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Abstract— Natural surfaces show scale invariance statistical 
properties over a wide range of scales, and exhibit power-law 
spectra over a wide range of spatial frequencies: these properties 
are well modelled by fractional Brownian motion (fBm) two-
dimensional processes. We here present a closed form expression 
of the correlation coefficient of the fields scattered by a fBm 
surface and measured at two closely spaced positions. The 
obtained formulation shows that the correlation coefficient in the 
near-specular scattering case depends on a parameter that is 
related to the rms surface slope measured at the electromagnetic 
wavelength scale: when this parameter decreases, the correlation 
coefficient smoothly increases from the value obtained by the 
roughness-independent expression already available in literature 
to a value close to unity. 

I. INTRODUCTION 

Evaluation of the correlation coefficient of the fields 
scattered by a natural surface and measured at two closely 
spaced points is of great interest in monostatic and bistatic 
Synthetic Aperture Radar (SAR) interferometry [1] and in 
Global Navigation Satellite Systems Reflectometry (GNSS-R) 
[2]. In the far-from-specular scattering direction case, the 
correlation coefficient dependence on surface roughness is 
negligible, and the classical expression of [1-2], only 
dependent on radar parameters and observation geometry, can 
be used [3]. However, it has been recently shown [3-5] that in 
the near specular case, of interest for GNSS-R applications (in 
this case, the two points are the positions occupied by the 
moving receiver at two slightly different times), the correlation 
coefficient also depends on surface roughness, and it increases 
from the value obtained with the classical expression for very 
rough surfaces to a value close to unity for gently undulating 
surfaces. In [3-5], the randomly rough scattering surface is 

described in terms of its rms height standard deviation  and 
correlation length L, and its autocorrelation function is 
assumed Gaussian. In [5], non-Gaussian autocorrelation is also 
accounted for, provided that it is regular with its derivatives in 
the origin, in which case the surface is described in terms of its 
rms slope. However, experimental data show that, for soil 

surfaces, measured values of  and L increase with the length 
of the considered height profile (see, e.g., [6]); and it is well 
known that measured rms slope of a sea surface increases with 
the maximum spatial frequency that is considered to estimate 

it. Accordingly, , L and rms slope are not well suitable to 
characterize the roughness of natural surfaces. This is related to 
the fact that soil and sea surfaces exhibit power-law spectra 
over a wide range of spatial frequencies and show scale 
invariance statistical properties over a wide range of scales. 
Both features are well modeled by using fractal geometry, and 
in particular by using fractional Brownian motion (fBm) two-
dimensional processes [7]. Therefore, in this work we extend 
the result of [5] to the case of fBm surfaces.  

II. SURFACE MODEL  

A two-dimensional (2D) fBm is a random process z(x,y) 

whose increments z(x,y) − z(x’,y’)  over a fixed horizontal 

distance ∆= √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2  are zero-mean Gaussian 

random variables with variance 𝑄(∆) = 𝑠2∆2𝐻  (so that 

𝑄(∆) is the fBm structure function), where s is a parameter 

measured in m1−H, and H is the Hurst coefficient, with 0<H<1 

[7-8]. Realizations of the 2D fBm process are fractal surfaces 

with fractal dimension D=3−H.  
The fBm process is statistically non-stationary, with stationary 
increments, and has infinite variance [7-8]. However, real 
natural surfaces only obey the fBm definition up to an outer 
scale l that may be their linear size or, for a sea surface, the 
dominant wavelength. Such physical (or bandlimited) fBm 
random surfaces are statistically stationary [7-8] and have finite 

variance = 1

2
𝑠2𝑙2𝐻, so that we can write, for ∆≤ 𝑙 , 

 
𝑄(∆) = 2𝜎2[1 − 𝐶(∆)] = 𝑠2∆2𝐻   , (1) 
 
where 𝐶(∆) is the surface normalized autocorrelation function. 
We want to compute the correlation of GNSS-R signals for 
such surfaces. It is clear from (1) that 𝐶(∆) is not Gaussian, 
and that its second derivative 𝐶"(∆) diverges in the origin, so 
that results of [3-5] cannot be used. The needed new, original 
evaluation is described in the next Section. 

