Capacities, outward minimizing sets and geometric flows

Mattia Fogacnolo
Universita' di Padova
January 31, 2023, Shape Optimization, Geometric Inequalities and related topics, Napoli

Least area problem with OBstacle and outward Minimizing sets

Given $\Omega \subset \mathbb{R}^{n}$ (for the time Being) Bounded with finite perimeter, we are interested in the existence of a Bounded set Ω^{*} such that

$$
P\left(\Omega^{*}\right)=\inf \{P(E) \Omega \subseteq E \text { Bounded }\} .
$$

We call it minimizing hull of Ω.

Least area problem with OBstacle and outward minimizing sets

Given $\Omega \subset \mathbb{R}^{n}$ (for the time Being) Bounded with finite perimeter, we are interested in the existence of a Bounded set Ω^{*} such that

$$
P\left(\Omega^{*}\right)=\inf \{P(E) \Omega \subseteq E \text { Bounded }\} .
$$

We call it minimizing hull of Ω.
If such a set is Ω itself, we say that it is outward minimizinc: We say that Ω is outward minimizing if for any E with $\Omega \subseteq E$ we have $P(\Omega) \leq P(E)$.

Existence of Minimizing hulls

The Direct Method immediately provides a solution to the least area problem with OBstacle Ω.

Existence of Minimizing hulls

The Direct Method immediately provides a solution to the least area problem with OBstacle Ω.
It is Bounded: Balls are outward minimizinc, intersection of outward minimizing is outward minimizing \Rightarrow the elements of the minimizing sequence can Be assumed to Be Bounded.

Existence of Minimizing hulls

The Direct Method immediately provides a solution to the least area problem with OBstacle Ω.
It is Bounded: Balls are outward minimizinc, intersection of outward minimizing is outward minimizing \Rightarrow the elements of the minimizing sequence can Be assumed to Be Bounded.
RMK: In a noncompact Riemannian manifold, this works everytime we have a Bounded outward minimizing set containing Ω, and in particular if we have a outward minimizing exhaustion.

Construction of minimizing hulls

Let $\Omega \subset M$ Be a bounded subset with finite perimeter. Bassanezi-Tamanini (Ann. Univ. Ferrara, 1984) showed that, with
$\mathrm{OM}(\Omega)=\{E \subset M \mid \Omega \subseteq E$ and E is outward minimisinc $\}$,

Construction of minimizing hulls

Let $\Omega \subset M$ Be a Bounded subset with finite perimeter. Bassanezi-Tamanini (Ann. Univ. Ferrara, 1984) showed that, with

$$
\mathrm{OM}(\Omega)=\{E \subset M \mid \Omega \subseteq E \text { and } E \text { is outward minimisinc }\},
$$

the desired solution to the least area problem with obstacle Ω is Given By

$$
\Omega^{*}=\operatorname{Int}\left(\bigcap_{E \in \mathrm{OM}(\Omega)} \operatorname{Int}(E)\right) .
$$

Technical minor issue: the intersection should Be thought in a measure theoretic sense.

The strategy of the proof is the most natural one: they show that countable intersections of outward minimizina sets (containing Ω) are still outward minimizing,

$$
\Rightarrow \Omega^{*}=\operatorname{Int}\left(\bigcap_{E \in \mathrm{OM}(\Omega)} \operatorname{Int}(E)\right)
$$

is outward minimizing.

The strategy of the proof is the most natural one: they show that countable intersections of outward minimizina sets (containing Ω) are still outward minimizing,

$$
\Rightarrow \Omega^{*}=\operatorname{Int}\left(\bigcap_{E \in \operatorname{OM}(\Omega)} \operatorname{Int}(E)\right)
$$

is outward minimizing.
If there were a solution $E \supset \Omega$ with $P(E)<P\left(\Omega^{*}\right)$, it would Be outward minimizing \Rightarrow it would Be part of the intersection $\Rightarrow \Omega^{*} \subseteq E \Rightarrow P\left(\Omega^{*}\right) \leq P(E)$ contradiction

In a general Riemannian manifold you do not a priori know to have something like "outward minimizing Balls"!

In a general Riemannian manifold you do not a priori know to have something like "outward minimizing Balls"!

A proper hull may not exist.

In a General Riemannian manifold you do not a priori know to have something like "outward minimizing Balls"!

