Rearrangement of Gradient

Shape Optimization, Geometric Inequalities, and Related Topics Two days workshop for young researchers in Naples.

$$
\text { January 30, } 2023
$$

Andrea Gentile

Mathematical and Physical Sciences for Advanced Materials and Technologies

Scuola Superiore Meridionale

SSM
 Scuola Superiore Meridionale

Table of contents

Introduction
Rearrangement of gradient

Andrea Gentile

Introduction

Sobolev case
BV case
Applications

MPS

Table of contents

Introduction
Sobolev case
BV case
Applications
Sobolev case

MPS

Table of contents

Introduction
Sobolev case
BV case
Applications
Sobolev case

BV case

MPS

Table of contents

Introduction
Sobolev case
BV case

Applications
Sobolev case

BV case

Applications

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case
Introduction
Applications

Let $u: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function. The distribution function of u is the function $\mu:[0,+\infty) \rightarrow[0,+\infty)$ defined as

$$
\mu(t):=|\{x \in \Omega| | u(x) \mid>t\}|
$$

Rearrangement of gradient

Andrea Gentile
Introduction
Sobolev case
BV case
Applications

MPS

Let $u: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function. The distribution function of u is the function $\mu:[0,+\infty) \rightarrow[0,+\infty)$ defined as

$$
\mu(t):=|\{x \in \Omega| | u(x) \mid>t\}|
$$

Rearrangement of gradient
Andrea Gentile
Introduction
Sobolev case
BV case
Applications
The decreasing and increasing rearrangement of u are defined respectively as

$$
u^{*}(s):=\inf \{t \geq 0 \mid \mu(t)<s\} \quad u_{*}(s):=u^{*}(|\Omega|-s)
$$

MPS

Rearrangements (1)

Let $u: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function. The distribution function of u is the function $\mu:[0,+\infty) \rightarrow[0,+\infty)$ defined as

$$
\mu(t):=|\{x \in \Omega| | u(x) \mid>t\}|
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case
Applications

The decreasing and increasing rearrangement of u are defined respectively as

$$
u^{*}(s):=\inf \{t \geq 0 \mid \mu(t)<s\} \quad u_{*}(s):=u^{*}(|\Omega|-s)
$$

The radially increasing and decreasing rearrangement of u are respectively defined as

$$
u^{\sharp}(x)=u^{*}\left(\omega_{n}|x|^{n}\right) \quad u_{\sharp}(x)=u_{*}\left(\omega_{n}|x|^{n}\right) .
$$

where ω_{n} is the measure of the n-dimensional ball.

MPS

Rearrangements (2)

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case
Applications
Figure: The decreasing rearrangement u^{\sharp}.

MPS

Rearrangements (2)

Rearrangement of gradient

Andrea Gentile
introduction

Sobolev case
BV case
Applications
Figure: The decreasing rearrangement u^{\sharp}.

MPS

Rearrangements (2)

Rearrangement of gradient

Andrea Gentile
introduction
Sobolev case
BV case
Applications
Figure: The decreasing rearrangement u^{\sharp}.

MPS

Rearrangements (2)

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case

BV case
Applications
Figure: The decreasing rearrangement u^{\sharp}.

MPS

Rearrangements (2)

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case

BV case
Applications
Figure: The decreasing rearrangement u^{\sharp}.

MPS

Rearrangements (2)

Rearrangement of gradient
Andrea Gentile

Introduction
Sobolev case
BV case
Applications
Figure: The decreasing rearrangement u^{\sharp}.

Figure: The increasing rearrangement u_{\sharp}.

MPS

Rearrangements (2)

Rearrangement of gradient
Andrea Gentile

Figure: The decreasing rearrangement u^{\sharp}.

Figure: The increasing rearrangement u_{\sharp}.

By Cavalieri's principle, the L^{p} norms are equal for every p.

Some literature

Rearrangements are very useful in order to obtain comparison result.

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case
Applications

MPS

Some literature

Rearrangements are very useful in order to obtain comparison result.

- Polya-Szegö: if $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ then $u^{\sharp} \in W^{1, p}\left(\mathbb{R}^{n}\right)$ and it holds:

$$
\int_{\mathbb{R}^{n}}\left|\nabla u^{\sharp}\right|^{p} d x \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case
Applications

MPS

Some literature

Rearrangements are very useful in order to obtain comparison result.

- Polya-Szegö: if $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ then $u^{\sharp} \in W^{1, p}\left(\mathbb{R}^{n}\right)$ and it

Rearrangement of gradient

Andrea Gentile holds:

$$
\int_{\mathbb{R}^{n}}\left|\nabla u^{\sharp}\right|^{p} d x \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x
$$

Introduction
Sobolev case
BV case
Applications

- Talenti Comparison results: let $f \in L^{\frac{n}{n+2}}$ be a positive function, denoting with u, v respectively the solution to

$$
\left\{\begin{array} { l l }
{ - \Delta u = f } & { \text { in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v=f^{\sharp} & \text { in } \Omega^{\sharp} \\
v=0 & \text { on } \partial \Omega^{\sharp}
\end{array}\right.\right.
$$

then

$$
u^{\sharp}(x) \leq v(x) \quad \text { a.e. } x \in \Omega^{\sharp}
$$

MPS

Some literature

Rearrangements are very useful in order to obtain comparison result.

