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Abstract — In this paper the equivalent number of scatterersof a rough scattering surface is defined, physicsl justified, and
evaluated.

New generation space-borne SAR sensors are acquiginmages at such a high ground resolution that quét often the statistics of
these images do not match with those predicted byhé classical Rayleigh speckle model. Non-Rayleiglpexkle is frequently
mathematically modeled via a K-distribution in terms of a parameter that presently can be estimated.éi, a-posteriori) on the SAR
images and is linked to the number of scatterers peesolution cell. However, to model and predict (e., a-priori) the statistical
behavior of the SAR images, a full characterizatiorof the scatterers is required. To this aim, the awept of equivalent number of
scatterers of a rough scattering surface is here flaed and physically justified. This parameter is hen analytically evaluated in closed
form as a function of the roughness of the illumintged surface and of SAR sensor parameters. The preged analytical evaluation
applies to both classical and fractal description®f the surface roughness. Finally, the dependencd the equivalent number of
scatterers on the roughness of the illuminated suace and on SAR sensor parameters is analyzed forrange of values of roughness
parameters actually encountered in natural surfacesand by considering typical system parameters of adern high-resolution space-
borne SAR systems. It is shown that, actually, fosome combinations of realistic surface and systemammeters, the equivalent

number of scatterers can be of the order of unity.

Index Terms— Synthetic Aperture Radar, Speckle, Rough Surface€lectromagnetic Scattering, Fractals.

|I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) images exhibit the well-knospeckle phenomenon, due to fact that usually tiyeasi
backscattered by a SAR resolution cell is the catitesum of random radar returns. When a natunadiaraly rough, distributed
surface is observed, this happens because SAR imagkition cell dimensions are much larger thanwvavelengthd, of the
incident electromagnetic field. Due to the lacldeferministic knowledge about the structure ofdhdace at wavelength scale,

a statistical description of the speckle phenomésarsually adopted. The return from each resatutiell in the SAR image is
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modeled as the coherent sum of the returns comiogp independent discrete scatterers randomly diggd within the
resolution cell. Evidently, for a rough distributedrface the concept of “independent scatterers’noadirect physical meaning,
and the idea itself of discrete scatterers soundsasonable; notwithstanding, this very simple m@htical model easily leads
to interesting results, briefly recalled in theldoling, and therefore we think it is worth trying telate it to the geometrical
properties of the scattering surface.

The speckle model can be formalized as a randork iwdhe complex plane [1]-[4], where the key paeden for its statistical
characterization is the number of independent ex@att per resolution celN. Under the hypothesis thit>1, the central limit
theorem can be applied giving rise to a circulamplex Gaussian field, with Rayleigh distributed &itade, and uniformly
distributed phase. In this case the speckle imddfadully developedFor low resolution SAR sensors, whose resolutieth
area is of the order of tens of square meters (aege compared to the centimeter wavelength)atiee mentioned hypothesis
can be safely assumed and the Rayleigh amplitudiehtor, equivalently, the Exponential intensityaet) well matches actual
data for almost every surface roughness. This migdedry attractive because only the knowledgehefrnean square value of
the cell return is required for the speckle desioip regardless of an detailed characterizatiothefscatterers. However, for
modern space-borne very high resolution SAR sensimeshypothesis of a resolution cell size muchdathan the wavelength
cannot be safely assumed, and the statistics of iB®ges can depart from those predicted by thedRgtyimodel. In particular,
for sensors like Cosmo-SkyMed and TerraSAR-X tlze sif the resolution cell (in spotlight mode) isdehan 1 fhagainst a
wavelength of 3.1 cm; moreover, for forthcomingsas which will operate in C (e.g., Sentinel-1)XeSy., NovaSAR-S) and L
(e.g., ALOS-2) bands (i.e., with wavelengths of tihder of tens of centimeters) with resolutionghef order of few meters, the
Rayleigh model will probably be even less accurate.

