed in logarithmic
form as:

A. SA R image ./;~actal dimension extraction

An analytical relationship between the fractal dilnension of
a portion of surface and the fractal dimension of the
corresponding SAR image has not yet been deeply
investigated. Anyway, the use of the SAR simulator allows the
definition of a wide set of canonical scenes, which can provide
an empirical relationship [5].

To carryon these studies, an efficient estitnation technique
is needed. Our algorithm is based on the variograln analysis.
For a given surface~ the structure function (variogram) V(r) is
defined as the mean square increment of elevation points
placed at distance r:

(4)

(3)

log V (r) =2 logs + 2Hlogr,

v(r) =(( z(x,y)- z(x',y') )'),

Figure 1. Simulated SAR image of the region of interest.

mu1ti-Iook~ so that the presented image resolution in azimuth 
slant range is 39.86 x 15.81 m2, which corresponds to an
azimuth - ground range almost square pixel (39.86 x 37.58 m2

).

A visual cOlnparison shows the capacity of the simulator of
reproducing the main characteristics of the SAR image~

suggesting the use of the SARAS as support for SAR actual
image interpretation.

Figure 2. Actual SAR image of the region of interest.

III. INVERSE MODELS

In the open literature, several methods for the extraction of
information from SAR images relative to scenarios subject to
changes are proposed. The majority of them are based on
classical magnitude change detection techniques such as
ratioing and differencing [1].

In this paper we present a technique for the extraction of
fractal parameters, whose use can bring value added
information. In particular~ we propose a twofold extraction of
fractal parameters~ one based on the intensity variation, the

which defines in a log-log plane a linear behaviour with
slope 2H, and ordinate intercept 210g s. Such a dependence
leads to retrieve the fractal parameters with a linear regression
over the log-log plots of measured values of V( r) [3].

Note that the application of this technique to SAR images is
someway critical, because it is necessary to take into account
the non equal spacing of the data set. We enlarged the available
technique validity to deal with such a case.

B. Extraction 0.[ the ROJ contour.fractal dimension

In several applications, different regions of interest can be
classified in accordance with the roughness of their contour. To
this aim, a box counting algorithm can be employed~ provided
that the region of interest was previously defined.

This operation can be not straightforward on SAR images
due to the presence of speckle. Therefore, a pre-processing
step, possibly based on the techniques presented in the previous
section, is required. We exploited here the simulator ability of
generating a training set for understanding the technique
performances and limitation. As an example~ we generated two
areas of different contour fractal dimension~ as presented in
Fig. 3. The left and the right areas have a contour fractal
dilnensions of D=1.27 ~ and D= 1.3~ respectively.

~.:

Figure 3. Simulated areas with fractal dimension D=1.27 (on the left) and
D=IJ (on the right).
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These masks can be used to define areas with different
geometrical (fractal dimension and topothesy) and dielectric
(pennittivity and conductivity) parameters with respect to a
homogeneous background. At this point, several techniques
can be used to extract the contour of the ROl. In particular, the
variogram technique used in the estimation of the fractal
dimension presents edge detection capabilities that can be used
to this aim. Once the corresponding area is retrieved in the
SAR image, we can estimate its contour fractal dimension. For
the proposed example, we obtained D s= 1.23 and Ds= 1.27,
respectively. As expected the fractal dimension is almost the
same. An underestimation is mainly due to the filtering of the
speckle necessary to extract the area from the SAR image.

IV. THE CASE STUDIES

In the following, the potentiality of the chain presented in
the previous section is tested on a case study, focused on the
monitoring of volcanic areas. In particular, a novel approach is
proposed, based on change detection techniques applied to
fractal parameters retrieved from pre- and post-crisis ilnages. In
the last part of the Section, a comparison of the technique
perfonnances in case of a different kind of disaster, in
particular the identification of a flooded zone, is presented.

Figure 5. Simulated ERS-l image of the Kilimanjaro area.

In order to estimate the ability of the proposed technique,
we simulated a lava eruption, by setting the simulation
parameters of a given region to the typical values for the most
common lava flows (AA and pahoehoe). However, to
appropriately account for the presence of lava, we gave the
region parameters the values defined in Table 1.

Two kinds of lava are defined: a smoother one, recalling
the properties of the pahoehoe lava flows and a rougher one,
recalling the properties of the AA lava flows. In Fig. 6 and 7
the two simulated SAR images are presented (near range is on
the left).

Lava parameter~' AA Pahoehoe

Dielectric Constant 8 20

Conductivity [S/m] OJ)} 1

Hurst coeffi cient 0.6 0.85

s 0.2

LAVA PARAMETERSTABLE I.A. Volcano eruptions

In the following, we present two simulated volcano
eruption scenarios. For both cases we show the performance of
our fractal approach for the identification of areas covered by
the lava flows.

The first case is relevant to the Kilimanjaro volcano (2°S
36°E). We provided as input for the simulator the digital
elevation model (DEM) of the zone, on a 90x90 m~ grid. The
DEM was interpolated via the fractal approach, in order to be
in accordance with the ERS-l acquisition geometry. In Fig. 4
we present a 3D representation of the DEM.

The simulation was performed according to the procedure
presented in the previous Section. The simulated image is
shown in Fig. 5 (near range is on the left). Such an image
represents a reference for the situation, in absence of lava
flows.