- Polya-Szegö: if $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ then $u^{\sharp} \in W^{1, p}\left(\mathbb{R}^{n}\right)$ and it

Rearrangement of gradient

Andrea Gentile holds:

$$
\int_{\mathbb{R}^{n}}\left|\nabla u^{\sharp}\right|^{p} d x \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x
$$

Introduction

Sobolev case
BV case
Applications

- Talenti Comparison results: let $f \in L^{\frac{n}{n+2}}$ be a positive function, denoting with u, v respectively the solution to

$$
\left\{\begin{array} { l l }
{ - \Delta u = f } & { \text { in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v=f^{\sharp} & \text { in } \Omega^{\sharp} \\
v=0 & \text { on } \partial \Omega^{\sharp}
\end{array}\right.\right.
$$

then

$$
u^{\sharp}(x) \leq v(x) \quad \text { a.e. } x \in \Omega^{\sharp}
$$

and therefore

$$
\left\|u^{\sharp}\right\|_{L^{p}} \leq\|v\|_{L^{p}} \quad \text { for every } p .
$$

MPS

An Hamilton-Jacobi comparison

Theorem (Giarrusso, Nunziante - 1984)

Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a non-negative function. Denoting with u and v respectively the solutions to

$$
\left\{\begin{array} { l l }
{ | \nabla u | = f (x) } & { \text { a.e. in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
|\nabla v|=f_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\
v=0 & \text { on } \partial \Omega^{\sharp}
\end{array},\right.\right.
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case

BV case
Applications

MPS

An Hamilton-Jacobi comparison

Theorem (Giarrusso, Nunziante - 1984)

 and v respectively the solutions toAssume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a non-negative function. Denoting with u

$$
\left\{\begin{array} { l l }
{ | \nabla u | = f (x) } & { \text { a.e. in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
|\nabla v|=f_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\
v=0 & \text { on } \partial \Omega^{\sharp}
\end{array},\right.\right.
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case

BV case
Applications

$$
\|u\|_{L^{1}(\Omega)} \leq\|v\|_{L^{1}\left(\Omega^{\sharp}\right)}
$$

MPS

An Hamilton-Jacobi comparison

Theorem (Giarrusso, Nunziante - 1984)
Rearrangement of gradient

Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a non-negative function. Denoting with u and v respectively the solutions to

$$
\left\{\begin{array} { l l }
{ | \nabla u | = f (x) } & { \text { a.e. in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
|\nabla v|=f_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\
v=0 & \text { on } \partial \Omega^{\sharp}
\end{array},\right.\right.
$$

Sobolev case
BV case
Applications

$$
\|u\|_{L^{1}(\Omega)} \leq\|v\|_{L^{1}\left(\Omega^{\sharp}\right)}
$$

They also proved a L^{∞} comparison replacing the increasing rearrangement with the decreasing rearrangement of f.

MPS

An Hamilton-Jacobi comparison

Theorem (Giarrusso, Nunziante - 1984)
Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a non-negative function. Denoting with u and v respectively the solutions to

$$
\left\{\begin{array} { l l }
{ | \nabla u | = f (x) } & { \text { a.e. in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
|\nabla v|=f_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\
v=0 & \text { on } \partial \Omega^{\sharp}
\end{array},\right.\right.
$$

Rearrangement of gradient
Andrea Gentile
Introduction
Sobolev case
BV case
Applications

$$
\|u\|_{L^{1}(\Omega)} \leq\|v\|_{L^{1}\left(\Omega^{\sharp}\right)}
$$

They also proved a L^{∞} comparison replacing the increasing rearrangement with the decreasing rearrangement of f.

MPS

An Hamilton-Jacobi comparison

Theorem (Giarrusso, Nunziante - 1984)
Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a non-negative function. Denoting with u and v respectively the solutions to

$$
\left\{\begin{array} { l l }
{ | \nabla u | = f (x) } & { \text { a.e. in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
|\nabla v|=f_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\
v=0 & \text { on } \partial \Omega^{\sharp}
\end{array},\right.\right.
$$

Rearrangement of gradient
Andrea Gentile

Sobolev case
BV case
Applications

MPS

L^{q} comparison (1)

Let $1<p<\infty$, let Ω be a bounded open set in \mathbb{R}^{n}, let $\varphi=\varphi^{*} \in L^{p}(0,|\Omega|)$ and let q be such that

- $1 \leq q \leq \frac{n p}{n-p}$ if $p<n$
- $1 \leq q<+\infty$ if $p=n$
- $1 \leq q \leq+\infty$ if $p>n$.

