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Basic ingredients and motivations

Basic ingredients and motivations

Fix 1 < p <∞ and Ω ⊆ Rd a nonempty open set with finite measure (a domain). We call
torsion function of Ω the weak solution to:{

−∆pw = div(|∇u|p−2∇w) = 1 in Ω,

w = 0 on ∂Ω.

Some properties:

- By the maximum principle wp,Ω > 0.

- In general we cannot expect more regularity than C1,α(Ω).

- Exact expressions are available only for Ω = B(x0, r).

- By setting wp,Ω = 0 in Ωc , it holds wp,Ω ∈W 1,p(Rd ) and −∆pwp,Ω ≤ 1 weakly.

Theorem [Bhattacharya, DiBenedetto, Manfredi ’89; Kawohl ’90]:

wp,Ω → d(·,Ωc ) uniformly in Ω as p →∞.

for every domain Ω ⊂ Rd .

Above for C ⊂ Rd , we denote by d(·,C) the usual distance function:

d(x ,C) = inf{|x − y | : y ∈ C}.

Thus we set: w∞,Ω(x) = d(x ,Ωc ).
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Basic ingredients and motivations

Elasticity theory: The torsion function appears in the computation of the angular change
when a beam of a given length and a given modulus of rigidity is exposed to a twisting
moment.

Probability: The value w2,Ω(x) equals the expected lifetime of a Brownian motion in Ω
starting at x ∈ Ω.

Heat conduction: Given an object Ω ⊂ Rd , whose boundary is constantly kept at zero
temperature, whose initial temperature and mass are fixed, w2,Ω(x) equals the temperature
at x ∈ Ω averaged in the whole thermal process.

Potential theory: The geometry of the torsion function is studied to understand localization
properties of high order eigenfunctions of different elliptic operators.
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Basic ingredients and motivations

For 1 < p ≤ ∞ we define the mean-to-max ratio:

Φp(Ω) =
1

‖wp,Ω‖∞
—

∫
Ω
wp,Ω(x)dx .

GOAL

Compute or give estimates to the following quantities:

inf / sup{Φp(Ω) : Ω ⊂ Rd domain},

Remark: Ω varies among all the possible domains.

Playing with disjoint balls with decreasing radii, it is easy to construct a sequence Ωn for which

Φp(Ωn)→ 0, as n→∞.

Hence we only look at the maximization problem.

Objective

Estimate the following quantity:

sup{Φp(Ω) : Ω ⊂ Rd domain}.
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Basic ingredients and motivations

Triviality:

Φp(Ω) =
1

‖wp,Ω‖∞
—

∫
Ω
wp,Ω(x)dx ≤ 1.

Questions:

- Q1. Is the value 1 attained by some sequence of domains?

- Q2. Can we characterize the geometry of the maximizing sequences?

A physical motivation

In many thermo-energetic processes the average temperature of the generator Ω and the
power produced are proportional. A high mean-to-max ratio of the torsion function of Ω will
help to provide adequate average power without exceeding the maximum temperature which
can be dictated for instance by the material (e.g. metallurgical considerations). To
optimizing this process we can either modify the material or design a generator having an
optimal shape.

The optimization problems for the mean-to-max ratio of other relevant functions
(eigenfunctions with different boundary conditions) has been also considered (
Payne-Stakgold, Berg-Bucur, Berg-Bucur-Keppeller, . . . ).
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Known results

Known results

1. Henrot, Lucardesi, Philippin1 proved the following.

Theorem (Henrot, Lucardesi, Philippin ’18)

We have
sup{Φ2(Ω) : Ω ⊆ Rd domain} = 1.

The proof exploits the relaxation of the class of domains to the set of capacitary measure. In
particular, it happens that any periodical structures à la Cioranescu-Murat that γ-converge to a
constant multiple of the Lebesgue measure lead to the supremum value 1.