III. EVALUATION OF THE CORRELATION COEFFICIENT   

 The geometry of the problem is illustrated in Fig.1, where 
T is the position of the transmitter, R1 and R2 are the positions 

of the receiver at times t and t+t, respectively, the origin O is 
the specular point at time t and all other symbols are defined in 
[5]. The correlation coefficient of the fields is defined as 
 

𝜌(∆𝑡) =
|cov[𝐸(R1)𝐸(R2)]|

√var[𝐸(R1)]var[𝐸(R2)]
    , (2) 

 
where 𝐸(R1)  and 𝐸(R2)  are the generic component of the 
electric fields at R1 and R2. By following the same procedure as 
in [5] we get, see eqs. (10) and (12) of [5], 
 

cov[𝐸(R1)𝐸(R2)] ≅  

≅ ∫ ∫ ∫ ∫ exp{−𝑗𝑘[𝑅𝑇(𝑥,𝑦)+𝑅𝑅1(𝑥,𝑦)−𝑅𝑇(𝑥′,𝑦′)−𝑅𝑅2(𝑥′,𝑦′)]}

𝑅𝑅1(𝑥,𝑦)𝑅𝑅2(𝑥′,𝑦′)
∙

∞

−∞

∞

−∞

∞

−∞

∞

−∞
 (3) 

𝐹(𝑥, 𝑦)𝑤(𝑥, 𝑦)𝐹∗(𝑥′, 𝑦′)𝑤(𝑥′, 𝑦′)𝑓(𝑥, 𝑦, 𝑥′, 𝑦′)𝑑𝑥𝑑𝑦𝑑𝑥′𝑑𝑦′   
 

where   𝑤(𝑥, 𝑦) = exp (−
𝑥2

2𝐴𝑥
2 −

𝑦2

2𝐴𝑦
2 )   (4) 

is the sensor illumination function, peaked around the origin, 

so that Ax and Ay are the x and y sensor resolutions, 
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𝑓(𝑥, 𝑦, 𝑥′, 𝑦′) = exp {−
𝑘2𝜎2

2
[𝑢𝑧1(𝑥, 𝑦) − 𝑢𝑧2(𝑥′, 𝑦′)]2}   

[exp {−
𝑘2𝑢𝑧1(𝑥,𝑦)𝑢𝑧2(𝑥′,𝑦′)

2
𝑄(∆)} − exp {−𝑘2𝜎2𝑢𝑧1(𝑥, 𝑦)𝑢𝑧2(𝑥′, 𝑦′)}] ≅  , (5) 

≅ exp {−
𝑘2𝜎2

2
[𝑢𝑧1(𝑥, 𝑦) − 𝑢𝑧2(𝑥′, 𝑦′)]2} exp {−

𝑘2𝑠2∆2𝐻𝑢𝑧1(𝑥,𝑦)𝑢𝑧2(𝑥′,𝑦′)

2
}  

 

and all other symbols are defined in [5]. In (5) we have used 

(1) and have assumed 𝑘2𝜎2 = 1

2
𝑘2𝑠2𝑙2𝐻 ≫ 1  (i.e.,  larger 

than the electromagnetic wavelength , that is about 20 cm for 

GNSS-R). Proceeding again as in [5] we get 
 

cov[𝐸(R1)𝐸(R2)] ≅ ∫ ∫
|𝐹(𝑥,𝑦)|2𝑤2(𝑥,𝑦) exp{−𝑗𝑘[𝑅𝑅1(𝑥,𝑦)−𝑅𝑅2(𝑥,𝑦)]}

𝑅𝑅1(𝑥,𝑦)𝑅𝑅2(𝑥,𝑦)

∞

−∞

∞

−∞
  

exp {−
𝑘2𝜎2

2
[𝑢𝑧1(𝑥, 𝑦) − 𝑢𝑧2(𝑥, 𝑦)]2}  (6) 

2𝜋 ∫ J0[𝑘𝑢𝑥𝑦(𝑥, 𝑦)∆]
∞

0
exp {−

𝑘2𝑠2∆2𝐻
𝑢𝑧

2(𝑥,𝑦)

2
} ∆ 𝑑∆ 𝑑𝑥𝑑𝑦       , 

 

where 𝑢𝑥𝑦 = √[
𝜕(𝑅𝑇+𝑅𝑅1)

𝜕𝑥
]

2
+ [

𝜕(𝑅𝑇+𝑅𝑅1)

𝜕𝑦
]

2
 ,   𝑢𝑧 = √𝑢𝑧1𝑢𝑧2  , and 

J0 is the zero-order Bessel function. The integral over ∆ in (6) 

can be expressed via a series expansion around uxy=0 (which is 

the value of uxy at the specular point, i.e., in the origin) [8]. By 

arresting the expansion at the second order, we get 
 

∫ J0[𝑘𝑢𝑥𝑦(𝑥, 𝑦)∆]
∞

0
exp {−

𝑘2𝑠2∆2𝐻
𝑢𝑧

2(𝑥,𝑦)

2
} ∆ 𝑑∆≅

Γ(1 𝐻⁄ )

2𝐻 (
𝑘2𝑠2𝑢𝑧

2(𝑥,𝑦)

2
)

1 𝐻⁄ (1 −
Γ(2 𝐻⁄ ) 𝑘2𝑢𝑥𝑦

2 (𝑥,𝑦)