The K-distribution has been valuably used to mdHelstatistical behavior of SAR images as a fumctib the number of
scatterers per resolution cell for aNy{4]. This distribution was originally introducedrfits ability in modeling SAR image
statistics of actual oceanic scenes for not lar@ees ofN. Moreover, the coherent sum of a finite numbefinfependent)
random returns has been proved to be in generastiiktited [4]-[7]. Hence, non-Rayleigh statistjg§ and small number of
scatterers per resolution cell were (on phenomeicab bases) employed to deduce the occurrencesafréficant degree of
correlation between the scatterers in the resaiwt&l. However, especially in this case, a comensive physical and statistical
characterization of the scatterers is requireddeinto adequately describe the speckle phenomédit@nconcept of independent
scatterers needs to be elucidated.

In this paper the concept of equivalent numbercatterers of a rough scattering surface is defiplgsically justified and
related to the surface roughness, based on a plhydéscription of the scattering phenomenon witthia resolution cell.

Although the model can be also employed for seéases, it applies to natural rough solid surfasesh as bare or little
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vegetated soils. At the best of our knowledge, ¥ew papers in the open literature are focusedi@tplon the characterization
of speckle as related to the physical propertieshs kind of surfaces [5], [7]. However, also imese works no practical
definition of the concept of scatterer in preseata distributed target is provided. For the fiiste, in the following a relation
between the number of independent scatterers pelute®n cell and the physical properties of thdame (roughness) and of the
sensor (wavelength, look angle, resolution) is jated. The roughness of the illuminated surfacedsl@eted either as a classical
stationary Gaussian process or as a fractional Bimmwmotion (fBm) process [1], [8]-[11]. The phasentributions of the
returns coming from each point in the resolutiolh @e evaluated: the difference in these phasadaharacterizes the speckle
present on the image.

The paper is organized as follows. Section |l igaded to summarize the basic concepts of the dalskEixponential and K-
distributed speckle models. In Section Il we presthe surface models employed to describe thdutso cell roughness.
Section |V is devoted to introduce the electromégrepproach that allows us evaluating the numlbeigaivalent scatterers per

resolution cell as a function of surface and sepsoameters. Finally, some concluding remarks ezsgmted in Section V.

Il. SPECKLEMATHEMATICAL MODELS

Most of the models available in literature desctifoe return from a resolution cell as the cohesemh ofN electromagnetic

returns [1]-[7]:

E=Vel® =3N Vet )}

whereV;e/%i is the contribution due to theth scatterer. Hence, the fiell is a function of the numbeX of scatterers per
resolution cell and, according to this value, theckle will be Exponentially or K-distributed, astdiled in the following sub-

sections.

A. Exponentially-distributed speckle

In the hypothesis that the numb¢iof independent scatterers per resolution celeiy Varge, the central limit theorem can be
used to evaluate the phase and amplitude of theifieterms of their pdfs [1]-[2]. In this caseetlpeckle is defined as fully
developed andE turns out to be a circular complex Gaussian figldpse amplitude, intensity and phase are desctiyed
Rayleigh, an exponential and a uniform distributiofi0,2r1, respectively.

Note that in this case only the knowledge of theamsquare value of the cell return is requiredtlier speckle description,

regardless of a detailed characterization of tlatteers.
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B. K-distributed speckle

If the hypothesis of a large number of independsstiterers per resolution cell does not hold, tteblpm of studying the
coherent sum of a finite number of fields must dekted. To obtain a closed form pdf for the retintensity, the following
assumptions are made [4]: 1) the amplitudeand the phaseg are statistically independent from each otherfamu V; and g
if i #j; 2) theV, are K-distributed; 3) they are uniformly distributed in [078. Under these hypotheses, the return intensity

w=|E]’ presents a pdf that can be expressed as [4]:

p(w) = 2L (Y e (), @

T \ 2

where the parameté is related to the number of scatterers per reisolwtell through the relatio® = N(1 + v), b andv are
parameters depending on the meam/%fKy,.1(¢) is the second kind modified Bessel functiorooderM-1 andI'(+) is the Euler
Gamma function.

It can be shown that foM>>1, the distribution (2) reduces to a negative egmbial function, which is in accordance with the
Exponential model [4].

