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Given Q C R” (for the time Being) Bounded with finite periveter,
we are interested in the existence of a Bounded set O such that

P(Q") = inf{P(E)Q C Erounded}.
We call it of Q

I£ such a set is Q itselt, we say that it is outward minimizina: We
say that Qis 1$ for any E with Q C E we have
P(Q) < P(E).
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The Direct Method immediately provides a solution to the least
area proelem with orstacle .

K is Bounded: Ralls are outward minimizing, intersection of
outward minimizing is outward minimizing = the elements of the
MINIMIZING seQuence can Be assumed to Be Bounded.

R MK: In a8 noncompact Riemannian manifold, this works everytime
we have a Bounded outward minimizing set containing Q, and in
particular i£ we have a outward minimizing exhaustion.
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Construction of minimizing hulls

Let Q C M re 3 Bounded surset with finite perimeter.
Bassanezi-Tamanini (Ann. Univ. Ferrara, 1984) showed that, with

OM (Q) = {E Cc M|Q C Eand E is outward minimisina},

the desired solution to the least area proelem with orstacle Q is

Given Ry
Q" = Int m Int (E) | .
EcOM(Q)

Technical miNor issue: the intersection should Be thouaht in a
Mmeasure theoretic sense.
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The strateay of the proot is the most natural one: they show
that countarle intersections of outward minimizing sets
(containing ) are still outward minimizing,

& 4 S [ SN (B] inti(E)
EcOM(Q)

Is outward minimizing.

I# there were a solution E D Q with P(E) < P(27), it would e
outward minimizing = it would Be part of the intersection
= Q" C E = P(Q") < P(E) contradiction
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In a8 @eneral Riemannian manifold you do not a priori know to have
something like "outward minimizing galls'!

A proper hull may Nnot exist.
RMK: Bassanezi-Tamanini’s proo$ actually cives you a eounded

MmiNimizing hull i$ you have an
exhaustion of outward minimizing sets.
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Existence In case Of positive
Isoperimetric constant

We show that

Assume (M, g) is a
complete noncompact Riemannian manifold with a
positive Isoperimetric/Sorolev constant G, > 0, that is

|OE]"
|E‘n71

Z ciso > 0.

for any rounded E C M with finite perimeter.
Then, any Bounded Q C M with finite perimeter admwits a Bounded
minimizing hull Q.

RMK: R elevant classes of manifolds satisty the arove assumptions:
nonnegative R.iceai curvature with Euclidean volume arowrth,
Cartan—Hadamard (simply connected with Nnonpositive sectional)..
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Intearating it, we cet
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Capacitary interpretation

K is straiahtforward to show (Maz'ya) that
inf{P(E)|Q C E, Esmooth} = Cap,(Q2) = inf{/ |Vfldp, CF(M)>f> XQ}
M

In particular,
Cap, () = P(Q")

when the latter exists. Direct proo$:

/|Vf|dp > /IW: t}|dt > inf{P(E)y QCE, } = P(QY).

M
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Asywptotie relation with
p-capacities

Recall that, for p > 1,

Cap,(Q) = inf{/ [VEPdp, CZ(M)>f> XQ}.
M

Let (M, g) adwit a positive isoperimetric constant, and let Q with
Cl*-gpoundary. Then

Iin1ﬁ+ Cap,(Q2) = Cap,(Q) = P(Q").
p—
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Main step | We apply the L Soeolev inequality for p > 1. With a
careful choice of exponents (Yu) we et

(n=1)/(n—p)
Capy () < qp Cop ®0/P ( / \Vfl’”du) ,
1%

forany p > 1,any f € C°(M).
Taking the infimum we deduce that

< liminf Q).
Ean i iminGears (2)

Main step 2 We claim that
Cap,(Q) = P(Q7).

K suffices to show "<' the inequality "> " was already known: recall
that

inf{P(E)|Q C E, E smooth} = Cap,(Q) = inf{/ IVFldp, CZ(M)>f> XQ}
M
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Step 2 would Be accomplished i£ we could approximate the value of
P(Q2*) with the perimeter of smooth domains Q. D Q.
In this case we would have

P(Q") > P(Q:) —e > Cap, () — ¢
and we’'d conclude letting ¢ — 0.

We can do this i£ P(Q*) = H"1(9Q") (Schmidt).

True if Qis CY%,in this case Q* is CY* except for a set T with
H"—8 = 0.
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A variation on Maz'ya's araument and of the aBove one shows
that also
limsup Cap,(Q2) < Cap,(Q),

p—17t

and sO we showed

P(2') = Capy () < liminf Cap,(€) < lim sup Cap,(£) < Capy(2) = P(2")

p—1+t
completing the proos.

Orvious Question: can we remove the CH* assumption on Q7

R elated to the reaularity of Q*. Does an outward minimizing set
satisfy some kind of reaularity allowing to Re approximated

from the outside?
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R_elation with the Inverse Mean
Curvature Flow

The level sets of a function w defined on a Riemannian manifold
(M, g) evolves gy Inverse Mean Curvature Flow i w satisfies

) Vw
div <W> = |VW|

on M\ Q K starts from Q = {w < 0}.
Weak sugsolutions are defined By (Huisken-limanen)

P({w < t}) < P(F) - / Vwl

F\{w<t}

for any F containing {w < t}, with w € Lip.

I£ the suslevel sets of w are compact and exhaust M, this is an
outward minimizing exhaustion = the construction of Q* works
"like iIn R™, even in aksence Of a positive isoperimetric constant!
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p-capacitary potentials and IMCF

Recall that Cap,(Q2) is realized By u, satistying
Apup, =0, u,=10Nn0Q, up,— 0 atinfinity.
Under suitarle assumptions on the underlying manifold
wp =—(p—1)logu, = w,

solution of the weak IMCF descrired arove (Moser, Kotschwar-Ni,
Mari-Rigoli-Setti).

First Question: does a weak evolution By IMCF exist if the
isoperimetric constant is positive? Known if an additional R.icei
lower round is assumed (Mari-Ricoli-Setti), throuah p-harmonic
aPProximation.

R eal deal: In a manifold where you can Build the envelopes Q*, does
the weak IMCF with compact suslevel exists?



Example of application to the
Minkowski Inequality

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti
we got the LP-Minkowski inequality (sharp with equality only on
spheres)
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Example of application to the
Minkowski Inequality

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti
we got the LP-Minkowski inequality (sharp with equality only on
spheres)

i p
Cn,pcapp(Q) ”5‘71 S/ |H| dO’7
aqn—1

throuah monaotonicity formulas along the p-harmonic potentials
(also on Riemannian manifolds).

We can pass to the limit as p — 17 and ortain the Minkowski
Inequality in terms of QF

|Sn71|n71 P(Q*)Zzi S/ |H| do.
oo n—1

Similar version in the anisotropic case (Mia-Min).

Applications to the Penrose Inequality in GR.
(Agostiniani-Manteaazza-Mazzieri-Oronzio, Hirsh-Miao-Tam..).