A proper hull may not exist.
RMK: Bassanezi-Tamanini's proof actually gives you a Bounded minimizing hull if you have an exhaustion of outward minimizing sets.

Existence in case of positive isoperimetric constant

We show that
Theorem (F., Mazzieri (JFA 2O22)) Assume (M,g) is a complete noncompact Riemannian manifold with a positive Isoperimetric/Sobolev constant $C_{\text {iso }}>0$, that is

$$
\frac{|\partial E|^{n}}{|E|^{n-1}} \geq \mathrm{C}_{\text {iso }}>0
$$

for any Bounded $E \subset M$ with finite perimeter.

Existence in case of positive isoperimetric constant

We show that
Theorem (F., Mazzieri (JA 2O22)) Assume (M, g) is a complete noncompact Riemannian manifold with a positive Isoperimetric/Sobolev constant $C_{\text {iso }}>0$, that is

$$
\frac{|\partial E|^{n}}{|E|^{n-1}} \geq \mathrm{C}_{\text {iso }}>0
$$

for any Bounded $E \subset M$ with finite perimeter.
Then, any Bounded $\Omega \subset M$ with finite perimeter admits a Bounded minimizing hull Ω^{*}.

Existence in case of positive isoperimetric constant

We show that
Theorem (F., Mazzieri (JFA 2O22)) Assume (M, g) is a complete noncompact Riemannian manifold with a positive Isoperimetric/SOBOlev constant $C_{\text {iso }}>0$, that is

$$
\frac{|\partial E|^{n}}{|E|^{n-1}} \geq \mathrm{C}_{\text {iso }}>0
$$

for any Bounded $E \subset M$ with finite perimeter.
Then, any Bounded $\Omega \subset M$ with finite perimeter admits a Bounded minimizing hull Ω^{*}.

RMK: Relevant classes of manifolds satisfy the above assumptions: nonnegative Ricci curvature with Euclidean volume Growth, Cartan-Hadamard (simply connected with nonpositive sectional)...

PROOF: Assume that any (Bounded) minimizing sequence gives rise to an unBounded set with finite perimeter F. Then, $|F|^{(n-1) / n} \leq C P(F) \leq C P(\Omega)$ and in particular of finite volume, that in particular satisfies $m(r)=|F \backslash B(O, r)|>0$ for any r Big enough.

PROOF: Assume that any (Bounded) Minimizing sequence gives rise to an unbounded set with finite perimeter F. Then, $|F|^{(n-1) / n} \leq C P(F) \leq C P(\Omega)$ and in particular of finite volume, that in particular satisfies $m(r)=|F \backslash B(O, r)|>0$ for any r Big enough. The assumed isoperimetric inequality implies

$$
|F \backslash B(O, r)|^{(n-1) / n} \leq C P(F \backslash B(O, r))=C\left[P\left(F, \overline{B^{c}}\right)+P(B, F)\right]
$$

PROOF: Assume that any (Bounded) Minimizing sequence gives rise to an unbounded set with finite perimeter F. Then, $|F|^{(n-1) / n} \leq C P(F) \leq C P(\Omega)$ and in particular of finite volume, that in particular satisfies $m(r)=|F \backslash B(O, r)|>0$ for any r Big enough. The assumed isoperimetric inequality implies

$$
|F \backslash B(O, r)|^{(n-1) / n} \leq C P(F \backslash B(O, r))=C\left[P\left(F, \overline{B^{c}}\right)+P(B, F)\right]
$$

F minimizes the area $\Rightarrow P\left(F, \overline{B^{c}}\right) \leq P(B, F)$.

PROOF: Assume that any (Bounded) minimizing sequence gives rise to an unBounded set with finite perimeter F. Then, $|F|^{(n-1) / n} \leq C P(F) \leq C P(\Omega)$ and in particular of finite volume, that in particular satisfies $m(r)=|F \backslash B(O, r)|>0$ for any r Big enouch. The assumed isoperimetric inequality implies

$$
|F \backslash B(O, r)|^{(n-1) / n} \leq C P(F \backslash B(O, r))=C\left[P\left(F, \overline{B^{c}}\right)+P(B, F)\right]
$$

F minimizes the area $\Rightarrow P\left(F, \overline{B^{c}}\right) \leq P(B, F)$.
This yields

$$
m(r)^{\frac{n-1}{n}} \leq-C m^{\prime}(r)
$$

Integrating it, we get

$$
\left(r_{2}-r_{1}\right) \leq C\left[m\left(r_{1}\right)^{\frac{1}{n}}-m\left(r_{2}\right)^{\frac{1}{n}}\right]
$$

for any $r_{2}>r_{1}$ BiG enouch.

