#### Capacities, outward minimizing sets and geometric flows

Mattia Fogagnolo

Universita' di Padova

January 31, 2023, Shape Optimization, Geometric Inequalities and related topics, Napoli

## Least area problem with obstacle and outward minimizing sets

Given  $\Omega \subset \mathbb{R}^n$  (for the time being) bounded with finite perimeter, we are interested in the existence of a <u>Bounded</u> set  $\Omega^*$  such that

 $P(\Omega^*) = \inf\{P(E) \Omega \subseteq E \text{ Bounded}\}.$ 

We call it minimizing hull of  $\Omega$ .

## Least area problem with obstacle and outward minimizing sets

Given  $\Omega \subset \mathbb{R}^n$  (for the time being) bounded with finite perimeter, we are interested in the existence of a <u>Bounded</u> set  $\Omega^*$  such that

 $P(\Omega^*) = \inf\{P(E) \Omega \subseteq E \text{ bounded}\}.$ 

We call it minimizing hull of  $\Omega$ .

If such a set is  $\Omega$  itself, we say that it is outward minimizing: We say that  $\Omega$  is <u>outward minimizing</u> if for any E with  $\Omega \subseteq E$  we have  $P(\Omega) \leq P(E)$ .

### Existence of minimizing hulls

The Direct Method immediately provides a solution to the least area problem with obstacle  $\Omega$ .

### Existence of minimizing hulls

The Direct Method immediately provides a solution to the least area problem with obstacle  $\Omega$ .

It is bounded: Balls are outward minimizing, intersection of outward minimizing is outward minimizing  $\Rightarrow$  the elements of the minimizing sequence can be assumed to be bounded.

### Existence of minimizing hulls

The Direct Method immediately provides a solution to the least area problem with obstacle  $\Omega$ .

It is bounded: Balls are outward minimizing, intersection of outward minimizing is outward minimizing  $\Rightarrow$  the elements of the minimizing sequence can be assumed to be bounded.

<u>RMK:</u> In a noncompact Riemannian manifold, this works everytime we have a bounded outward minimizing set containing  $\Omega$ , and in particular if we have a outward minimizing exhaustion.

### Construction of minimizing hulls

Let  $\Omega \subset M$  be a bounded subset with finite perimeter. Bassanezi-Tamanini (Ann. Univ. Ferrara, 1984) showed that, with  $OM(\Omega) = \{E \subset M \mid \Omega \subseteq E \text{ and } E \text{ is outward minimising}\},$ 

### Construction of minimizing hulls

Let  $\Omega \subset M$  be a bounded subset with finite perimeter. Bassanezi-Tamanini (Ann. Univ. Ferrara, 1984) showed that, with

 $OM(\Omega) = \{ E \subset M \mid \Omega \subseteq E \text{ and } E \text{ is outward minimising} \},\$ 

the desired solution to the least area problem with obstacle  $\Omega$  is given by

$$\Omega^* = \operatorname{Int}\left(igcap_{E\in\operatorname{OM}(\Omega)}\operatorname{Int}(E)
ight).$$

Technical minor issue: the intersection should be thought in a measure theoretic sense.

The strategy of the proof is the most natural one: they show that <u>countable</u> intersections of outward minimizing sets (containing  $\Omega$ ) are still outward minimizing,

$$\Rightarrow \Omega^* = \mathrm{Int} \left( igcap_{E \in \mathrm{OM}(\Omega)} \mathrm{Int} \left( E 
ight) 
ight)$$

is outward minimizing.

The strategy of the proof is the most natural one: they show that <u>countable</u> intersections of outward minimizing sets (containing  $\Omega$ ) are still outward minimizing,

$$\Rightarrow \Omega^* = \mathrm{Int} \left( igcap_{E \in \mathrm{OM}(\Omega)} \mathrm{Int} \left( E 
ight) 
ight)$$

is outward minimizing.

If there were a solution  $E \supset \Omega$  with  $P(E) < P(\Omega^*)$ , it would be outward minimizing  $\Rightarrow$  it would be part of the intersection  $\Rightarrow \Omega^* \subseteq E \Rightarrow P(\Omega^*) \le P(E)$  contradiction. In a general Riemannian manifold you do not a priori know to have something like "outward minimizing Balls"!

In a general Riemannian manifold you do not a priori know to have something like "outward minimizing Balls"!

A proper hull may not exist.

