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Least area problem with obstacle

and outward minimizing sets

Given Ω ⊂ Rn (for the time being) bounded with finite perimeter,

we are interested in the existence of a bounded set Ω∗ such that

P(Ω∗) = inf{P(E) Ω ⊆ E bounded}.

We call it minimizing hull of Ω.

If such a set is Ω itself, we say that it is outward minimizing: We

say that Ω is outward minimizing if for any E with Ω ⊆ E we have

P(Ω) ≤ P(E).
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Existence of minimizing hulls

The Direct Method immediately provides a solution to the least

area problem with obstacle Ω.

It is bounded: balls are outward minimizing, intersection of

outward minimizing is outward minimizing ⇒ the elements of the

minimizing sequence can be assumed to be bounded.

RMK: In a noncompact Riemannian manifold, this works everytime

we have a bounded outward minimizing set containing Ω, and in

particular if we have a outward minimizing exhaustion.
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Construction of minimizing hulls

Let Ω ⊂ M be a bounded subset with finite perimeter.

Bassanezi-Tamanini (Ann. Univ. Ferrara, 1984) showed that, with

OM (Ω) = {E ⊂ M |Ω ⊆ E andE is outward minimising},

the desired solution to the least area problem with obstacle Ω is

given by

Ω∗ = Int

 ⋂
E∈OM(Ω)

Int (E)

 .

Technical minor issue: the intersection should be thought in a

measure theoretic sense.
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The strategy of the proof is the most natural one: they show

that countable intersections of outward minimizing sets

(containing Ω) are still outward minimizing,

⇒ Ω∗ = Int

 ⋂
E∈OM(Ω)

Int (E)


is outward minimizing.

If there were a solution E ⊃ Ω with P(E) < P(Ω∗), it would be

outward minimizing ⇒ it would be part of the intersection

⇒ Ω∗ ⊆ E ⇒ P(Ω∗) ≤ P(E) contradiction.
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In a general Riemannian manifold you do not a priori know to have

something like "outward minimizing balls"!

A proper hull may not exist.

RMK: Bassanezi-Tamanini’s proof actually gives you a bounded

minimizing hull if you have an

exhaustion of outward minimizing sets.
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Existence in case of positive

isoperimetric constant

We show that

Theorem (F., Mazzieri (JFA 2022)) Assume (M, g) is a

complete noncompact Riemannian manifold with a

positive Isoperimetric/Sobolev constant Ciso > 0, that is

|∂E |n

|E |n−1 ≥ Ciso > 0.

for any bounded E ⊂ M with finite perimeter.

Then, any bounded Ω ⊂ M with finite perimeter admits a bounded

minimizing hull Ω∗ .

RMK: Relevant classes of manifolds satisfy the above assumptions:

nonnegative Ricci curvature with Euclidean volume growth,

Cartan-Hadamard (simply connected with nonpositive sectional)...
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PROOF: Assume that any (bounded) minimizing sequence gives rise

to an unbounded set with finite perimeter F . Then,

|F |(n−1)/n ≤ CP(F ) ≤ CP(Ω) and in particular of finite volume , that

in particular satisfies m(r) = |F \ B(O, r)| > 0 for any r big enough.

The assumed isoperimetric inequality implies

|F \ B(O, r)|(n−1)/n ≤ CP(F \ B(O, r)) = C [P(F ,Bc) + P(B,F )].

F minimizes the area ⇒ P(F ,Bc) ≤ P(B,F ) .

This yields

m(r)
n−1

n ≤ −Cm′(r).

Integrating it, we get

(r2 − r1) ≤ C
[
m(r1)

1

n −m(r2)
1

n

]
for any r2 > r1 big enough. Letting r2 → +∞ contradiction.
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Capacitary interpretation

It is straightforward to show (Maz’ya) that

inf{P(E) |Ω ⊆ E ,E smooth} = Cap
1
(Ω) = inf

{�
M

|∇f | dµ, C∞c (M) 3 f ≥ χΩ

}

In particular,

Cap
1
(Ω) ≥ P(Ω∗)

when the latter exists. Direct proof:

�

M

|∇f | dµ ≥
�

1

0

|{f = t}| dt ≥ inf
{
P(E)

∣∣ Ω ⊂ E ,
}

= P(Ω∗).
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Asymptotic relation with

p-capacities

Recall that, for p ≥ 1,

Capp(Ω) = inf

{�
M

|∇f |p dµ, C∞c (M) 3 f ≥ χΩ

}
.

Theorem (Agostiniani, F., Mazzieri- F. Mazzieri; 2022)
Let (M, g) admit a positive isoperimetric constant, and let Ω with

C 1,α-boundary. Then

lim
p→1+

Capp(Ω) = Cap
1
(Ω) = P(Ω∗).
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Main step 1 We apply the Lp Sobolev inequality for p > 1. With a

careful choice of exponents (Xu) we get

Cap
1
(Ω) ≤ qp Cn,p

(p−1)/p

(�
M

|∇f |p dµ
)(n−1)/(n−p)

,

for any p > 1, any f ∈ C∞c (M).