PROOF: Assume that any (Bounded) minimizing sequence gives rise to an unBounded set with finite perimeter F. Then, $|F|^{(n-1) / n} \leq C P(F) \leq C P(\Omega)$ and in particular of finite volume, that in particular satisfies $m(r)=|F \backslash B(O, r)|>0$ for any r Big enouch. The assumed isoperimetric inequality implies

$$
|F \backslash B(O, r)|^{(n-1) / n} \leq C P(F \backslash B(O, r))=C\left[P\left(F, \overline{B^{c}}\right)+P(B, F)\right]
$$

F minimizes the area $\Rightarrow P\left(F, \overline{B^{c}}\right) \leq P(B, F)$.
This yields

$$
m(r)^{\frac{n-1}{n}} \leq-C m^{\prime}(r)
$$

Integrating it, we get

$$
\left(r_{2}-r_{1}\right) \leq C\left[m\left(r_{1}\right)^{\frac{1}{n}}-m\left(r_{2}\right)^{\frac{1}{n}}\right]
$$

for any $r_{2}>r_{1}$ BiG enough. Letting $r_{2} \rightarrow+\infty$ contradiction.

Capacitary interpretation

It is straightforward to show (Maz'ya) that
$\inf \{P(E) \mid \Omega \subseteq E, E$ smooth $\}=\operatorname{Cap}_{1}(\Omega)=\inf \left\{\int_{M}|\nabla f| \mathrm{d} \mu, \quad C_{c}^{\infty}(M) \ni f \geq \chi_{\Omega}\right\}$

Capacitary interpretation

It is straightforward to show (Maz'ya) that
$\inf \{P(E) \mid \Omega \subseteq E, E$ smooth $\}=\operatorname{Cap}_{1}(\Omega)=\inf \left\{\int_{M}|\nabla f| \mathrm{d} \mu, \quad C_{c}^{\infty}(M) \ni f \geq \chi_{\Omega}\right\}$
In particular,

$$
\operatorname{Cap}_{1}(\Omega) \geq P\left(\Omega^{*}\right)
$$

when the latter exists.

Capacitary interpretation

It is straightforward to show (Maz'ya) that
$\inf \{P(E) \mid \Omega \subseteq E, E$ smooth $\}=\operatorname{Cap}_{1}(\Omega)=\inf \left\{\int_{M}|\nabla f| \mathrm{d} \mu, \quad C_{c}^{\infty}(M) \ni f \geq \chi_{\Omega}\right\}$
In particular,

$$
\operatorname{Cap}_{1}(\Omega) \geq P\left(\Omega^{*}\right)
$$

when the latter exists. Direct proof:

$$
\int_{M}|\nabla f| \mathrm{d} \mu \geq \int_{0}^{1}|\{f=t\}| \mathrm{d} t \geq \inf \{P(E) \mid \Omega \subset E,\}=P\left(\Omega^{*}\right) .
$$

Asymptotic relation with p-capacities

Recall that, for $p \geq 1$,

$$
\operatorname{Cap}_{p}(\Omega)=\inf \left\{\int_{M}|\nabla f|^{p} \mathrm{~d} \mu, \quad C_{c}^{\infty}(M) \ni f \geq \chi_{\Omega}\right\} .
$$

Asymptotic relation with p-capacities

Recall that, for $p \geq 1$,

$$
\operatorname{Cap}_{p}(\Omega)=\inf \left\{\int_{M}|\nabla f|^{p} \mathrm{~d} \mu, \quad C_{c}^{\infty}(M) \ni f \geq \chi_{\Omega}\right\} .
$$

Theorem (Agostiniani, F., Mazzieri- F. Mazzieri; 2O22)
Let (M, g) admit a positive isoperimetric constant, and let Ω with $C^{1, \alpha}$-Boundary. Then

$$
\lim _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega)=\operatorname{Cap}_{1}(\Omega)=P\left(\Omega^{*}\right) .
$$

Main step I We apply the L^{p} Sobolev inequality for $p>1$. With a careful choice of exponents $\left(X_{u}\right)$ we get

$$
\operatorname{Cap}_{1}(\Omega) \leq q_{\rho} \mathrm{C}_{n, p}^{(p-1) / p}\left(\int_{M}|\nabla f|^{p} \mathrm{~d} \mu\right)^{(n-1) /(n-p)},
$$

for any $p>1$, any $f \in C_{c}^{\infty}(M)$.