In a general Riemannian manifold you do not a priori know to have something like "outward minimizing Balls"!

A proper hull may not exist.

<u>RMK</u>: Bassanezi-Tamanini's proof actually gives you a bounded minimizing hull if you have an exhaustion of outward minimizing sets.

## Existence in case of positive isoperimetric constant

We show that

**Theorem (F. Maxzleri (JFA 2.07.2.))** Assume (M,g) is a complete noncompact Riemannian manifold with a positive Isoperimetric/Sobolev constant  $C_{iso} > 0$ , that is

$$\frac{|\partial E|^n}{|E|^{n-1}} \ge C_{\rm iso} > 0.$$

for any bounded  $E \subset M$  with finite perimeter.

## Existence in case of positive isoperimetric constant

We show that

**Theorem (F. Maxzleri (JFA 2.07.2.))** Assume (M,g) is a complete noncompact Riemannian manifold with a positive Isoperimetric/Sobolev constant  $C_{iso} > 0$ , that is

$$\frac{|\partial E|^n}{|E|^{n-1}} \ge C_{iso} > 0.$$

for any bounded  $E \subset M$  with finite perimeter.

Then, any bounded  $\Omega \subset M$  with finite perimeter admits a bounded minimizing hull  $\Omega^*$ .

## Existence in case of positive isoperimetric constant

We show that

**Theorem (F. Marzieri (JFA 2022))** Assume (M,g) is a complete noncompact Riemannian manifold with a positive Isoperimetric/Sobolev constant  $C_{iso} > 0$ , that is

 $\frac{|\partial E|^n}{|E|^{n-1}} \ge C_{\rm iso} > 0.$ 

for any bounded  $E \subset M$  with finite perimeter.

Then, any bounded  $\Omega \subset M$  with finite perimeter admits a bounded minimizing hull  $\Omega^*$ .

<u>RMK:</u> Relevant classes of manifolds satisfy the above assumptions: nonnegative Ricci curvature with Euclidean volume growth, Cartan-Hadamard (simply connected with nonpositive sectional)... PROOF: Assume that any (bounded) minimizing sequence gives rise to an unbounded set with finite perimeter F. Then,  $|F|^{(n-1)/n} \leq CP(F) \leq CP(\Omega)$  and in particular of finite volume, that in particular satisfies  $m(r) = |F \setminus B(O, r)| > 0$  for any r big enough. PROOF: Assume that any (Bounded) minimizing sequence gives rise to an unbounded set with finite perimeter F. Then,  $|F|^{(n-1)/n} \leq CP(F) \leq CP(\Omega)$  and in particular of finite volume, that in particular satisfies  $m(r) = |F \setminus B(O, r)| > 0$  for any r big enough. The assumed isoperimetric inequality implies

 $|F \setminus B(O, r)|^{(n-1)/n} \leq CP(F \setminus B(O, r)) = C[P(F, \overline{B^c}) + P(B, F)].$ 

PROOF: Assume that any (Bounded) minimizing sequence gives rise to an unbounded set with finite perimeter F. Then,  $|F|^{(n-1)/n} \leq CP(F) \leq CP(\Omega)$  and in particular of finite volume, that in particular satisfies  $m(r) = |F \setminus B(O, r)| > 0$  for any r big enough. The assumed isoperimetric inequality implies

 $|F \setminus B(O,r)|^{(n-1)/n} \leq CP(F \setminus B(O,r)) = C[P(F,\overline{B^c}) + P(B,F)].$ 

F minimizes the area  $\Rightarrow P(F, \overline{B^c}) \leq P(B, F)$ .

PROOF: Assume that any (Bounded) minimizing sequence gives rise to an unbounded set with finite perimeter F. Then,  $|F|^{(n-1)/n} \leq CP(F) \leq CP(\Omega)$  and in particular of finite volume, that in particular satisfies  $m(r) = |F \setminus B(O, r)| > 0$  for any r big enough. The assumed isoperimetric inequality implies

 $|F \setminus B(O, r)|^{(n-1)/n} \leq CP(F \setminus B(O, r)) = C[P(F, \overline{B^c}) + P(B, F)].$ 

 $\overline{F}$  minimizes the area  $\Rightarrow P(F,\overline{B^c}) \leq P(B,F)$  . This yields

$$m(r)^{\frac{n-1}{n}} \leq -Cm'(r).$$

Integrating it, we get

$$(r_2-r_1) \leq C\left[m(r_1)^{\frac{1}{n}}-m(r_2)^{\frac{1}{n}}\right]$$

for any  $r_2 > r_1$  big enough.