Note that the above described models are purelfienatical ones: they are certainly formally sound,do not provide any
physical-based reliable definition of the scatterand do not make any attempt to directly reffa¢enumber of scatterers to the
physical parameters characterizing the observeldaii(actually, they cannot). Leaving aside thisliprinary definition, the
idea itself of discrete (elemental) scatterers s@ynd unphysical for rough distributed surfacest e overall radar return, as
a simple mathematical sum of elemental scatteriatyes, appears formally too far from the typicahdgor of any

electromagnetic scattering approach valid for rosigtfiaces [1], [2], [9], [12].

Ill.  SURFACEDESCRIPTION

The choice of an adequate model for the observefdicguis crucial for scattering evaluation purpodesthe literature,
widespread models describe the rough surface stmpestationary Gaussian process [1], [2], [12]-[Hbwever, in the last
decades it was demonstrated that fractal modeltharenost reliable ones for the description of redtsurfaces [8]-[11], [13]-
[16]. In particular, only fractal models are aldetake into account the scaling properties typidadatural surfaces [13]-[21].

In the following of this section both models ardailed. More details regarding the comparison &f thassical and fractal

models and the range of typical values of the roegh parameters of actual natural surfaces aretedpa the Appendix.

! In particular, the value df can be set in order to obtain the proper valu®imean ofv. For further details on typical values wéee [4].
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A. Classical model

Classical models used for the description of randongh surfaces involve the definition of a pdf floe height of the surface.

Usually, a zero-meanf variance Gaussian distribution is used:

Priz < Q=g [ exn (— 1) &, ®)

2o v~ 20

where Pr{s} stands for “probability”.

For scattering evaluation purposes also the seawddr statistical characterization is necessarys lassumed that the
stochastic process describing the surface is statjo(or, at least, wide sense stationary) anddpat, so that its second order
characterization can be provided through the ndemlauto-correlation functiofi(t) 2 (|z(x, y)z(x', y"|?)/a?, whereris the
distance between the pointsyj and &'y) and <> stands for the statistical mean. In paldr, the most widely used (single-

scale) auto-correlation functions are the Gausaimhthe Exponential ones [1], [2], [9], [13]-[214.the former case, we have:

2

C(t)=e 72, 4)
while in the latter:
C(T)=€_%, (5)

wherelL is the correlation length of the surface. Moregémeral, in some cases intermediate Gaussian-Erfiaheodels can

be used [19]. They present autocorrelation funstiointhe following type:

C(1) =e_(%)n, (6)

with n € [1,2]; for n=1 andn=2 they reduce to the cases of (5) and (4), res@dygt

Alternatively, the structure functid@(7), i.e., the surface increments variance, can bd:us

Q1) = (lz(x,y) — 2(x, y)I*)=20%*(1 - C (1)), 7
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which, using (6), becomes
Q(1) = 20? (1 - e_(%)n). (8)

A stationary behavior for the height statisticabg@gss must be assumed to usand L as surface roughness descriptors:
however, this hypothesis presents well-known prmollén modeling the roughness of natural surfacds, [[iL3]-[17]. An
unambiguous definition ofo and L is not straightforward, thus complicating the dagphent of effective measurement
procedures. As a matter of fact, strict requiremmentist be fulfilled to obtain reliable measureghafse parameters [13]-[15],
[19], [21]. For this reason, in the following suketion we introduce a powerful alternative fradiased model for the

guantitative description of the roughness of natsuafaces.

B. Fractal model

The above described conventional surface modeldefieient for characterizing surface roughnessabse they do not take
into account the statistical scale-invariance pridge typical of natural surfaces [13]-[17]. Uswalfractal surface models are
based on the fBm model [9], [22], [23]. The fBmason-stationary, everywhere continuous, nowhefferdntiable process,
described in terms of the pdf of its incrementstéchastic proces&x,y) is an fBm surface if, for every X', y, y’ it satisfies the

following relation:

" 1 § 2
PI'{Z(X,y) —z(x )y )< f—} = m[_w exp (—21‘2_52—1_11_21_1) dé, (9)

where, as in the previous cagds the distance between the pointy)(and &'y") and the two parameters that control the fBm

behavior are:

- H: theHurst coefficien{0<H<1), related to the fractal dimensibnby means of the relationship=3-H.