Main step I We apply the L^{p} Sobolev inequality for $p>1$. With a careful choice of exponents $(X u)$ we get

$$
\operatorname{Cap}_{1}(\Omega) \leq q_{p} \mathrm{C}_{n, p}{ }^{(p-1) / p}\left(\int_{M}|\nabla f|^{p} \mathrm{~d} \mu\right)^{(n-1) /(n-p)},
$$

for any $p>1$, any $f \in C_{c}^{\infty}(M)$.
Taking the infimum we deduce that

$$
\operatorname{Cap}_{1}(\Omega) \leq \liminf _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) .
$$

Main step I We apply the L^{p} Sobolev inequality for $p>1$. With a careful choice of exponents (X_{u}) we Get

$$
\operatorname{Cap}_{1}(\Omega) \leq q_{p} \mathrm{C}_{n, p}^{(p-1) / p}\left(\int_{M}|\nabla f|^{p} \mathrm{~d} \mu\right)^{(n-1) /(n-p)},
$$

for any $p>1$, any $f \in C_{c}^{\infty}(M)$.
Taking the infimum we deduce that

$$
\operatorname{Cap}_{1}(\Omega) \leq \liminf _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega)
$$

Main step 2 We claim that

$$
\operatorname{Cap}_{1}(\Omega)=P\left(\Omega^{*}\right) .
$$

It suffices to show " \leq "; the inequality " \geq " was already known: recall that
$\inf \{P(E) \mid \Omega \subseteq E, E$ smooth $\}=\operatorname{Cap}_{1}(\Omega)=\inf \left\{\int_{M}|\nabla f| \mathrm{d} \mu, \quad C_{c}^{\infty}(M) \ni f \geq \chi_{\Omega}\right\}$

Step 2 would Be accomplished if we could approximate the value of $P\left(\Omega^{*}\right)$ with the perimeter of smooth domains $\Omega_{\varepsilon} \supset \Omega$.

Step 2 would Be accomplished if we could approximate the value of $P\left(\Omega^{*}\right)$ with the perimeter of smooth domains $\Omega_{\varepsilon} \supset \Omega$. In this case we would have

$$
P\left(\Omega^{*}\right) \geq P\left(\Omega_{\varepsilon}\right)-\varepsilon \geq \operatorname{Cap}_{1}(\Omega)-\varepsilon
$$

and we'd conclude letting $\varepsilon \rightarrow 0^{+}$.

Step 2 would Be accomplished if we could approximate the value of $P\left(\Omega^{*}\right)$ with the perimeter of smooth domains $\Omega_{\varepsilon} \supset \Omega$ In this case we would have

$$
P\left(\Omega^{*}\right) \geq P\left(\Omega_{\varepsilon}\right)-\varepsilon \geq \operatorname{Cap}_{1}(\Omega)-\varepsilon
$$

and we'd conclude letting $\varepsilon \rightarrow 0^{+}$.
We can do this if $P\left(\Omega^{*}\right)=H^{n-1}\left(\partial \Omega^{*}\right)$ (Schmidt).

Step 2 would Be accomplished if we could approximate the value of $P\left(\Omega^{*}\right)$ with the perimeter of smooth domains $\Omega_{\varepsilon} \supset \Omega$ In this case we would have

$$
P\left(\Omega^{*}\right) \geq P\left(\Omega_{\varepsilon}\right)-\varepsilon \geq \operatorname{Cap}_{1}(\Omega)-\varepsilon
$$

and we'd conclude letting $\varepsilon \rightarrow 0^{+}$.
We can do this if $P\left(\Omega^{*}\right)=H^{n-1}\left(\partial \Omega^{*}\right)$ (Schmidt).
True if Ω is $C^{1, \alpha}$, in this case Ω^{*} is $C^{1, \beta}$ except for a set Σ with $H^{n-8}=0$.