PROOF: Assume that any (Bounded) minimizing sequence gives rise to an unbounded set with finite perimeter F. Then,  $|F|^{(n-1)/n} \leq CP(F) \leq CP(\Omega)$  and in particular of finite volume, that in particular satisfies  $m(r) = |F \setminus B(O, r)| > 0$  for any r big enough. The assumed isoperimetric inequality implies

 $|F \setminus B(\overline{O,r)}|^{(n-1)/n} \leq \overline{CP(F \setminus B(O,r))} = \overline{C[P(F,\overline{B^c}) + P(B,F)]}.$ 

 $\overline{F}$  minimizes the area  $\Rightarrow P(F,\overline{B^c}) \leq P(B,F)$  . This yields

$$m(r)^{\frac{n-1}{n}} \leq -Cm'(r).$$

Integrating it, we get

$$(r_2-r_1)\leq C\left[m(r_1)^{rac{1}{n}}-m(r_2)^{rac{1}{n}}\right]$$

for any  $r_2>r_1$  big enough. Letting  $r_2 o+\infty$  contradiction.

### Capacitary interpretation

It is straightforward to show (Maz'ya) that

 $\inf\{P(E) \mid \Omega \subseteq E, E ext{ smooth}\} = \operatorname{Cap}_1(\Omega) = \inf\left\{\int_M |
abla f| \, \mathrm{d}\mu, \quad C^\infty_c(M) 
i f \geq \chi_\Omega
ight\}$ 

### Capacitary interpretation

It is straightforward to show (Maz'ya) that

 $\inf\{P(E) \,|\, \Omega \subseteq E, E \text{ smooth}\} = \operatorname{Cap}_1(\Omega) = \inf\left\{\int_M |\nabla f| \,\mathrm{d}\mu, \quad C^\infty_c(M) \ni f \ge \chi_\Omega\right\}$ 

In particular,

 $\operatorname{Cap}_1(\Omega) \geq P(\Omega^*)$ 

when the latter exists.

### Capacitary interpretation

It is straightforward to show (Maz'ya) that

 $\inf\{P(E) \, | \, \Omega \subseteq E, E \text{ smooth}\} = \operatorname{Cap}_1(\Omega) = \inf\left\{\int_M |\nabla f| \, \mathrm{d}\mu, \quad C^\infty_c(M) \ni f \ge \chi_\Omega\right\}$ 

In particular,

 $\operatorname{Cap}_1(\Omega) \geq P(\Omega^*)$ 

when the latter exists. Direct proof:

 $\overline{\int\limits_{M} |\nabla f| \,\mathrm{d}\mu} \ge \int_{0}^{1} |\{f=t\}| \,\mathrm{d}t \ge \inf \Big\{ P(E) \,\big| \,\, \Omega \subset E, \,\Big\} = P(\Omega^*).$ 

# Asymptotic relation with p-capacities

Recall that, for  $p \ge 1$ ,

$$\operatorname{Cap}_{\rho}(\Omega) = \inf \left\{ \int_{\mathcal{M}} |
abla f|^{
ho} \, \mathrm{d}\mu, \quad C^{\infty}_{c}(\mathcal{M}) 
i f \geq \chi_{\Omega} 
ight\}.$$

## Asymptotic relation with p-capacities

Recall that, for  $p \ge 1$ ,

$$\operatorname{Cap}_{\rho}(\Omega) = \inf \left\{ \int_{\mathcal{M}} |\nabla f|^{\rho} d\mu, \quad C^{\infty}_{c}(\mathcal{M}) \ni f \geq \chi_{\Omega} 
ight\}.$$

Theorem (Acostiniani, F., Mazzieri- F. Mazzieri; 2.02.2.) Let (M,g) admit a positive isoperimetric constant, and let  $\Omega$  with  $C^{1,\alpha}$ -boundary. Then

 $\overline{\lim_{p\to 1^+}\operatorname{Cap}_p(\Omega)} = \overline{\operatorname{Cap}_1}(\Omega) = P(\Omega^*).$ 

Main step | We apply the  $L^p$  Sobolev inequality for p > 1. With a careful choice of exponents (Xu) we get

$$\operatorname{Cap}_{1}(\Omega) \leq q_{p} \operatorname{C}_{n,p} {}^{(p-1)/p} \left( \int_{M} |\nabla f|^{p} \, \mathrm{d}\mu \right)^{(n-1)/(n-p)}$$

for any p > 1, any  $f \in C_c^{\infty}(M)$ .