Figure 4. 3D representation of the Kilimanjaro volcano area.

Figure 6. Simulated ERS-l images of the Kilimanjaro area covered with
pahoehoe lava.
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Figure 7. Simulated ERS-l images of the Kihmanjaro area covered with
pahoehoe lava.

On the obtained SAR images we applied the variogram
method, obtaining the maps of the fractal parameters of the two
scenarios for change detection purposes. In this case, only one
of the two independent fractal parameters of the image, i.e. the
s parameter, was used to identify the region covered by the
lava. This is due to the fact that in our simulation we
considered that the high scale profile is not changed by the lava
flow. Anyway, the presence of the lava in the scene
significantly changes the microwave scales surface
characteristics of the area affected by the eruption, and it is
possible to exploit the sensitivity of the SAR return to the
surface microscopic roughness. We simulated the volcano
eruption by changing the microscopic parameters of the surface
and this resulted, essentially, in a change of intensity of the
image in the zone of interest. Anyway, we will make some
ITIOre observations on this issue when presenting our results
concerning the case of flooding.

In order to quantify the performance of the technique, a
reference map can be generated, by simulating the SAR data in
absence of speckle in the pre- and post- eruption cases. Their
difference defines the "ground truth" for the case study. In Fig.
8 the ground truth and the map obtained with the proposed
approach are shown.

We applied our technique also to the case of Mount
Cameroon volcano (4°2'N 9°17'E), obtaining similar results,
as shown in Fig. 9.

Figure 8. Comparison between ground truth map (on the left) and the
classification obtained with the proposed technique (on the right) for the case

of the Kilimanjaro volcano arca.

Figure 9. Comparison between ground truth map (on the left) and the
classification obtained with the proposed technique (on the right) for the case

of Mount Cameroon volcano area.

Note that in this case the false alarm rate increased with
respect to the previous example. This is mainly due to a more
problematic RaJ, subject to severe geometrical distortion
problems. Anyway, the majority of false alarm points can
easily be eliminated with simple post-processing algorithms,
due to their specific characteristics.

B. Flooding

As we already stated, in the previous examples only the
microscopic roughness of the RaJ was changed by the
presence of lava. No modification to the high scale profile was
supposed and this implied only a variation in the intensity of
the signal backscattered from the zone hit by the disaster. This
resulted in the fact that one of the fractal parameters retrieved
from the image was not necessary for change detection
purposes.

To better stress this issue we now present another simulated
disaster scenario, relevant to a flooding event [5]. The region of
interest is the one of Maratea, as presented in the previous
Section. In this case we modified the original DEM by creating
a river's spate in the valley shown in Fig. 10. The mean
difference between the pre- and post-crisis DEM in that area is
about 30In.

Figure 10. Close up of the area hit by the flooding.

In order to appropriately simulate the presence of water in
the flooded region, we modified the microscopic roughness and
the dielectric parameters as well. As far as the microscopic
fractal parameters are concerned, in the areas affected by the
flooding we set H to a typical value for the water surface
(H=O.75), and we set s to one half of the value in the pre-crisis

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on January 12, 2009 at 06:32 from IEEE Xplore.  Restrictions apply.



scenario. As for the dielectric characterization, the area
affected by the flooding is assumed to have a dielectric
constant of 20cS), and a conductivity of 1 S/m, which are typical
values for extremely wet terrain; the surrounding area is
assumed to have a dielectric constant of 4£) and a conductivity
of 10-3S/m, typical of terrains with low water content.

In [5] we studied this scenario using ERS VV polarization.
Here we exploit the potentialities of the simulator: in fact, it
allows a polarimetric analysis of the proposed technique. As an
example we simulated the scenario of interest with HH
polarization obtaining the result presented in Fig. 11 (the
flooded region can be noticed at the bottom of the image, in the
left comer). Anyway, in this case, the obtained image is quite
similar to the one obtained with VV polarization and,
consequently, we do not expect significant variations in the
performance of the technique.

Figure 11. Simulated post-flooding image for the case the Maratea area (ncar
range is on the left).

Finally, we applied the fractal framework obtaining the
classification result presented in Fig. 12.

Figure 12. Comparison between ground truth map (on the left) and the
classification obtained with the proposed technique (on the right) for the case

of flooding in the Maratea area.

In this case we exploited for the classification all the
available parameters: a combination of the fractal parameters
of the image was used to generate the binary masks presented
above. The modification of the OEM at macroscopic scales
determined a variation in the fractal dimension of the image
and this information was complementary with respect to that
supplied by the s parameter [5]. Essentially the fractal
dimension of the image shows a dependence on the fractal
dimension of the imaged surface measured at the scales ofSAR
resolution rather than at wavelength scales.

V. CONCLUSIONS

In this paper we presented a complete framework of fractal
tTIodels whose use allows improving the comprehension,
interpretation, and information extraction from SAR images. In
particular we addressed three case studies, showing the
capability of the proposed technique to face different disaster
management problems. In particular, we simulated two
volcanic eruption scenarios and a flooding stressing the
importance of the proposed simulation procedure to help in the
understanding of SAR data formation mechanisms and to
improve the parameter retrieving algorithms. We also
presented a novel change detection technique based on the
fractal parameters estimated on the image, stressing the
difference between the proposed case studies. The obtained
results show that the proposed techniques lead to significant
performances in the extraction of information from SAR data.
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