A variation on Maz'ya's arcument and of the above one shows that also

$$
\limsup _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \operatorname{Cap}_{1}(\Omega),
$$

A variation on Maz'ya's argument and of the above one shows that also

$$
\limsup _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \operatorname{Cap}_{1}(\Omega)
$$

and so we showed

$$
P\left(\Omega^{*}\right)=\operatorname{Cap}_{1}(\Omega) \leq \liminf _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \limsup _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \operatorname{Cap}_{1}(\Omega)=P\left(\Omega^{*}\right),
$$

completing the proof.

A variation on Maz'ya's argument and of the above one shows that also

$$
\limsup _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \operatorname{Cap}_{1}(\Omega),
$$

and so we showed

$$
P\left(\Omega^{*}\right)=\operatorname{Cap}_{1}(\Omega) \leq \liminf _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \limsup _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \operatorname{Cap}_{1}(\Omega)=P\left(\Omega^{*}\right),
$$

completing the proof.
Obvious question: can we remove the $C^{1, \alpha}$ assumption on Ω ?

A variation on Maz'ya's argument and of the above one shows that also

$$
\limsup _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \operatorname{Cap}_{1}(\Omega)
$$

and so we showed

$$
P\left(\Omega^{*}\right)=\operatorname{Cap}_{1}(\Omega) \leq \liminf _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \limsup _{p \rightarrow 1^{+}} \operatorname{Cap}_{p}(\Omega) \leq \operatorname{Cap}_{1}(\Omega)=P\left(\Omega^{*}\right),
$$

completing the proof.
Obvious question: can we remove the $C^{1, \alpha}$ assumption on Ω ? Related to the regularity of Ω^{*}. Does an outward minimizing set satisfy some kind of recularity allowing to Be approximated from the outside?

Relation with the Inverse Mean Curvature Flow

The level sets of a function w defined on a Riemannian manifold (M, g) evolves By Inverse Mean Curvature Flow if w satisfies

$$
\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right)=|\nabla w|
$$

on $M \backslash \Omega$.

Relation with the Inverse Mean Curvature Flow

The level sets of a function w defined on a Riemannian manifold (M, g) evolves By Inverse Mean Curvature Flow if w satisfies

$$
\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right)=|\nabla w|
$$

on $M \backslash \Omega$. It starts from $\Omega=\{w<0\}$.

Relation with the Inverse Mean Curvature Flow

The level sets of a function w defined on a Riemannian manifold (M, g) evolves By Inverse Mean Curvature Flow if w satisfies

$$
\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right)=|\nabla w|
$$

on $M \backslash \Omega$. It starts from $\Omega=\{w<0\}$.
Weak subsolutions are defined By (Huisken-limanen)

$$
P(\{w \leq t\}) \leq P(F)-\int_{F \backslash\{w \leq t\}}|\nabla w|
$$

for any F containing $\{w \leq t\}$, with $w \in$ Lip.

Relation with the Inverse Mean Curvature Flow

The level sets of a function w defined on a Riemannian manifold (M, g) evolves By Inverse Mean Curvature Flow if w satisfies

$$
\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right)=|\nabla w|
$$

on $M \backslash \Omega$. It starts from $\Omega=\{w<0\}$.
Weak subsolutions are defined By (Huisken-llmanen)

$$
P(\{w \leq t\}) \leq P(F)-\int_{F \backslash\{w \leq t\}}|\nabla w|
$$

for any F containing $\{w \leq t\}$, with $w \in$ Lip. If the sublevel sets of w are compact and exhaust M, this is an outward minimizing exhaustion \Rightarrow the construction of Ω^{*} works "like in $\mathbb{R}^{n "}$, even in absence of a positive isoperimetric constant!

p-capacitary potentials and IMCF

Recall that $\operatorname{Cap}_{p}(\Omega)$ is realized By u_{p} satisfying

$$
\Delta_{p} u_{p}=0, \quad u_{p}=1 \text { on } \partial \Omega, \quad u_{p} \rightarrow 0 \text { at infinity. }
$$

p-capacitary potentials and IMCF

Recall that $\operatorname{Cap}_{p}(\Omega)$ is realized By u_{p} satisfying

$$
\Delta_{p} u_{p}=0, \quad u_{p}=1 \text { on } \partial \Omega, \quad u_{p} \rightarrow 0 \text { at infinity. }
$$

Under suitable assumptions on the underlying manifold

$$
w_{p}=-(p-1) \log u_{p} \rightarrow w,
$$

solution of the weak MCF descriBed above (Moser, Kotschwar-Ni, Mari-Ricoli-Setti).
p-capacitary potentials and IMCF

Recall that $\operatorname{Cap}_{p}(\Omega)$ is realized By u_{p} satisfying

$$
\Delta_{p} u_{p}=0, \quad u_{p}=1 \text { on } \partial \Omega, \quad u_{p} \rightarrow 0 \text { at infinity } .
$$

Under suitable assumptions on the underlying manifold

$$
w_{p}=-(p-1) \log u_{p} \rightarrow w,
$$

solution of the weak IMCF descriBed above (Moser, Kotschwar-Ni, Mari-Rigoli-Setti).