<u>Main step |</u> We apply the  $L^p$  SOBOLEV inequality for p > 1. With a careful choice of exponents (Xu) we get

$$\operatorname{Cap}_{1}(\Omega) \leq q_{\rho} \operatorname{C}_{n,\rho}^{(\rho-1)/\rho} \left( \int_{M} |\nabla f|^{\rho} \, \mathrm{d}\mu \right)^{(n-1)/(n-\rho)}$$

for any p > 1, any  $f \in C_c^{\infty}(M)$ . Taking the infimum we deduce that

 $\operatorname{Cap}_1(\Omega) \leq \liminf_{p \to 1^+} \operatorname{Cap}_p(\Omega).$ 

<u>Main step |</u> We apply the  $L^p$  SOBOLEV inequality for p > 1. With a careful choice of exponents (Yu) we get

$$\operatorname{Cap}_{1}(\Omega) \leq q_{\rho} \operatorname{C}_{n,\rho}^{(\rho-1)/\rho} \left( \int_{M} |\nabla f|^{\rho} d\mu \right)^{(n-1)/(n-\rho)}$$

for any p>1, any  $f\in C^\infty_c(M).$ Taking the infimum we deduce that

 $\operatorname{Cap}_{1}(\Omega) \leq \liminf_{\rho \to 1^{+}} \operatorname{Cap}_{\rho}(\Omega).$ 

Main step 2 We claim that

 $\operatorname{Cap}_1(\Omega) = P(\Omega^*).$ 

It suffices to show " $\leq$ "; the inequality " $\geq$  " was already known: recall that

 $\inf\{P(E) \,|\, \Omega \subseteq E, E \text{ smooth}\} = \operatorname{Cap}_1(\Omega) = \inf\left\{\int_M |\nabla f| \,\mathrm{d}\mu, \quad C^\infty_c(M) \ni f \ge \chi_\Omega\right\}$ 

Step 2 would be accomplished if we could approximate the value of  $P(\Omega^*)$  with the perimeter of smooth domains  $\Omega_{\varepsilon} \supset \Omega$ .

Step 2 would be accomplished if we could approximate the value of  $P(\Omega^*)$  with the perimeter of smooth domains  $\Omega_{\varepsilon} \supset \Omega$ . In this case we would have

 $P(\Omega^*) \geq \overline{P(\Omega_{arepsilon}) - arepsilon \geq \operatorname{Cap}_1(\Omega) - arepsilon}$ 

and we'd conclude letting  $\varepsilon \to 0^+$ .

Step 2 would be accomplished if we could approximate the value of  $P(\Omega^*)$  with the perimeter of smooth domains  $\Omega_{\varepsilon} \supset \Omega$ . In this case we would have

$$P(\Omega^*) \geq P(\Omega_{\varepsilon}) - \varepsilon \geq \operatorname{Cap}_1(\Omega) - \varepsilon$$

and we'd conclude letting  $\varepsilon \to 0^+$ . We can do this if  $P(\Omega^*) = H^{n-1}(\partial \Omega^*)$  (Schmidt). Step 2 would be accomplished if we could approximate the value of  $P(\Omega^*)$  with the perimeter of smooth domains  $\Omega_{\varepsilon} \supset \Omega$ . In this case we would have

$$P(\Omega^*) \geq P(\Omega_{arepsilon}) - arepsilon \geq \operatorname{Cap}_1(\Omega) - arepsilon$$

and we'd conclude letting  $\varepsilon \to 0^+$ . We can do this if  $P(\Omega^*) = H^{n-1}(\partial \Omega^*)$  (Schmidt). True if  $\Omega$  is  $C^{1,\alpha}$ , in this case  $\Omega^*$  is  $C^{1,\beta}$  except for a set  $\Sigma$  with  $H^{n-8} = 0$ . A variation on  $\overline{\text{Maz}}$  'ya's argument and of the above one shows that also

 $\limsup_{\rho \to 1^+} \operatorname{Cap}_{\rho}(\Omega) \leq \operatorname{Cap}_{1}(\Omega),$ 

A variation on Maz'ya's argument and of the above one shows that also

 $\limsup_{p\to 1^+} \operatorname{Cap}_p(\Omega) \leq \operatorname{Cap}_1(\Omega),$ 

and so we showed

 $\overline{P(\Omega^*)} = \operatorname{Cap}_1(\Omega) \leq \liminf_{\rho \to 1^+} \operatorname{Cap}_{\rho}(\Omega) \leq \limsup_{\rho \to 1^+} \operatorname{Cap}_{\rho}(\Omega) \leq \operatorname{Cap}_1(\Omega) = P(\Omega^*),$ 

completing the proof.