With some difficulties due to the non-linearity of the operator −∆p the proof extends to the case
1 < p ≤ d . Hence we can state the following:

Proposition

1 < p ≤ d =⇒ sup{Φp(Ω) : Ω ⊂ Rddomain } = 1.

Moreover the the value 1 is attained by any periodical structure à la Cioranescu-Murat.

1Henrot, A.; Lucardesi, I.; Philippin, G., ESAIM Control Optim. Calc. Var. ’18.

7 / 31



Known results

Known results

1. Henrot, Lucardesi, Philippin1 proved the following.

Theorem (Henrot, Lucardesi, Philippin ’18)

We have
sup{Φ2(Ω) : Ω ⊆ Rd domain} = 1.

The proof exploits the relaxation of the class of domains to the set of capacitary measure. In
particular, it happens that any periodical structures à la Cioranescu-Murat that γ-converge to a
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1Henrot, A.; Lucardesi, I.; Philippin, G., ESAIM Control Optim. Calc. Var. ’18.

7 / 31



Known results

2. It is worth mentioning that in [HLP ’18] it is also proved that

1

(d + 1)2
≤ Φ2(Ω) ≤

2

3
, for every convex domain.

-Della Pietra, Gavitone,Lo Bianco 2 extended the latter inequality to the nonlinear case.

Theorem (Della Pietra, Gavitone, Lo Bianco ’18)

For every convex domain Ω ⊂ Rd it holds

p′

dp′−1(d + p′)
≤ Φp(Ω) ≤

p′

p′ + 1
.

The right-hand side of the previous inequality is sharp.

→The sharp constant for the left hand side is still unknown.

3. Taking the limit for p →∞ in the inequality above we get

1

d + 1
≤ Φ∞(Ω) ≤

1

2
.

for every Ω convex set. The bounds above are both sharp. The upper bound is still optimal if we
consider simply connected domains or even for 1-connected domains ([B., Buttazzo, Prinari 21’]).

2Della Pietra, F.; Gavitone, N.; Guarino Lo Bianco, S., J. Differential Equations ’18.
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Theorem 1: refining Jensen inequality for the torsion function

Theorem 1: refining Jensen inequality for the torsion function

Recall:

Φp(Ω) =
1

‖wp,Ω‖∞
—

∫
Ω
wp,Ω(x)dx , for every p ∈ (1,∞].

Theorem (L.B., D. Bucur)

For every d < p ≤ ∞, there exists a constant cp,d depending on the dimension d and on p such
that cp,d < 1 and

Ψp(Ω) :=
1(

—
∫

wp
p,Ωdx

)1/p
—

∫
wp,Ωdx ≤ cp,d

for every Ω domains. In particular, since Φp(Ω) ≤ Ψp(Ω), it holds

sup{Φp(Ω) : Ω ⊂ Rd domain} < 1.
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Theorem 1: refining Jensen inequality for the torsion function

The key Lemma to prove the theorem above is the following one.

Lemma

There exists a constant Cd,p , depending only on p and d , such that for every domain Ω ⊂ Rd , if
we set

d0 = —

∫
Ω
wp,Ωdx , E1 = {x ∈ Ω : wp,Ω(x) < d0/2}, E2 = {x ∈ Ω : wp,Ω(x) > 3d0/2},

then at least one of the following cases occur:

|E1| ≥
|Ω|
Cd,p

, |E2| ≥
|Ω|
Cd,p

.
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Theorem 1: refining Jensen inequality for the torsion function

proof of the Lemma, case p =∞:
Recall that w∞,Ω(x) = d(x ,Ωc ).
Apply Vitali covering Lemma to (B(x , d(x ,Ωc )))x∈Ω, to get

F = {Bi = B(xi , ri ) : i ∈ I}, with ri = d(xi ,Ω
c ) such that

Bi ∩ Bj = ∅, if i 6= j , and Ω ⊂
⋃
i∈I

5Bi .