First question: does a weak evolution By MCF exist if the isoperimetric constant is positive? Known if an additional Ricci lower Bound is assumed (Mari-Rigoli-Setti), through p-harmonic approximation.

p-capacitary potentials and IMCF

Recall that $\operatorname{Cap}_{p}(\Omega)$ is realized By u_{p} satisfying

$$
\Delta_{p} u_{p}=0, \quad u_{p}=1 \text { on } \partial \Omega, \quad u_{p} \rightarrow 0 \text { at infinity. }
$$

Under suitable assumptions on the underlying manifold

$$
w_{p}=-(p-1) \log u_{p} \rightarrow w,
$$

solution of the weak IMCF descriBed aBove (Moser, Kotschwar-Ni, Mari-Rigoli-Setti).

First question: does a weak evolution By IMCF exist if the isoperimetric constant is positive? Known if an additional Ricci lower Bound is assumed (Mari-Rigoli-Setti), through p-harmonic approximation.

Real deal: In a manifold where you can Build the envelopes Ω^{*}, does the weak IMCF with compact sublevel exists?

Example of application to the Minkowski Inequality

In joint papers with Acostiniani, Benatti, Mazzieri and Pinamonti we got the L^{p}-Minkowski inequality (sharp with equality only on spheres)

$$
C_{n, p} \operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial \Omega} \frac{|H|^{p}}{n-1} \mathrm{~d} \sigma,
$$

throuch monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).

Example of application to the Minkowski Inequality

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti we got the L^{p}-Minkowski inequality (sharp with equality only on spheres)

$$
C_{n, p} \operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial \Omega} \frac{|H|^{p}}{n-1} \mathrm{~d} \sigma,
$$

through monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).
We can pass to the limit as $p \rightarrow 1^{+}$and OBtain the Minkowski Inequality in terms of Ω^{*}

$$
\left|\mathbb{S}^{n-1}\right|^{n-1} P\left(\Omega^{*}\right)^{\frac{n-2}{n-1}} \leq \int_{\partial \Omega} \frac{|H|}{n-1} \mathrm{~d} \sigma .
$$

Example of application to the Minkowski Inequality

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti we Got the L^{p}-Minkowski inequality (sharp with equality only on spheres)

$$
C_{n, p} \operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial \Omega} \frac{|H|^{p}}{n-1} \mathrm{~d} \sigma,
$$

through monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).
We can pass to the limit as $p \rightarrow 1^{+}$and OBtain the Minkowski Inequality in terms of Ω^{*}

$$
\left|\mathbb{S}^{n-1}\right|^{n-1} P\left(\Omega^{*}\right)^{\frac{n-2}{n-1}} \leq \int_{\partial \Omega} \frac{|H|}{n-1} \mathrm{~d} \sigma
$$

Similar version in the anisotropic case (Xia-Yin).

Example of application to the Minkowski Inequality

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti we cot the L^{p}-Minkowski inequality (sharp with equality only on spheres)

$$
C_{n, p} \operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial \Omega} \frac{|H|^{p}}{n-1} \mathrm{~d} \sigma,
$$

through monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).
We can pass to the limit as $p \rightarrow 1^{+}$and OBtain the Minkowski Inequality in terms of Ω^{*}

$$
\left|\mathbb{S}^{n-1}\right|^{n-1} P\left(\Omega^{*}\right)^{\frac{n-2}{n-1}} \leq \int_{\partial \Omega} \frac{|H|}{n-1} \mathrm{~d} \sigma
$$

Similar version in the anisotropic case (Xia-Yin).
Applications to the Penrose Inequality in GR (Agostiniani-Mantegazza-Mazzieri-Oronzio, Hirsh-Miao-TaM...).

Thank you!