- T [m]: thetopothesyi.e. the distance over which chords joining peiat the surface have a surface-slope mean-square

deviation equal to unity.
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Using these two parameters we are able to complditcribe the structure function of the surfacghout any arbitrary
choice of the autocorrelation function of the saefaln the fractal case the shape of the strudturetion derives directly from

the incremental process characterization (9). ttiquaar, the fBm structure function is by defiiti

Q@) & (lz(x,y) — z(x',y)|)=T?>"2H 7", (10)

Note that both in the classical (8) and fractal) @@ses the structure function is an increasingtfan of the distance.

Finally, we explicitly note that no straightforwarelation between the fractal parameters and thesidal ones is available.
As a matter of fact, the definition of "equivalend” and L involves the introduction of some kind of deperaemn the
observation scales of interest, thus providing tjtias which are dependent on the size of the [er¢f] and which for very

large values of the profile length do not converghe values ofrandL predicted by the classical models [9], [14], [121].

IV. ELECTROMAGNETICMODEL

The SAR image is the superposition integral of tb#ectivity function ), weighted by the overall (i.e., including the

focusing operation) SAR unit resporige) [2], [25]:

i(x0,¥0) = [J v(x, y)g(x0 — x,yo — ¥)dxdy. (11)

/
7 Sensor line of flight

|
7 1\

(xy,2(x,0))

(x'p z(x’y)

Fig. 1: Geometry of the scattering problem.
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The functiong(+) is assumed to be negligible outside an #&e&ntered around{yo), here defined as the “resolution cell”.
The reflectivity functionyx,y) can be expressed as the product of a fé&tarich depends on the surface electric permistivit
the incidence angle and polarizations, and a (tagywpropagation factoe/2%Rej2k™ which accounts for the phase
contributions coming from the points of the resiontcell located in positiom = xx + yy + z(x,y)Z [25]. Here,k = kX +
k,9 + k,2 is the electromagnetic propagation vector, so [tkfit= k = 2rm/A [m™] [1], andR is the distance of the sensor from
the origin of the reference system. If we reasgnabsume thab is constant within a resolution cell, then (11 tee rewritten

as

i(x0,¥0) = Se KR [[ eJ2kTCX) g(xy — x,y, — y)dxdy = Se™I2R [[ el2kx¥ gJ2kyY @I2kzz(0¥) g (x — x,y, — y)dxdy  (12)

where the randomnessi¢f) is due to the presencezfk,y) in the phase term.

In order to still employ the simplified model (1)e can subdivide the resolution cell into smallemains in such a way that
electromagnetic returns pertaining to areas in@dud® a single domain are strongly correlated, iwle returns from different
domains are uncorrelated. The return from the whedelution cell is then evaluated as the sum tofrms from these domains.
Within this framework each domain can represenu@ly is the physical counterpart of) a singledterer”, and, by definition,
originates a radar return uncorrelated from thasginent to the adjacent scatterers. Then, thevatgrit number of scatterers
per resolution cell is introduced as the ratio lestmwthe resolution cell are@, and the equivalent scatterer area. Accordingly, i
is important to choose a reliable rationale to miefine equivalent scatterer size: one might be tednfp choose as scatterer
(linear) size the roughness correlation lengttHowever, this choice is not suitable for the fahcase, in which no unique
correlation length can be defined [9]-[11], [1314]; moreover, in the following, we show that tlisoice is in general wrong
even in the classical case, although the surfaoeleton length turns out to be an upper boundtfier (equivalent) scatterer
size.

Geometry of the scattering problem is reportediq E, whered is the sensor look angle amds the distance between two
generic points located inside the resolution eepasitions X,y') and &.y), respectively.

To obtain a proper physical evaluation of the srattsize, we define the scatterer radiysas the distance between the two

generic surface pointg,y) and &'y, such that the correlation between electromagmneturns from the two points, i.e.

2
<ej2kzz(x,y)e—jzkzz(x',y')> — <e—jzkz(z(x’,y')—z(x,y))) — e—(ZkZZ) Q(T), (13)
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TABLE |
SAR SENSORPARAMETERS
Parameter Value
Look angle, J[deg] 30
Wavelength, A [m] 3.1102
Resolution cell aread [m?] 1

falls below a given threshold, say, with t of the order of unity. Accordingly the requiredwe oft,, must satisfy the following

relation:
—_t
Q(TM) - 2k§' (14)

The above condition is fully compliant with therinsic hypothesis in (1) prescribing independerictha radar returns level,
not at the surface level. In addition, conditiod)(holds the remarkable property of being appliedablboth classical and fractal
models. Mathematically, (14) is equivalent to reguhat the standard deviatiakz\/m of the phase difference between the
contributions coming from points,§) and &'y") is equal to/2t.