Taking the infimum we deduce that

Cap
1
(Ω) ≤ lim inf

p→1+
Capp(Ω).

Main step 2 We claim that
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1
(Ω) = P(Ω∗).

It suffices to show "≤"; the inequality "≥ ” was already known: recall
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Step 2 would be accomplished if we could approximate the value of

P(Ω∗) with the perimeter of smooth domains Ωε ⊃ Ω.

In this case we would have

P(Ω∗) ≥ P(Ωε)− ε ≥ Cap
1
(Ω)− ε

and we’d conclude letting ε→ 0
+ .

We can do this if P(Ω∗) = Hn−1(∂Ω∗) (Schmidt).

True if Ω is C 1,α, in this case Ω∗ is C 1,β except for a set Σ with

Hn−8 = 0.
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A variation on Maz’ya’s argument and of the above one shows

that also

lim sup
p→1+

Capp(Ω) ≤ Cap
1
(Ω),

and so we showed

P(Ω∗) = Cap
1
(Ω) ≤ lim inf

p→1+
Capp(Ω) ≤ lim sup

p→1+
Capp(Ω) ≤ Cap

1
(Ω) = P(Ω∗),

completing the proof.

Obvious question: can we remove the C 1,α assumption on Ω?

Related to the regularity of Ω∗ . Does an outward minimizing set

satisfy some kind of regularity allowing to be approximated

from the outside?



A variation on Maz’ya’s argument and of the above one shows

that also

lim sup
p→1+

Capp(Ω) ≤ Cap
1
(Ω),

and so we showed

P(Ω∗) = Cap
1
(Ω) ≤ lim inf

p→1+
Capp(Ω) ≤ lim sup

p→1+
Capp(Ω) ≤ Cap

1
(Ω) = P(Ω∗),

completing the proof.

Obvious question: can we remove the C 1,α assumption on Ω?

Related to the regularity of Ω∗ . Does an outward minimizing set

satisfy some kind of regularity allowing to be approximated

from the outside?



A variation on Maz’ya’s argument and of the above one shows

that also

lim sup
p→1+

Capp(Ω) ≤ Cap
1
(Ω),

and so we showed

P(Ω∗) = Cap
1
(Ω) ≤ lim inf

p→1+
Capp(Ω) ≤ lim sup

p→1+
Capp(Ω) ≤ Cap

1
(Ω) = P(Ω∗),

completing the proof.

Obvious question: can we remove the C 1,α assumption on Ω?

Related to the regularity of Ω∗ . Does an outward minimizing set

satisfy some kind of regularity allowing to be approximated

from the outside?



A variation on Maz’ya’s argument and of the above one shows

that also

lim sup
p→1+

Capp(Ω) ≤ Cap
1
(Ω),

and so we showed

P(Ω∗) = Cap
1
(Ω) ≤ lim inf

p→1+
Capp(Ω) ≤ lim sup

p→1+
Capp(Ω) ≤ Cap

1
(Ω) = P(Ω∗),

completing the proof.

Obvious question: can we remove the C 1,α assumption on Ω?

Related to the regularity of Ω∗ . Does an outward minimizing set

satisfy some kind of regularity allowing to be approximated

from the outside?



Relation with the Inverse Mean

Curvature Flow

The level sets of a function w defined on a Riemannian manifold

(M, g) evolves by Inverse Mean Curvature Flow if w satisfies

div

(
∇w
|∇w |

)
= |∇w |

on M \ Ω.

It starts from Ω = {w < 0}.
Weak subsolutions are defined by (Huisken-Ilmanen)

P({w ≤ t}) ≤ P(F )−
�

F\{w≤t}

|∇w |

for any F containing {w ≤ t}, with w ∈ Lip.
If the sublevel sets of w are compact and exhaust M , this is an

outward minimizing exhaustion ⇒ the construction of Ω∗ works

"like in Rn", even in absence of a positive isoperimetric constant!
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p-capacitary potentials and IMCF

Recall that Capp(Ω) is realized by up satisfying

∆pup = 0, up = 1 on ∂Ω, up → 0 at infinity.

Under suitable assumptions on the underlying manifold

wp = −(p − 1) log up → w ,

solution of the weak IMCF described above (Moser, Kotschwar-Ni,

Mari-Rigoli-Setti).

First question: does a weak evolution by IMCF exist if the

isoperimetric constant is positive? Known if an additional Ricci

lower bound is assumed (Mari-Rigoli-Setti), through p-harmonic

approximation.

Real deal: In a manifold where you can build the envelopes Ω∗, does

the weak IMCF with compact sublevel exists?
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Example of application to the

Minkowski Inequality

In joint papers with Agostiniani, Benatti, Mazzieri and Pinamonti

we got the Lp-Minkowski inequality (sharp with equality only on

spheres)

Cn,p Capp(Ω)
n−p−1

n−p ≤
�
∂Ω

|H|p

n − 1
dσ,

through monotonicity formulas along the p-harmonic potentials

(also on Riemannian manifolds).

We can pass to the limit as p → 1
+ and obtain the Minkowski

Inequality in terms of Ω∗

|Sn−1|n−1 P(Ω∗)
n−2
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