A variation on Maz'ya's argument and of the above one shows that also

 $\limsup_{p\to 1^+} \operatorname{Cap}_p(\Omega) \leq \operatorname{Cap}_1(\Omega),$ 

and so we showed

 $\overline{P(\Omega^*)} = \operatorname{Cap}_1(\Omega) \leq \liminf_{\rho \to 1^+} \operatorname{Cap}_{\rho}(\Omega) \leq \limsup_{\rho \to 1^+} \operatorname{Cap}_{\rho}(\Omega) \leq \operatorname{Cap}_1(\Omega) = P(\Omega^*),$ 

completing the proof.

Obvious question: can we remove the  $C^{1,lpha}$  assumption on  $\Omega$ ?

A variation on Maz'ya's argument and of the above one shows that also

 $\limsup_{p\to 1^+} \operatorname{Cap}_p(\Omega) \le \operatorname{Cap}_1(\Omega),$ 

and so we showed

 $P(\Omega^*) = \operatorname{Cap}_1(\Omega) \leq \liminf_{\rho \to 1^+} \operatorname{Cap}_{\rho}(\Omega) \leq \limsup_{\rho \to 1^+} \operatorname{Cap}_{\rho}(\Omega) \leq \operatorname{Cap}_1(\Omega) = P(\Omega^*),$ 

completing the proof.

Obvious question: can we remove the  $C^{1,\alpha}$  assumption on  $\Omega$ ? Related to the regularity of  $\Omega^*$ . Does an outward minimizing set satisfy some kind of regularity allowing to be approximated from the outside?

The level sets of a function w defined on a Riemannian manifold (M,g) evolves by Inverse Mean Curvature Flow if w satisfies

$$\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right) = |\nabla w|$$

on  $M \setminus \Omega$ .

The level sets of a function w defined on a Riemannian manifold (M,g) evolves by Inverse Mean Curvature Flow if w satisfies

$$\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right) = |\nabla w|$$

on  $M \setminus \Omega$ . It starts from  $\Omega = \{w < 0\}$ .

The level sets of a function w defined on a Riemannian manifold (M,g) evolves by Inverse Mean Curvature Flow if w satisfies

$$\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right) = |\nabla w|$$

on  $M \setminus \Omega$ . It starts from  $\Omega = \{w < 0\}$ . Weak subsolutions are defined by (Huisken-Ilmanen)

$$P(\{w \leq t\}) \leq P(F) - \int_{F \setminus \{w \leq t\}} |\nabla w|$$

for any F containing  $\{w \leq t\}$ , with  $w \in Lip$ .

The level sets of a function w defined on a Riemannian manifold (M,g) evolves by Inverse Mean Curvature Flow if w satisfies

$$\operatorname{div}\left(\frac{\nabla w}{|\nabla w|}\right) = |\nabla w|$$

on  $M \setminus \Omega$ . It starts from  $\Omega = \{w < 0\}$ . Weak subsolutions are defined by (Huisken-Ilmanen)

$$P(\{w \leq t\}) \leq P(F) - \int_{F \setminus \{w \leq t\}} |\nabla w|$$

for any F containing  $\{w \leq t\}$ , with  $w \in \text{Lip}$ .

If the sublevel sets of w are compact and exhaust M, this is an outward minimizing exhaustion  $\Rightarrow$  the construction of  $\Omega^*$  works "like in  $\mathbb{R}^{n_*}$ , even in absence of a positive isoperimetric constant!

Recall that  $\operatorname{Cap}_p(\Omega)$  is realized by  $u_p$  satisfying

 $\Delta_{\rho}u_{\rho}=0, \quad u_{\rho}=1 \text{ on }\partial\Omega, \quad u_{\rho} \to 0 \text{ at infinity.}$ 

Recall that  $\operatorname{Cap}_{p}(\Omega)$  is realized by  $u_{p}$  satisfying

 $\Delta_p u_p = 0, \quad u_p = 1 \text{ on } \partial\Omega, \quad u_p o 0 \text{ at infinity.}$ 

Under suitable assumptions on the underlying manifold

 $w_p = -(p-1)\log u_p \to w,$ 

solution of the weak IMCF described above (Moser, Kotschwar-Ni, Mari-Rigoli-Setti).