Let us define

$$
I(\Omega):=\sup \left\{\|u\|_{L^{q}} \mid\right.
$$

Rearrangement of gradient

Andrea Gentile
introduction
Sobolev case
BV case
Applications

MPS

L^{q} comparison (1)

Let $1<p<\infty$, let Ω be a bounded open set in \mathbb{R}^{n}, let $\varphi=\varphi^{*} \in L^{p}(0,|\Omega|)$ and let q be such that

- $1 \leq q \leq \frac{n p}{n-p}$ if $p<n$
- $1 \leq q<+\infty$ if $p=n$
- $1 \leq q \leq+\infty$ if $p>n$.

Let us define

$$
I(\Omega):=\sup \left\{\|u\|_{L_{q}}| | \nabla u \mid \leq f \text { a.e. in } \Omega,\right.
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case

Applications

MPS

L^{q} comparison (1)

Let $1<p<\infty$, let Ω be a bounded open set in \mathbb{R}^{n}, let $\varphi=\varphi^{*} \in L^{p}(0,|\Omega|)$ and let q be such that

- $1 \leq q \leq \frac{n p}{n-p}$ if $p<n$
- $1 \leq q<+\infty$ if $p=n$
- $1 \leq q \leq+\infty$ if $p>n$.

Let us define

$$
I(\Omega):=\sup \left\{\begin{array}{l|l}
\|u\|_{L q} & \begin{array}{l}
|\nabla u| \leq f \text { a.e. in } \Omega, \\
u \in W_{0}^{1, p}(\Omega) \\
f \geq 0, f^{*}=\varphi^{*}
\end{array}
\end{array}\right\}
$$

Introduction
Sobolev case
BV case

Applications

MPS

L^{q} comparison (1)

Let $1<p<\infty$, let Ω be a bounded open set in \mathbb{R}^{n}, let $\varphi=\varphi^{*} \in L^{p}(0,|\Omega|)$ and let q be such that

- $1 \leq q \leq \frac{n p}{n-p}$ if $p<n$
- $1 \leq q<+\infty$ if $p=n$
- $1 \leq q \leq+\infty$ if $p>n$.

Let us define

$$
I(\Omega):=\sup \left\{\begin{array}{l|l}
\|u\|_{L q} & \begin{array}{l}
|\nabla u| \leq f \text { a.e. in } \Omega, \\
u \in W_{0}^{1, p}(\Omega) \\
f \geq 0, f^{*}=\varphi^{*}
\end{array}
\end{array}\right\}
$$

Questions:

- Does $I(\Omega)$ achieve maximum?

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case

Applications

MPS

L^{q} comparison (1)

Let $1<p<\infty$, let Ω be a bounded open set in \mathbb{R}^{n}, let $\varphi=\varphi^{*} \in L^{p}(0,|\Omega|)$ and let q be such that

- $1 \leq q \leq \frac{n p}{n-p}$ if $p<n$
- $1 \leq q<+\infty$ if $p=n$
- $1 \leq q \leq+\infty$ if $p>n$.

Let us define

$$
I(\Omega):=\sup \left\{\begin{array}{l|l}
\|u\|_{L q} & \begin{array}{l}
|\nabla u| \leq f \text { a.e. in } \Omega, \\
u \in W_{0}^{1, p}(\Omega) \\
f \geq 0, f^{*}=\varphi^{*}
\end{array}
\end{array}\right\}
$$

Questions:

- Does $I(\Omega)$ achieve maximum?
- What is the optimal shape?

MPS

L^{q} comparison (2)

Theorem (Alvino, P.L. Lions, G. Trombetti, 1989)

Let Ω^{\sharp} be the ball centered at the origin with same measure as Ω and R its radius. Then there exists v, g spherically symmetric on

Rearrangement of gradient
Andrea Gentile

Sobolev case
BV case
Applications Ω^{\sharp} such that $g^{*}=\varphi, I\left(\Omega^{\sharp}\right)=\|v\|_{L q}$,

$$
v(x)=\int_{|x|}^{R} g(s) d s
$$

and thus

$$
|\nabla v|=g \quad \text { a.e. in } \Omega^{\sharp}, v \in W_{0}^{1, p}\left(\Omega^{\sharp}\right), v \geq 0 \text { in } \Omega^{\sharp}
$$

Furthermore $I\left(\Omega^{\sharp}\right) \geq I(\Omega)$ for all open sets Ω in \mathbb{R}^{n} with $\left|\Omega^{\sharp}\right|=|\Omega|$.

MPS

L^{q} comparison (2)

Theorem (Alvino, P.L. Lions, G. Trombetti, 1989)

Let Ω^{\sharp} be the ball centered at the origin with same measure as Ω and R its radius. Then there exists v, g spherically symmetric on

Rearrangement of gradient
Andrea Gentile Ω^{\sharp} such that $g^{*}=\varphi, I\left(\Omega^{\sharp}\right)=\|v\|_{L q}$,

$$
v(x)=\int_{|x|}^{R} g(s) d s
$$

and thus

$$
|\nabla v|=g \quad \text { a.e. in } \Omega^{\sharp}, v \in W_{0}^{1, p}\left(\Omega^{\sharp}\right), v \geq 0 \text { in } \Omega^{\sharp}
$$

Furthermore $I\left(\Omega^{\sharp}\right) \geq I(\Omega)$ for all open sets Ω in \mathbb{R}^{n} with $\left|\Omega^{\sharp}\right|=|\Omega|$.
In [Cianchi, 1996] the author proved a representation formula for g.