Let FL the family of large balls defined through

FL = {Bj ∈ F : rj > Kd0}, d0 = —

∫
Ω
d(x ,Ωc )dx ,

where K > 0 is a large constant.
Claim: ∑

Bj∈FL

|B(xj , rj )| ≤
|Ω|
5d2

, (3.1)
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Theorem 1: refining Jensen inequality for the torsion function

If this is not the case

d0|Ω| ≥
∑

Bj∈FL

(∫
B(xj ,rj )

d(x ,Ωc )dx

)

≥
∑

Bj∈FL

(∫
B(xi ,ri )

(ri − |x − xi |)dx
)

=
∑

Bj∈FL

ωd r
d+1
j

d + 1
≥

Kd0

d + 1

∑
Bj∈FL

ωd r
d
j

=
Kd0

(d + 1)

∑
Bj∈FL

|B(xj , rj )|>
Kd0

5d2(d + 1)
|Ω|.

A contradiction if K is large enough! Hence the Claim is true. Equivalently∑
Bi∈F\FL

|B(xi , ri )| ≥
|Ω|
5d2

.
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Theorem 1: refining Jensen inequality for the torsion function

To conclude notice that we can compare∑
Bi∈F\FL

|B(xi , ri )| ∼
∑

Bi∈F\FL

|B(xi , ri ) ∩ E1|,

being the radius of the balls in F \ FL not too large. The latter, implies the lemma.
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Theorem 1: refining Jensen inequality for the torsion function

Proof of theorem. Fix Ω a domain and denote w = wp,Ω and

d0 =
1

|Ω|

∫
Ω
w(x)dx , E = {x ∈ Ω : w(x) < d0/2}.

The elementary inequality

—

∫
A
f p(x)dx ≥

(
—

∫
A
f (x)dx

)p

+
1

2p−1 − 1
—

∫
A

∣∣∣∣f (x)− —

∫
A
f (y)dy

∣∣∣∣p dx ,
applied to the torsion function gives

—

∫
Ω
wp(x)dx ≥ dp

0 +
1

2p−1 − 1
—

∫
Ω
|w(x)− d0|p dx

≥ dp
0 +

1

|Ω|(2p−1 − 1)

∫
E
|w(x)− d0|p dx ≥ dp

0

(
1 +
|E |
|Ω|

1

2p(2p−1 − 1)

)
Same if E = {x ∈ Ω : w(x) > 3d0/2}.
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Theorem 2: honeycomb structure

Theorem 2: honeycomb structure

To answer Q2. we consider now the case p = +∞, d = 2. Recall that

Φ∞(Ω) =
1

‖d(·,Ωc )‖∞
—

∫
Ω
d(x ,Ωc )dx .

An easy computation.
Let H ⊂ R2 be the hexagon centered at the origin with unitary side. For every ε > 0 we fix
Cε ⊂ R2 to be a set of points such that the family {εH + x}x∈Cε produces an hexagonal tiling for
R2. We then define Ωε as

Ωε = B(0, 1) \ {x ∈ Cε : εH + x b B(0, 1)} .

Figure: Disk perforated with the centers of a fine hexagonal tiling.
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Theorem 2: honeycomb structure

As ε→ 0, the effects of the boundary of B(0, 1) become negligible and we have

lim
ε→0

Φ∞(Ωε) =
1

ε

(
|Ω|
|εH|

) ∫
εH |x |dx
|Ω|

= —

∫
H
|x |dx =

1

3
+

ln(3)

4
.

In particular

lim
ε→0

Φ(Ωε) > sup{Φ∞(Ω) : Ω ⊂ Rd , convex domain } =
1

2
.

Another easy computations shows that if we start with a square tiling and we produce the related
sequence of perforated domains Ω̃ε we get

lim
ε→0

Φ(Ωε) > lim
ε→0

(Ω̃ε).