According to the previous definition, the corraetatibetween the return from any point of the scattand the return from the

scatterer center is greater thgnor, equivalently, the phase difference betweerréturn from any point of the scatterer and the
return from the scatterer center has a standariatitav smaller thar/2t.
In order to proceed with the explicit calculatiohtg, we now need to take into account the specificaggrfmodel. In the
following the cases of classical and fractal swefamdels are separately investigated.
A. Classical surface model

In the classical case we can compuyeby using the definition of the structure functi@f) into (14):

t
4k202’

Clry) =1— (15)

Assuming the auto-correlation function in (6) weaob:

2= () ®

4kZo?
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withn € [1,2].

For very rough surfaces presentitigfa® > t (with t of the order of unity), we can write:

(%) = 5= )
i.e,

™ t %

T (4k§7) : (18)

We obtain that, for very rough surfaceg, < L, i.e. the correlation length of the returns is msmaller than the correlation
length of the surface heights.
Conversely, expression (16) is meaningless if

ko <. (19)

This is related to the fact that the minimum vahfethe correlation in (13) is the product of stitil means, i.e.,
exp(—4k2a?), which is negligible fodkZs? » 1. If gis small, this minimum value is no longer negligitand this should be
accounted for by setting eedependent threshold for the correlation in (13pwdver, this complication can be avoided by
noting that the correlation length of the returasmot exceed the correlation length of surface lmoags - in fact, the lack of
correlation of surface heights (and hence theirpethdence, since they are Gaussian) implies thepémdience of their
exponentials in (13) - and that for valueskaf just below unityzy is of the order of.. Accordingly, it is reasonable to use (16)
whenever surface roughness is such that (16) teagjglL.<1, and to sety /L=1 otherwise.

Now we can also evaluate the equivalent numbecattarers per resolution cell as the ratio betvibercell area andnts:

N=—2" = N(Z ko). (20)

From (20) it is evident that the number of equinakecatterers per resolution cell is a function of:
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- the resolution cell areanormalized to the area of a circle with radiusada the correlation length of the surfdge

- the relative surface roughnédss;

- the shape of the autocorrelation function.

In Fig. 2 the behavior dfl as a function o&VriL? is shown, fixing the shape of the autocorrelafiorction (a) and the relative
surface roughness (b). As expected, the numberatfesers increases linearly with the increas&/of . Note that from now on
the value of the correlation threshold is fixed1toAll the presented graphs are plotted only foluea of the number of
equivalent scatterers per resolution é¢¢llower than 10: in this way, only the range for erhia significant departure from the
Exponential model is experienced is investigated.

In Fig. 3N is shown as a function &fg; fixing AmL? (a) and the shape of the autocorrelation funcfiynAs expected, the
number of scatterers increases with the increasehef surface roughness. In particular, the infleered the chosen
autocorrelation function is relevant: this unveslse of the weak points in the use of classicalemafmodels, for which no
straightforward procedure for the identificationtbé true autocorrelation function exists. Convigrses shown in the previous
section the use of the fractal fBm model requiresarbitrary choice for the autocorrelation, becaitsshape is automatically
fixed by the surface model itself. Note that nopyraf the behavior oN as a function ofi is provided because the case of

intermediaten values is of small practical interest in the cahtd this paper.

N
N le 'f
107 . [ .
: ,', I /;
’ 8r Pid Ve
8 1, [ Pie Lot — n=1
. i ’¢ ..'.
: K L 6; R et = n=15
: e 4 e Pt
b: / - kZ‘T:_\/ i R "2
Sy 2\ e-1 o .
S -- k=1 4f .
’ Lo’
/) 4
27 k,o=15 2L
A
2 4 6 8 2 05 10 15 20 25 30 L2
() (b)

Fig. 2: Number of scatterers per resolution cedtted as a function o&/mi_2 In (a) the Gaussian autocorrelation function4jfi¢ assumed,

while in (b)k,0=1 and the autocorrelation function of (6) is assdméh the values afi provided in the legend.