MPS

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case

Sobolev case

Applications

Main result

Theorem (Amato, G. - to appear on Rendiconti Lincei) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open and Lipschitz set and let

Rearrangement of gradient $u \in W^{1, p}(\Omega)$ be a non-negative function. Then there exists a

10 Sobolev case
BV case
Applications

$$
\begin{cases}|\nabla v|(x)=|\nabla u|_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\ v=\frac{\int_{\partial \Omega} u d \mathcal{H}^{n-1}}{\operatorname{Per}\left(\Omega^{\sharp}\right)} & \text { on } \partial \Omega^{\sharp} .\end{cases}
$$

MPS

Main result

Theorem (Amato, G. - to appear on Rendiconti Lincei) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open and Lipschitz set and let

Rearrangement of gradient $u \in W^{1, p}(\Omega)$ be a non-negative function. Then there exists a non-negative radial function $v \in W^{1, p}\left(\Omega^{\sharp}\right)$ that satisfies

BV case
Applications

$$
\begin{cases}|\nabla v|(x)=|\nabla u|_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\ v=\frac{\int_{\partial \Omega} u d \mathcal{H}^{n-1}}{\operatorname{Per}\left(\Omega^{\sharp}\right)} & \text { on } \partial \Omega^{\sharp} .\end{cases}
$$

and verifies

$$
\|u\|_{L^{1}(\Omega)} \leq\|v\|_{L^{1}\left(\Omega^{\sharp}\right)},
$$

$$
\operatorname{Per}\left(\Omega^{\sharp}\right)^{p-1} \int_{\partial \Omega^{\sharp}} v^{p} d x \leq \operatorname{Per}(\Omega)^{p-1} \int_{\partial \Omega} u^{p} d x \quad \forall p \geq 1 .
$$

MPS

Main result

Theorem (Amato, G. - to appear on Rendiconti Lincei) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open and Lipschitz set and let

Rearrangement of gradient $u \in W^{1, p}(\Omega)$ be a non-negative function. Then there exists a non-negative radial function $v \in W^{1, p}\left(\Omega^{\sharp}\right)$ that satisfies

BV case
Applications

$$
\begin{cases}|\nabla v|(x)=|\nabla u|_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\ v=\frac{\int_{\partial \Omega} u d \mathcal{H}^{n-1}}{\operatorname{Per}\left(\Omega^{\sharp}\right)} & \text { on } \partial \Omega^{\sharp} .\end{cases}
$$

and verifies

$$
\|u\|_{L^{1}(\Omega)} \leq\|v\|_{L^{1}\left(\Omega^{\sharp}\right)},
$$

$$
\operatorname{Per}\left(\Omega^{\sharp}\right)^{p-1} \int_{\partial \Omega^{\sharp}} v^{p} d x \leq \operatorname{Per}(\Omega)^{p-1} \int_{\partial \Omega} u^{p} d x \quad \forall p \geq 1 .
$$

MPS

Idea of the proof

Rearrangement of gradient
Andrea Gentile
Suppose that u and Ω are smooth.

BV case
Applications

MPS

Idea of the proof

Rearrangement of gradient
Andrea Gentile
Suppose that u and Ω are smooth.
Sobolev case
BV case
Applications

MPS

Idea of the proof

Rearrangement of gradient
Andrea Gentile
Suppose that u and Ω are smooth.
Sobolev case

BV case
Applications

MPS

Idea of the proof

Suppose that u and Ω are smooth.
Rearrangement of gradient
Andrea Gentile

(11) Sobolev case

BV case
Applications

MPS

Idea of the proof

Suppose that u and Ω are smooth.
Rearrangement of gradient
Andrea Gentile

So we can apply Giarrusso-Nunziante comparison.

MPS

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
(12) $B V$ case

Applications

BV case

MPS

BV function

We say that $u \in L^{1}(\Omega)$ is a BV function if
Rearrangement of gradient

Andrea Gentile

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} \varphi d\left(D_{i} u\right) \quad \forall \varphi \in C_{C}^{\infty}(\Omega)
$$

and $D u$ is a Radon measure.

BV function

We say that $u \in L^{1}(\Omega)$ is a BV function if
Rearrangement of gradient

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} \varphi d\left(D_{i} u\right) \quad \forall \varphi \in C_{C}^{\infty}(\Omega) .
$$

and $D u$ is a Radon measure.
Applications
By Lebesgue decomposition theorem

$$
d D u=\mathcal{L}^{n}\left\llcorner\nabla^{\mathrm{a}} u+d D^{\mathrm{s}} u\right.
$$

MPS

BV function

We say that $u \in L^{1}(\Omega)$ is a BV function if
Rearrangement of gradient

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} \varphi d\left(D_{i} u\right) \quad \forall \varphi \in C_{C}^{\infty}(\Omega)
$$

and $D u$ is a Radon measure.
Applications
By Lebesgue decomposition theorem

$$
d D u=\mathcal{L}^{n} L \nabla^{\mathrm{a}} u+d D^{\mathrm{s}} u=\mathcal{L}^{n}\left\llcorner\nabla^{\mathrm{a}} u+d D^{\mathrm{j}} u+d D^{\mathrm{c}} u,\right.
$$

MPS

BV function

We say that $u \in L^{1}(\Omega)$ is a BV function if
Rearrangement of gradient

Andrea Gentile

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} \varphi d\left(D_{i} u\right) \quad \forall \varphi \in C_{C}^{\infty}(\Omega)
$$

and $D u$ is a Radon measure.