Recall that  $\operatorname{Cap}_{p}(\Omega)$  is realized by  $u_{p}$  satisfying

 $\Delta_p u_p = 0, \quad u_p = 1 \text{ on } \partial\Omega, \quad u_p o 0 \text{ at infinity.}$ 

Under suitable assumptions on the underlying manifold

 $w_p = -(p-1)\log u_p \to w,$ 

solution of the weak IMCF described above (Moser, Kotschwar-Ni, Mari-Rigoli-Setti).

First question: does a weak evolution by IMCF exist if the isoperimetric constant is positive? Known if an additional Ricci lower bound is assumed (Mari-Rigoli-Setti), through *p*-harmonic approximation.

Recall that  $\operatorname{Cap}_{p}(\Omega)$  is realized by  $u_{p}$  satisfying

 $\Delta_p u_p = 0, \quad u_p = 1 \text{ on } \partial\Omega, \quad u_p \to 0 \text{ at infinity.}$ 

Under suitable assumptions on the underlying manifold

 $w_p = -(p-1)\log u_p \to w,$ 

solution of the weak IMCF described above (Moser, Kotschwar-Ni, Mari-Rigoli-Setti).

First question: does a weak evolution by IMCF exist if the isoperimetric constant is positive? Known if an additional Ricci lower bound is assumed (Mari-Rigoli-Setti), through *p*-harmonic approximation.

Real deal: In a manifold where you can build the envelopes  $\Omega^*$ , does the weak IMCF with compact sublevel exists?

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti we got the  $L^p$ -Minkowski inequality (sharp with equality only on spheres)

$$C_{n,p}\operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial\Omega} \frac{|H|^{p}}{n-1} \,\mathrm{d}\sigma,$$

through monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti we got the  $L^p$ -Minkowski inequality (sharp with equality only on spheres)

$$C_{n,p}\operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial\Omega} \frac{|H|^{p}}{n-1} \,\mathrm{d}\sigma,$$

through monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).

We can pass to the limit as  $p \to 1^+$  and obtain the Minkowski Inequality in terms of  $\Omega^*$ 

$$|\mathbb{S}^{n-1}|^{n-1} \operatorname{\mathsf{P}}(\Omega^*)^{rac{n-2}{n-1}} \leq \int_{\partial\Omega} rac{|H|}{n-1} \,\mathrm{d}\sigma.$$

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti we got the  $L^p$ -Minkowski inequality (sharp with equality only on spheres)

$$C_{n,p}\operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial\Omega} \frac{|H|^{p}}{n-1} \,\mathrm{d}\sigma,$$

through monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).

We can pass to the limit as  $p \to 1^+$  and obtain the Minkowski inequality in terms of  $\Omega^*$ 

$$|\mathbb{S}^{n-1}|^{n-1} \operatorname{\mathsf{P}}(\Omega^*)^{rac{n-2}{n-1}} \leq \int_{\partial\Omega} rac{|H|}{n-1} \,\mathrm{d}\sigma.$$

Similar version in the anisotropic case (Xia-Yin).

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti we got the  $L^p$ -Minkowski inequality (sharp with equality only on spheres)

$$C_{n,p}\operatorname{Cap}_{p}(\Omega)^{\frac{n-p-1}{n-p}} \leq \int_{\partial\Omega} \frac{|H|^{p}}{n-1} \,\mathrm{d}\sigma,$$

through monotonicity formulas along the p-harmonic potentials (also on Riemannian manifolds).

We can pass to the limit as  $p \to 1^+$  and obtain the Minkowski inequality in terms of  $\Omega^*$ 

$$\mathbb{S}^{n-1}|^{n-1} P(\Omega^*)^{rac{n-2}{n-1}} \leq \int_{\partial\Omega} rac{|H|}{n-1} \,\mathrm{d}\sigma.$$

Similar version in the anisotropic case (Xia-Yin). Applications to the Penrose Inequality in GR (Agostiniani-Mantegazza-Mazzieri-Oronzio, Hirsh-Miao-Tam...).