In Fig. 4 we provide the plot of the number of searsN as a function of the correlation length of theface L for three
different values ofg and for a Gaussian auto-correlation function. paeameters reported in Table |, corresponding ¢ th

Cosmo-SkyMed Enhanced Spotligth SAR sensor are inséx evaluation ok, = (2m/A)cos(¥) in (14) and of the number of
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independent scatterefd. Typical values of the roughness parameters amsidered [14], [20], [22]. A wider discussion
regarding the typical values of the roughness patars of natural surfaces is reported in the Apperiidcan be noted from the

graphs that in many actual situations the numbexquiivalent scatterers per resolution cell is feow 10. In these cases the

speckle is partially developed.

A
N . =05
10; ' 2
o 'l’ A 5
81 I' 7rL2
’ A 1o
U —_—
6r ll nL2
[ y
4+
I 2t
2 j 2 .
. . . = ok . . . . oky
065 0.70 075 0.80 06 08 1.0 12 14
() (b)

Fig. 3: Number of scatterers per resolution cedttetd as a function d€,o. In (a) A/m_>=5 and the autocorrelation function of (6) is assdm

with the values of provided in the legend; in (b) the Gaussian autetation function of (4) is assumed.

N
101 — 0=0.004 m

[ = 0=001m
ol -+ 7=002m
6
al .
2t -
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Fig. 4: Plot of the number of scatteré¥sas a function of the correlation length of thefate L [m] assuming the (Cosmo-SkyMed)

parameters reported in Table I.

B. Fractal surface model

If a fractal model is assumed for the surface stinecture function (10) can be used into (14), thibsining, along guidelines

similar to those provided in the above sub-sectiba following size for the equivalent scatterers:
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|~

v = (#) . (21)

Note that (21) can be used for any value of théasarroughness fractal parameters, because thenmimivalue of the
correlation in (13) is zero. This is related to thénite-variance property of fBm [8]-[11].
Also in this case we can evaluate the equivalentber of scatterers per resolution cell as the tagioveen the cell area and

mtZ, obtaining:

N=— A A NAKLKTH). (22

2
"(ﬁszl-H)H "(ﬁ(ki)l-ﬁ)

TN

From (22) we can assess that the number of equivetatterers per resolution cell is a function of:

- the relative resolution cell argi2;

- the relative surface roughndss;

- the Hurst parametét.

Also in this case some plots Wfas a function of its parameters are reported. & péss illustrate behaviors df that cannot
be intuitively anticipated without considering iatélil the relation between fractal parameters amfhse roughness. In Fig. H,
is shown as a function ofk2, assuming to fixd (a) andk,T (b). In this case, as expected, the number ofeseas increases
linearly with the increase ofk2. Note that, as in the previous case, the valufetorrelation thresholdis fixed to 1 and all
the presented graphs are plotted only in the rarfgge the number of equivalent scatterers perugesalcell is not larger than
10.

In Fig. 6 the behavior oN as a function ok,7 is shown, assuming to fidkZ (a) andH (b). The number of scatterers
increases with the increase of the relative surfacghness. No graph f as a function ofH is provided because, due to the
limited range of the considered valuestb{H € [0.6, 0.8]), we think that this behavior is adequately ilfagtd by the graphs

presented in Fig. 5 (b) and 6 (a).
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Fig. 5: Number of scatterers per resolution caltted as a function ofk2. In (a)H=0.7, while in (b),7=0.0005.
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Fig. 6: Number of scatterers per resolution cedtted as a function d¢ 7. In (a)Ak2=1000, while in (b) H=0.7.