Introduction
Sobolev case
3) $B V$ case

Applications

By Lebesgue decomposition theorem

$$
d D u=\mathcal{L}^{n} L \nabla^{\mathrm{a}} u+d D^{\mathrm{s}} u=\mathcal{L}^{n}\left\llcorner\nabla^{\mathrm{a}} u+d D^{\mathrm{j}} u+d D^{\mathrm{c}} u,\right.
$$

hence for every $A \subseteq R^{n}$ measurable

$$
\Rightarrow|D u|(A)=\left|D^{\mathrm{a}} u\right|(A)+\left|D^{\mathrm{s}} u\right|(A)
$$

MPS

BV function

We say that $u \in L^{1}(\Omega)$ is a $B V$ function if

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} \varphi d\left(D_{i} u\right) \quad \forall \varphi \in C_{C}^{\infty}(\Omega)
$$

and $D u$ is a Radon measure.
Rearrangement of gradient

Andrea Gentile

By Lebesgue decomposition theorem

$$
d D u=\mathcal{L}^{n}\left\llcorner\nabla^{\mathrm{a}} u+d D^{\mathrm{s}} u=\mathcal{L}^{n}\left\llcorner\nabla^{\mathrm{a}} u+d D^{\mathrm{j}} u+d D^{\mathrm{c}} u\right.\right.
$$

hence for every $A \subseteq R^{n}$ measurable

$$
\Rightarrow|D u|(A)=\left|D^{\mathrm{a}} u\right|(A)+\left|D^{\mathrm{s}} u\right|(A)=\int_{A}\left|\nabla^{\mathrm{a}} u\right| d x+\left|D^{\mathrm{s}} u\right|(A) .
$$

MPS

BV function

We say that $u \in L^{1}(\Omega)$ is a $B V$ function if
Rearrangement of gradient

Andrea Gentile

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} \varphi d\left(D_{i} u\right) \quad \forall \varphi \in C_{C}^{\infty}(\Omega)
$$

and $D u$ is a Radon measure.

Introduction
Sobolev case
$B V$ case
Applications

By Lebesgue decomposition theorem

$$
d D u=\mathcal{L}^{n}\left\llcorner\nabla^{\mathrm{a}} u+d D^{\mathrm{s}} u=\mathcal{L}^{n}\left\llcorner\nabla^{\mathrm{a}} u+d D^{\mathrm{j}} u+d D^{\mathrm{c}} u,\right.\right.
$$

hence for every $A \subseteq R^{n}$ measurable

$$
\Rightarrow|D u|(A)=\left|D^{\mathrm{a}} u\right|(A)+\left|D^{\mathrm{s}} u\right|(A)=\int_{A}\left|\nabla^{\mathrm{a}} u\right| d x+\left|D^{\mathrm{s}} u\right|(A) .
$$

Moreover for BV functions it holds the Fleming-Rishel formula:

$$
\mid \operatorname{Du|}(\Omega)=\int_{-\infty}^{+\infty} \operatorname{Per}(u>t) d t
$$

MPS

BV rearrangement

Rearrangement of gradient

Andrea Gentile

Cianchi and Fusco extended the validity of Polya-Szegö to BV functions.

Introduction

Sobolev case
14 BV case
Applications

MPS

Cianchi and Fusco extended the validity of Polya-Szegö to BV functions.

Theorem (Cianchi, Fusco - 02)
Let u be a nonnegative compactly supported function in $B V\left(\mathbb{R}^{n}\right)$. Then $u^{\sharp} \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ and it holds

Rearrangement of gradient

Andrea Gentile

MPS

Cianchi and Fusco extended the validity of Polya-Szegö to BV functions.

Theorem (Cianchi, Fusco-02)
Let u be a nonnegative compactly supported function in $\mathrm{BV}\left(\mathbb{R}^{n}\right)$. Then $u^{\sharp} \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ and it holds

$$
\left|D u^{\sharp}\right|\left(\mathbb{R}^{n}\right) \leq|D u|\left(\mathbb{R}^{n}\right),
$$

Introduction
Sobolev case
BV case
Applications

MPS

Cianchi and Fusco extended the validity of Polya-Szegö to BV functions.