Question: Is the hexagonal configuration the best one?
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Theorem 2: honeycomb structure

Theorem (L.B., D. Bucur)

We have

sup{Φ∞(Ω) : Ω ⊂ R2domain } =
1

3
+

ln(3)

4
.
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Theorem 2: honeycomb structure

Remark: The maximization problem for the efficiency is somehow related to the optimal
compliance conjecture [G. Buttazzo, F. Santambrogio, N. Varchon ’06]:

- Given a smooth bounded domain Ω and set r = c
√
n determine the solution to

min

{∫
Ω
w2,Ω\Br (xi )

dx : x1, . . . , xn ∈ Rd

}
.

- The optimal configurations of points is conjectured to be asymptotically given by a tiling of
the set Ω with regular hexagons.

The problem above generalize to p 6= 2. The case p =∞ lead to the classical Allocation
Problem. This is the only known case.
Allocation Problem: given a uniform distribution of consumers in a domain Ω with unitary
measure, the goal is to build n markets C = {x1, . . . , xn} ⊂ Ω, in such a way that the average
distance of the consumers from the nearest centers is minimal. Precisely one looks at

min

{∫
Ω
d(x ,C)dx : C ⊂ Ω,#C = n

}
.

When n increases the best configuration is asymptotically given by building the markets in the
centers of an hexagonal tiling Ω as proved by Morgan and Bolton.3

3Morgan, F.; Bolton, R., Amer. Math. Monthly ’02

18 / 31



Theorem 2: honeycomb structure

Remark: The maximization problem for the efficiency is somehow related to the optimal
compliance conjecture [G. Buttazzo, F. Santambrogio, N. Varchon ’06]:

- Given a smooth bounded domain Ω and set r = c
√
n determine the solution to

min

{∫
Ω
w2,Ω\Br (xi )

dx : x1, . . . , xn ∈ Rd

}
.

- The optimal configurations of points is conjectured to be asymptotically given by a tiling of
the set Ω with regular hexagons.

The problem above generalize to p 6= 2. The case p =∞ lead to the classical Allocation
Problem. This is the only known case.
Allocation Problem: given a uniform distribution of consumers in a domain Ω with unitary
measure, the goal is to build n markets C = {x1, . . . , xn} ⊂ Ω, in such a way that the average
distance of the consumers from the nearest centers is minimal. Precisely one looks at

min

{∫
Ω
d(x ,C)dx : C ⊂ Ω,#C = n

}
.

When n increases the best configuration is asymptotically given by building the markets in the
centers of an hexagonal tiling Ω as proved by Morgan and Bolton.3

3Morgan, F.; Bolton, R., Amer. Math. Monthly ’02

18 / 31



Theorem 2: honeycomb structure

Remark: The maximization problem for the efficiency is somehow related to the optimal
compliance conjecture [G. Buttazzo, F. Santambrogio, N. Varchon ’06]:

- Given a smooth bounded domain Ω and set r = c
√
n determine the solution to

min

{∫
Ω
w2,Ω\Br (xi )

dx : x1, . . . , xn ∈ Rd

}
.

- The optimal configurations of points is conjectured to be asymptotically given by a tiling of
the set Ω with regular hexagons.

The problem above generalize to p 6= 2. The case p =∞ lead to the classical Allocation
Problem. This is the only known case.
Allocation Problem: given a uniform distribution of consumers in a domain Ω with unitary
measure, the goal is to build n markets C = {x1, . . . , xn} ⊂ Ω, in such a way that the average
distance of the consumers from the nearest centers is minimal. Precisely one looks at

min

{∫
Ω
d(x ,C)dx : C ⊂ Ω,#C = n

}
.

When n increases the best configuration is asymptotically given by building the markets in the
centers of an hexagonal tiling Ω as proved by Morgan and Bolton.3

3Morgan, F.; Bolton, R., Amer. Math. Monthly ’02

18 / 31



Theorem 2: honeycomb structure

Remark: The maximization problem for the efficiency is somehow related to the optimal
compliance conjecture [G. Buttazzo, F. Santambrogio, N. Varchon ’06]:

- Given a smooth bounded domain Ω and set r = c
√
n determine the solution to

min

{∫
Ω
w2,Ω\Br (xi )

dx : x1, . . . , xn ∈ Rd

}
.