Finally, in Fig. 7 we provide the plot of the numlué scattererdN as a function of the topothe3yof the surface - again for
the usual three values bf — for the Cosmo-SkyMed SAR sensor whose parameterseported in Table |. The used fractal
parameters are in accordance with typical valuegdtural surfaces reported in the open literafudg [14], [16], [23], [26]. A
wider discussion on typical values of the fractatgmeters of natural surfaces is reported in thpeAdix. Figure 7 clearly
shows that for resolution cell dimensions typichhigh resolution SAR sensors, and for typical eslwf the fractal parameters
of a natural surface, the number of scatterersrglution cell can approach unity in many pratt@ases. When this is the
case, the speckle cannot be treated as fully dpgdland the K-distribution introduced in (2) shob&lused, after substitution
of the appropriate number of equivalent scattekenghich - if the fractal parameters of the obsersadace are known or can

be retrieved directly from SAR data [27], [28] ndae evaluated using (22).
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appreciated.

TABLE Il
REALIZATIONS OF THERESOLUTIONCELL ROUGHNESS
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Examples of realizations of the surfamrighness within the resoluti
cell for different fractal parameters are presenfed each realization tt
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parameters reported in Table | are used.
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Fig. 7: Plot of the number of scatterédsas a function of the topothesy of the surfaCgm] assuming the (Cosmo-SkyMed) parameters

In Table Il four examples of realizations of thefaoe roughness within the resolution cell are @mésd: these figures
provide a visual reference for the considered &lamtughness. The surface is synthesized usingMéerstrass-Mandelbrot
fractal function, which effectively approximate®thehavior of an fBm surface [9]. Looking at thgufies, the relation between

the effective number of scatterers and the roughoéthe surface at spatial scales of the ordénefesolution cell size can be
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V. CONCLUSIONS

In this paper a physical model for the assessniesperkle statistics in SAR images of natural soiffaces was presented. The
mathematical formalism previously introduced in fuogentific literature for the description of paity developed speckle was
used. Accordingly, the image distribution was pagterized in terms of the number of independentaeas per resolution cell.

A rationale for determining the equivalent scattesizes was introduced, allowing to analyticallyakenate the equivalent
number of scatterers per resolution cell as a fanodf physical observables: surface roughnesssamdor parameters. The
presented model can be applied to both classichfrastal surface roughness descriptions. Usefatier for natural surfaces
has been here shown to be preferable to studyttadsspeckle phenomenon. As a matter of fact, ifréal case the equivalent
number of scatterers depends on two surface pagssnely, the Hurst coefficient and topothesy, whsrin the classical case
the surface standard deviation and correlationtlermgust be supported by the surface autocorrelatiape, that even for single-
scale surfaces implies dealing with at least oneerparameter.

We have shown that, when the area of the resolutelh typical of modern space-borne SAR (e.g., CoSkyMed,
TerraSAR-X, with particular focus on the spotligiggerational mode) is considered, the equivalentbmrrof scatterers can be
not very large and of the order of unity in manggtical cases for not very smooth surfaces, pragghtpical values of natural
surface roughness. In these cases the hypothefsibyadeveloped speckle fails and the K-distriltitaodel can be applied.

The availability of a closed form expression foe thvaluation of the equivalent number of scattepersresolution celN
allows the development of direct models which canused for simulation purposes. In this paper, weegated surface
roughness for resolution cells whose equivalent memof scatterers (to be determined after the sepe@meters have been
postulated) can be easily evaluated, see Tabkviilable simulation techniques [29] allow genenmgti(for instance via Monte
Carlo approaches) the corresponding SAR imagesafiohomogeneous area; this step is supported bkritbeledge, in
analytical form, of the Cumulative Distribution Fation relevant to K-distributed random variable Misual comparison with
actual SAR images for homogeneous areas may leddfdéo about sub-resolution properties of the stefde.g., fractal
parameters). This inversion step could be alscopmdd at a more rigorous level by estimating, diyeftom the SAR images,
the K-distribution parameters [30], that, by mearisthe model presented in this paper, can be linkedractal surface
parameters, i.e., to sub-resolution physical serfguantities. We think this is the main future depment expected after this

paper.
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APPENDIX

TYPICAL ROUGHNESSPARAMETERS OFNATURAL SURFACES

In order to better highlight the relevance of thesgnted results, the knowledge of typical valdedhe roughness of natural
surfaces is necessary. In this appendix we preseaview of typical measured values of the roughmesameters of natural
surfaces for both classical and fractal surfaceetsod