Theorem (Cianchi, Fusco-02)
Let u be a nonnegative compactly supported function in $B V\left(\mathbb{R}^{n}\right)$. Then $u^{\sharp} \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ and it holds

$$
\begin{aligned}
\left|D u^{\sharp}\right|\left(\mathbb{R}^{n}\right) & \leq|D u|\left(\mathbb{R}^{n}\right), \\
\left|D^{s} u^{\sharp}\right|\left(\mathbb{R}^{n}\right) & \leq\left|D^{\mathrm{s}} u\right|\left(\mathbb{R}^{n}\right), \\
\left|D^{\mathrm{j}} u^{\sharp}\right|\left(\mathbb{R}^{n}\right) & \leq\left|D^{\mathrm{j}} u\right|\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

Rearrangement of gradient

Andrea Gentile

MPS

Some remarks

Rearrangement of gradient

Andrea Gentile

- The strict inequality may occur in each inequalities.

Introduction
Sobolev case
15 BV case
Applications

MPS

Some remarks

- The strict inequality may occur in each inequalities.
- There is no analogue for the absolutely continuous and the cantorian part, indeed $\left|D^{a} u\right|\left(\mathbb{R}^{n}\right)$ and $\left|D^{c} u\right|\left(\mathbb{R}^{n}\right)$ can be enhanced by symmetrization.

Rearrangement of gradient

Andrea Gentile

MPS

Some remarks

- The strict inequality may occur in each inequalities.
- There is no analogue for the absolutely continuous and the cantorian part, indeed $\left|D^{\mathrm{a}} u\right|\left(\mathbb{R}^{n}\right)$ and $\left|D^{c} u\right|\left(\mathbb{R}^{n}\right)$ can be enhanced by symmetrization.

Rearrangement of gradient

Andrea Gentile

Introduction

Sobolev case
$B V$ case
Applications

MPS

Some remarks

- The strict inequality may occur in each inequalities.
- There is no analogue for the absolutely continuous and the cantorian part, indeed $\left|D^{\mathrm{a}} u\right|\left(\mathbb{R}^{n}\right)$ and $\left|D^{c} u\right|\left(\mathbb{R}^{n}\right)$ can be enhanced by symmetrization.

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
15 BV case
Applications

MPS

Some remarks

- The strict inequality may occur in each inequalities.
- There is no analogue for the absolutely continuous and the cantorian part, indeed $\left|D^{\mathrm{a}} u\right|\left(\mathbb{R}^{n}\right)$ and $\left|D^{c} u\right|\left(\mathbb{R}^{n}\right)$ can be enhanced by symmetrization.

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
15) BV case

Applications

Regular and singular part can mix!

MPS

Main Theorem

Let us define

$$
\operatorname{BV}_{0}(\Omega):=\left\{u \in \operatorname{BV}\left(\mathbb{R}^{n}\right): u \equiv 0 \text { in } \mathbb{R}^{n} \backslash \Omega\right\}
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
(16)BV case

Applications

Main Theorem

Let us define
Rearrangement of gradient

Andrea Gentile

$$
\operatorname{BV}_{0}(\Omega):=\left\{u \in \operatorname{BV}\left(\mathbb{R}^{n}\right): u \equiv 0 \text { in } \mathbb{R}^{n} \backslash \Omega\right\} .
$$

Theorem (Amato, G., Nitsch, Trombetti - in preparation)

Introduction
Sobolev case
$B V$ case
Applications MPS

Main Theorem

Let us define

$$
\mathrm{BV}_{0}(\Omega):=\left\{u \in \mathrm{BV}\left(\mathbb{R}^{n}\right): u \equiv 0 \text { in } \mathbb{R}^{n} \backslash \Omega\right\}
$$

Theorem (Amato, G., Nitsch, Trombetti - in preparation)

Rearrangement of gradient

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{\mathrm{a}}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{\mathrm{s}}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{a}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(S) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{a}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

Applications

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{a}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{a}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{a}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{\mathrm{a}}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define
Rearrangement of gradient

Andrea Gentile

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{\mathrm{a}}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{\mathrm{a}}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{\mathrm{s}}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

Rearrangement of gradient

Andrea Gentile

Every G_{i} is increasing, so they are BV functions and we have

$$
G(s)=\int_{0}^{s} d F_{1}(s)+\int_{0}^{s} d F_{2}(s)
$$

MPS

Idea of the proof (1)

For every $s \in[0,|\Omega|]$ we can define

$$
\begin{aligned}
G(s) & =\left|D\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right) \\
& =\left|D^{\mathrm{a}}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)+\left|D^{s}\left(u-u^{*}(s)\right)\right|\left(\mathbb{R}^{n}\right)=G_{1}+G_{2}
\end{aligned}
$$

Rearrangement of gradient

Every G_{i} is increasing, so they are BV functions and we have

$$
G(s)=\int_{0}^{s} d F_{1}(s)+\int_{0}^{s} d F_{2}(s)=: \int_{0}^{s} d F(s) .
$$

MPS

Idea of the proof (2)

So we can define

$$
z(s):=\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau) \quad \forall s \in[0,+\infty)
$$

Rearrangement of gradient

Andrea Gentile

Introduction

Sobolev case
(18)BV case

Applications

MPS

Idea of the proof (2)