- The optimal configurations of points is conjectured to be asymptotically given by a tiling of
the set Ω with regular hexagons.

The problem above generalize to p 6= 2. The case p =∞ lead to the classical Allocation
Problem. This is the only known case.
Allocation Problem: given a uniform distribution of consumers in a domain Ω with unitary
measure, the goal is to build n markets C = {x1, . . . , xn} ⊂ Ω, in such a way that the average
distance of the consumers from the nearest centers is minimal. Precisely one looks at

min

{∫
Ω
d(x ,C)dx : C ⊂ Ω,#C = n

}
.

When n increases the best configuration is asymptotically given by building the markets in the
centers of an hexagonal tiling Ω as proved by Morgan and Bolton.3

3Morgan, F.; Bolton, R., Amer. Math. Monthly ’02
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Morgan and Bolton’s proof key point:

Given a family of points S, the Voronoi cell of a point p ∈ S is defined by the planar convex
region:

V (p) = {x ∈ R2 : |x − p| ≤ |x − q|, for every q ∈ S}.

A distribution of points divide the unit square into polygonal convex regions: the Vornoi cells
of the points.

Regular cells are better: For every m ∈ N m ≥ 2, among planar m-gons R ⊂ Rd of unit area,
the average distance from the origin

R 7→ —

∫
R
|x |dx

is minimized uniquely by the regular m-gon centered at the origin.

In our case the term ‖d(·,Ωc )‖∞ prevent us to write down good optimality condition for the
“Voronoi cells” in any useful way.
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Proof of Theorem 2

Step 1: Discretization.
Denote by Qε the family of all the finite union of closed squares, of size ε and vertexes in εZ2.
For Q ∈ Qε we define its ε-discrete boundary as ∂d,εQ = ∂Q ∩ εZ2.
Let Ωε the “best” interior approximation of Ω by elements in Qε.
Define the following quantity:

Φd,∞(Ωε) =

∫
Ωε

d(x , ∂d,εΩε)dx

|Ωε|‖d(·, ∂d,εΩε)‖L∞(Ωε)

.

→ Is enough to prove that, for ε small enough it holds

Φd,∞(Ωε) ≤
1

3
+

ln(4)

3
.
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Step 2: Triangulation Connecting points of ∂d,εΩε with a triangulation (denoting by F the
family of the triangles contained in Ωε) we have

Φd,∞(Ωε) =

∑
∆∈F

∫
∆ d(x , ∂d,εΩε)dx(∑

∆∈F |∆|
)
‖d(·, ∂d,εΩε)‖L∞(Ωε)

Now, as in the proof of Morgan and Bolton we look at an isoperimetric-type inequality for
triangles.

21 / 31



Theorem 2: honeycomb structure

Given a triangle ∆ ⊂ R2, denote by r(∆) the circumradius and by V (∆) the set of vertexes.
Define the following quantity:

E(∆) =

∫
∆ d(x ,V (∆))dx

|∆|r(∆)
.

Lemma

For every triangle ∆ ⊂ R2 we have

E(∆) ≤ E(∆eq) =
1

3
+

ln(3)

4
, (4.1)

where ∆eq ⊂ R2 is any equilateral triangle.
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Step 3: Conclusion

Φd,∞(Ωε) =

∑
∆∈F

∫
∆ d(x , ∂d,εΩε)dx(∑

∆∈F |∆|
)
‖d(·, ∂d,εΩε)‖L∞(Ωε)

≤
∑

∆∈F
∫

∆ d(x ,V (∆))dx(∑
∆∈F |∆|

)
‖d(·, ∂d,εΩε)‖L∞(Ωε)

Using the lemma above the thesis follows if for every ∆ ∈ F it holds:

r(∆) ≤ ‖d(·, ∂d,εΩε)‖L∞(Ωε).