4 Γ(1 𝐻⁄ )  (
𝑘2𝑠2𝑢𝑧

2(𝑥,𝑦)

2
)

1 𝐻⁄ ) ≅

Γ(1 𝐻⁄ )

2𝐻 (
𝑘2𝑠2𝑢𝑧

2(𝑥,𝑦)

2
)

1 𝐻⁄ exp (−
Γ(2 𝐻⁄ ) 𝑘2𝑢𝑥𝑦

2 (𝑥,𝑦)

4 Γ(1 𝐻⁄ )  (
𝑘2𝑠2𝑢𝑧

2(𝑥,𝑦)

2
)

1 𝐻⁄ )      , (7) 

 

where Γ is the gamma function. The exponential function in 

(7) is peaked around the origin as 𝑤2(𝑥, 𝑦), and its width, to be 

compared with the sensor resolution, can be evaluated by 

expanding the exponent around the origin: by using the same 

approach as in [5], we get 
 

exp (−
Γ(2 𝐻⁄ ) 𝑘2𝑢𝑥𝑦

2 (𝑥,𝑦)

4 Γ(1 𝐻⁄ )  (
𝑘2𝑠2𝑢𝑧

2(𝑥,𝑦)

2
)

1 𝐻⁄ ) ≅ exp (−
𝑥2

𝐺𝑥
2 −

𝑦2

𝐺𝑦
2)    , (8) 

 

where    𝐺𝑥 = √
Γ(1 𝐻⁄ )

Γ(2 𝐻⁄ )
(√2𝑘1−𝐻𝑠 cos1−2𝐻 𝜗0)

1 𝐻⁄
2𝑟𝑅1  

              𝐺𝑦 = √
Γ(1 𝐻⁄ )

Γ(2 𝐻⁄ )
(√2𝑘1−𝐻𝑠 cos 𝜗0)

1 𝐻⁄
2𝑟𝑅1         ,  (9) 

 

with 𝑟𝑅1  being the receiver distance, see Fig. 1. It can be 

verified that 𝑘1−𝐻𝑠 ~ 𝑠𝜆𝐻 𝜆⁄ , which is the rms slope at the 

wavelength scale. From this point on, results of [5] apply, in 

which (9) replaces (23) of [5]. Accordingly, we find 
 

𝜌(∆𝑡) ≅ exp {−
𝑘2∆𝑡2[𝑊𝑥

2 cos4 𝜗0𝑣𝑥
2+𝑊𝑦

2𝑣𝑦
2]

4𝑟𝑅1
2 }     (10) 

 

with 𝑊𝑥,𝑦 = 𝐴𝑥,𝑦𝐺𝑥,𝑦 √𝐴𝑥,𝑦
2 + 𝐺𝑥,𝑦

2⁄   and vx,vy being the x and y 

components of the receiver’s velocity v.  

For 𝐴𝑥,𝑦 ≪ 𝐺𝑥,𝑦 , we get 𝑊𝑥,𝑦 ≅ 𝐴𝑥,𝑦 and  

 

𝜌(∆𝑡) ≅ exp {−
𝜋2∆𝑡2[𝐴𝑥

2 cos4 𝜗0𝑣𝑥
2+𝐴𝑦

2 𝑣𝑦
2]

𝜆2𝑟𝑅1
2 }   , (11) 

 

which is the classical solution of [2]. Conversely, for 𝐺𝑥,𝑦 ≪

𝐴𝑥,𝑦 , we have 𝑊𝑥,𝑦 ≅ 𝐺𝑥,𝑦  and, using (9) in (10), 
 

𝜌(∆𝑡) ≅ exp {−
Γ(1 𝐻⁄ )

Γ(2 𝐻⁄ )
(2𝑘2𝑠2 cos2 𝜗0)1 𝐻⁄ 4∆𝑡2𝑣2}    . (12) 

 

Eq.(12) reduces to the result of [5] for H→1, with s assuming 

the meaning of rms slope.  

By fitting the rms height-vs-patch size data for the Z4 site 

of [6] (flat soil) we get H=0.93, s=0.06: for the high-altitude 

airborne system of [5] and 𝜗0 = 30° this corresponds to 𝐺𝑥 =
1975 m and 𝐺𝑦 = 1711 m, which are larger than resolution, 

so that (11) applies; for ∆𝑡 = 7 ms we get =0.33.  

For the Z1 site of [6] (very flat soil) we get H=0.83, 

s=0.01: for the high-altitude airborne system of [5] and 𝜗0 =
30° this corresponds to 𝐺𝑥 = 230 m and 𝐺𝑦 = 199 m, which 

are smaller than resolution, so that in this case (12) applies; for 

∆𝑡 = 7 ms we get =0.41. 

 

Figure 1. Geometry of the problem. We assume 𝑟𝑇 ≫ 𝑟𝑅1,2 
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