So we can define

$$
z(s):=\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau) \quad \forall s \in[0,+\infty)
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
$B V$ case
Applications

Lemma

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and suppose that u is a non-negative $\mathrm{BV}_{0}(\Omega)$ function. Then

$$
u^{*}(s) \leq z(s) \quad \text { a.e. } s \in[0,+\infty)
$$

MPS

Idea of the proof (3)

Integrating from 0 to $+\infty$ we get

$$
\|u\|_{L^{1}(\Omega)}=\int_{0}^{+\infty} u^{*}(s) d s \leq \int_{0}^{+\infty} z(s) d s
$$

Rearrangement of gradient

Andrea Gentile

Introduction

Sobolev case
(19)BV case

Applications

MPS

Idea of the proof (3)

Integrating from 0 to $+\infty$ we get

$$
\begin{aligned}
\|u\|_{L^{1}(\Omega)} & =\int_{0}^{+\infty} u^{*}(s) d s \leq \int_{0}^{+\infty} z(s) d s \\
& =\int_{0}^{+\infty}\left(\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau)\right) d s
\end{aligned}
$$

Introduction

Sobolev case
19 BV case
Applications

MPS

Idea of the proof (3)

Integrating from 0 to $+\infty$ we get

$$
\begin{aligned}
\|u\|_{L^{1}(\Omega)} & =\int_{0}^{+\infty} u^{*}(s) d s \leq \int_{0}^{+\infty} z(s) d s \\
& =\int_{0}^{+\infty}\left(\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau)\right) d s \\
& =\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{1}(\tau)+\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{2}(\tau)
\end{aligned}
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
19) $B V$ case

Applications

MPS

Idea of the proof (3)

Integrating from 0 to $+\infty$ we get

$$
\begin{aligned}
\|u\|_{L^{1}(\Omega)} & =\int_{0}^{+\infty} u^{*}(s) d s \leq \int_{0}^{+\infty} z(s) d s \\
& =\int_{0}^{+\infty}\left(\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau)\right) d s \\
& =\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{1}(\tau)+\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{2}(\tau)
\end{aligned}
$$

Rearrangement of gradient
Andrea Gentile

Recalling that $d F_{1}$ and $d F_{2}$ are related respectively to the regular and singular part, we have

MPS

Idea of the proof (3)

Integrating from 0 to $+\infty$ we get

$$
\begin{aligned}
\|u\|_{L^{1}(\Omega)} & =\int_{0}^{+\infty} u^{*}(s) d s \leq \int_{0}^{+\infty} z(s) d s \\
& =\int_{0}^{+\infty}\left(\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau)\right) d s \\
& =\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{1}(\tau)+\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{2}(\tau)
\end{aligned}
$$

Rearrangement of gradient
Andrea Gentile

Recalling that $d F_{1}$ and $d F_{2}$ are related respectively to the regular and singular part, we have

$$
\leq \int_{0}^{+\infty} \frac{1}{n \omega_{n}} \tau^{\frac{1}{n}}\left|\nabla^{\mathrm{a}} u\right|_{*}(\tau) d \tau+
$$

MPS

Idea of the proof (3)

Integrating from 0 to $+\infty$ we get

$$
\begin{aligned}
\|u\|_{L^{1}(\Omega)} & =\int_{0}^{+\infty} u^{*}(s) d s \leq \int_{0}^{+\infty} z(s) d s \\
& =\int_{0}^{+\infty}\left(\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau)\right) d s \\
& =\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{1}(\tau)+\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{2}(\tau)
\end{aligned}
$$

Rearrangement of gradient
Andrea Gentile

Recalling that $d F_{1}$ and $d F_{2}$ are related respectively to the regular and singular part, we have

$$
\leq \int_{0}^{+\infty} \frac{1}{n \omega_{n}} \tau^{\frac{1}{n}}\left|\nabla^{\mathrm{a}} u\right|_{*}(\tau) d \tau+\frac{|\Omega|^{\frac{1}{n}}}{n \omega_{n}^{\frac{1}{n}}}\left|D^{\mathrm{s}} u\right|(\Omega)
$$

MPS

Idea of the proof (3)

Integrating from 0 to $+\infty$ we get

$$
\begin{aligned}
\|u\|_{L^{1}(\Omega)} & =\int_{0}^{+\infty} u^{*}(s) d s \leq \int_{0}^{+\infty} z(s) d s \\
& =\int_{0}^{+\infty}\left(\int_{s}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}} \tau^{1-\frac{1}{n}}} d F(\tau)\right) d s \\
& =\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{1}(\tau)+\int_{0}^{+\infty} \frac{1}{n \omega_{n}^{\frac{1}{n}}} \tau^{\frac{1}{n}} d F_{2}(\tau)
\end{aligned}
$$

Rearrangement of gradient
Andrea Gentile

Introduction
Sobolev case
19 BV case
Applications

Recalling that $d F_{1}$ and $d F_{2}$ are related respectively to the regular and singular part, we have

$$
\leq \int_{0}^{+\infty} \frac{1}{n \omega_{n}} \tau^{\frac{1}{n}}\left|\nabla^{\mathrm{a}} u\right|_{*}(\tau) d \tau+\frac{|\Omega|^{\frac{1}{n}}}{n \omega_{n}^{\frac{1}{n}}}\left|D^{\mathrm{S}} u\right|(\Omega)=\|v\|_{L^{1}\left(\Omega^{\sharp}\right)}
$$