With regard to classical models, it is necessarsttess that the stationary behavior advocateddardo use these models is
at best a limiting behavior among natural surfa@s[14]-[17], [24]. As a matter of fact, in thergpt majority of cases the
measured values of the rms height and correlaéingth show a dependence on the size of the coedigeofile [8]-[11], [13]-
[17]. This kind of behavior is related to the ndat®nary fractal characteristics of the examinadural profiles. For band-
limited fractal surfaces some authors introduceivedent rms heights and correlation lengths, andviple expressions
describing them as functions of the profile lengh [13]-[15]. However, even when the assumptidractationary model can
be considered reasonable, stringent conditions meisnforced for the precise measurement of thghmess parameters. In
particular, to attain accurate estimates of both height and correlation length, the profile siagstbe very large with respect
to the true correlation length (at least 200 tineeger) [14], [21]. Given all these limitations,tmroany reliable measurements of
classical surface roughness parameters are awitatiie literature. An accurate list of parametens be found in [14], where a
critical review of the data available at the tinfepablication is presented. The reported valuethefrms height range from a
minimum of 0.0007 m to a maximum of 0.269 m, whilese relevant to the correlation length range fb@22 m to 6.50 m. It
is worth noting that the evaluation of the corrielatiength requires a preliminary fitting of meastidata in order to obtain the
shape of the autocorrelation function, which isessary for the evaluation of the correlation lengt#]. Other valuable
measurements are available in the literature aednaaccordance with the values reported abovefjroting that natural bare
soil is usually well described with an rms heightree order of centimeters or fraction of centinneted a correlation length of

the order of tens of centimeters [19], [20], [22].
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TABLE Il
TYPICAL VALUES OF THEFRACTAL PARAMETERS OFNATURAL SURFACES
Surface Type H T[m]
Playa 0.67 6.9410°
Cobbles 0.73 1.07:10°
Pahoehoe 0.78 2.3510°
Lava flows [0.49, 0.73] [7.6410% 0.13]
Debris flow 1 0.67 3.2210°
Debris flow 2 0.65 5.27-10°
Sedimented plain 0.75 2.61-10°
Alluvial fans [0.64, 0.85] [8.35-10°,5.76-107]
Siltstone rocks 0.63 ~7.36-10°

With regard to the fractal models, the main problenreferring typical values of fractal dimensiondatopothesy is the
heterogeneity of provided parameters encountereghgndifferent publications. For instance, in [1Bptvalues of the rms
height and rms slope at different scales are peakidilong with the Hurst parameter, for a widedeturfaces of interest in
geological studies. Thanks to this information, th&ues of the topothesy of the surfaces can bepated [9]. However, fractal
surfaces are frequently described using spectralinpeters: this is due to the fact that fractal psses present the remarkable

property of holding power law spectra, expressed as

S(k) = Sok~¢, (23)

wherein§, is the power spectrum offsd¢,is the wavenumber, and the spectral exponent. For a one-dimensional jgrdfil
fact, measurements are usually performed on onesgiianal profiles, assuming isotropy for the obedrsurfacesy is related

to the Hurst parametét and$, to the topothesy via the following expressions [9]:

a=1+2H (24)

TH 1

— T2-2H
So=T cos(H) T'(1-2H)’

(25)

I'(*) being the Euler Gamma function. Inverting (249l §B5) it is possible to compute the fractal paremsH andT from a and
S. Further care should be taken to the fact thatamy references the spectral parameters are pobiridée spatial frequendy
domain and not in the wavenumber one, which isdibimain of reference of (23)-(25). In this casejriigknto account that

k = 2nf, the relation betwee® and the spectral offsetevaluated in the spatial frequency domain is
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So = c¢- (2m)“. (26)

Considering these observations, typical valuesefftactal parameters can be obtained from [14]pfbwide a more readable
list of the parameters of interest, in Table Il meport the values presented in [14] converte@&ims ofH andT. In a couple of
cases ranges are reported, rather than exact vatudse last row of Table Ill we also include thalues retrieved from [16],
where the spectral offsetwas graphically obtained by using the plots of ¢ipectra and, for this reason, the valuerl aé
reported as an approximate one. Looking at theegataported in the table, we can conclude thabditural surfaces the typical

values ofH are in the range [0.6, 0.8] and thos& af [10” m, 10° m].
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