Is there a lucky triangulation?.
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Voronoi cells and Delauney triangulations Starting from the Voronoi diagram of S we can
consider its dual structure: the Delaunay tessellation. This is the straight-line graph with vertex
set S determined by saying that a segment connecting two points of S belongs to the graph if
and only if the Voronoi regions V (p) and V (q) are edge-adjacent. In general the faces
determined by the Delaunay tessellation can be polygons other than triangles (consider again the
case of four co-circular points), however we can always add to the graph new edges to obtain a
new graph which has only triangular faces.
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Figure: An example of Voronoi diagram spanned by five points
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Figure: Delauney triangulation of five points, the dashed lines represent the Voronoi diagram.
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empty-circle property: the circle that circumscribes any triangle does not contain, in its interior,
any other point of S.
Applying the property above we can prove the inequality

r(∆) ≤ ‖d(·, ∂d,εΩε)‖L∞(Ωε),

for every ∆ ∈ F .
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Conclusions

Conclusions

An intuitive conclusion of our results is not only that the supremum values of the efficiency of the
torsion function are of different nature depending on p (below or above d) but also the
asymptotical maximization structures might behave differently, being much more rigid for p > d
than for p ≤ d .

Open problem

Is it true that, in the two dimensional case, for p ≥ 2 the only maximizing sequences for the
shape functional Φp(Ω) are the hexagonal ones? What about higher dimensions?
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An application

Recently the problem of comparing the first eigenvalue λ(Ω) of the Dirichlet Laplacian of Ω with
the torsional rigidity T (Ω) = ‖w2,Ω‖1, has been widely studied.
A classical inequality by G. Polya asserts that

λ(Ω)T (Ω) ≤ |Ω|, for every domain Ω.

Berg, Ferone, Nitsch, Trombetti4 proved that such an inequality is sharp, showing that

sup{λ(Ω)T (Ω), Ω domain with |Ω| = 1} = 1, and the supremum is not attained.

Generalizing the problem to the p-Laplacian, toghether with G. Buttazzo and F. Prinari5 we
proved that if 1 < p ≤ d it holds

sup
Ω
{λp(Ω)Tp(Ω), Ω domain with |Ω| = 1} = 1.

where

λp(Ω) = inf
u∈W 1,p

0 (Ω),u 6=0

∫
Ω |∇u|

pdx∫
Ω |u|pdx

, Tp(Ω) =

(∫
Ω
wp,Ω

)p−1

4van den Berg, M.; Ferone, V.; Nitsch, C.; Trombetti, C. Int. Equations Operator Theory ’16
5B., L.; Buttazzo, G.; Prinari, F.; Calc. Var. Partial Differential Equations ’22
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For capacitary reason the proof fails in the case p > d .

Pólya proof:

λp(Ω) ≤
∫

Ω |∇wp,Ω|pdx∫
Ω |wp,Ω|pdx

=

∫
Ω wp,Ωdx∫

Ω |wp,Ω|pdx
≤

∫
Ω wp,Ωdx(∫

Ω |wp,Ω|dx
)p =

1

Tp(Ω)
.

By Theorem 1, we have

sup

{
—

∫
Ω
wp,Ωdx

(
—

∫
Ω
wp
p,Ωdx

)−1/p

: Ω ⊂ Rddomain

}
< 1.

Hence using the latter to improve the red inequality we get{
λp(Ω)Tp(Ω) : Ω ⊂ Rddomain with |Ω| = 1

}
< 1.
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Thank you for your attention

31 / 31


	Basic ingredients and motivations
	Known results
	Theorem Lg: refining Jensen inequality for the torsion function
	Theorem Lg: honeycomb structure
	Conclusions
	An application