MPS

Some remarks

We recall that v has the following explicit expression
Rearrangement of gradient

Andrea Gentile

$$
v(x)=\int_{\omega_{n}|x|^{n}}^{+\infty} \frac{\left|\nabla^{\mathrm{a}} u\right|_{*}(t)}{n \omega_{n}^{\frac{1}{n}} t^{1-\frac{1}{n}}} d t+\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{s} u\right|\left(\mathbb{R}^{n}\right) \chi_{[0,|\Omega|]}\left(\omega_{n}\left|x^{n}\right|\right),
$$

for $x \in \mathbb{R}^{n}$.

MPS

Some remarks

We recall that v has the following explicit expression
Rearrangement of gradient

Andrea Gentile

$$
v(x)=\int_{\omega_{n}|x|^{n}}^{+\infty} \frac{\left|\nabla^{\mathrm{a}} u\right|_{*}(t)}{n \omega_{n}^{\frac{1}{n}} t^{1-\frac{1}{n}}} d t+\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{s} u\right|\left(\mathbb{R}^{n}\right) \chi_{[0,|\Omega|]}\left(\omega_{n}\left|x^{n}\right|\right),
$$

for $x \in \mathbb{R}^{n}$.
This symmetrization procedure keeps the absolutely continuous part separate from the singular part

MPS

Some remarks

We recall that v has the following explicit expression

$$
v(x)=\int_{\omega_{n}|x|^{n}}^{+\infty} \frac{\left|\nabla^{\mathrm{a}} u\right|_{*}(t)}{n \omega_{n}^{\frac{1}{n}} t^{1-\frac{1}{n}}} d t+\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{s} u\right|\left(\mathbb{R}^{n}\right) \chi_{[0,|\Omega|]}\left(\omega_{n}\left|x^{n}\right|\right),
$$

Rearrangement of gradient

Andrea Gentile
for $x \in \mathbb{R}^{n}$.
This symmetrization procedure keeps the absolutely continuous part separate from the singular part, indeed

$$
\left|D^{\mathrm{a}} u\right|\left(\mathbb{R}^{n}\right)=\int_{\mathbb{R}^{n}}\left|\nabla^{\mathrm{a}} u\right| d x
$$

MPS

Some remarks

We recall that v has the following explicit expression

$$
v(x)=\int_{\omega_{n}|x|^{n}}^{+\infty} \frac{\left|\nabla^{\mathrm{a}} u\right|_{*}(t)}{n \omega_{n}^{\frac{1}{n}} t^{1-\frac{1}{n}}} d t+\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{s} u\right|\left(\mathbb{R}^{n}\right) \chi_{[0,|\Omega|]}\left(\omega_{n}\left|x^{n}\right|\right),
$$

Rearrangement of gradient

Andrea Gentile
for $x \in \mathbb{R}^{n}$.
This symmetrization procedure keeps the absolutely continuous part separate from the singular part, indeed

$$
\left|D^{\mathrm{a}} u\right|\left(\mathbb{R}^{n}\right)=\int_{\mathbb{R}^{n}}\left|\nabla^{\mathrm{a}} u\right| d x=\int_{\Omega^{\sharp}}\left|\nabla^{\mathrm{a}} v\right| d x=\left|D^{\mathrm{a}} v\right|\left(\mathbb{R}^{n}\right) ;
$$

MPS

Some remarks

We recall that v has the following explicit expression

$$
v(x)=\int_{\omega_{n}|x|^{n}}^{+\infty} \frac{\left|\nabla^{\mathrm{a}} u\right|_{*}(t)}{n \omega_{n}^{\frac{1}{n}} t^{1-\frac{1}{n}}} d t+\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{s} u\right|\left(\mathbb{R}^{n}\right) \chi_{[0,|\Omega|]}\left(\omega_{n}\left|x^{n}\right|\right),
$$

Rearrangement of gradient
for $x \in \mathbb{R}^{n}$.
This symmetrization procedure keeps the absolutely continuous part separate from the singular part, indeed

$$
\begin{aligned}
& \left|D^{\mathrm{a}} u\right|\left(\mathbb{R}^{n}\right)=\int_{\mathbb{R}^{n}}\left|\nabla^{\mathrm{a}} u\right| d x=\int_{\Omega^{\sharp}}\left|\nabla^{\mathrm{a}} v\right| d x=\left|D^{\mathrm{a}} v\right|\left(\mathbb{R}^{n}\right) ; \\
& \left|D^{\mathrm{s}} u\right|\left(\mathbb{R}^{n}\right)=\operatorname{Per}\left(\Omega^{\sharp}\right)\left(\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{\mathrm{s}} u\right|\left(\mathbb{R}^{n}\right)\right)
\end{aligned}
$$

MPS

Some remarks

We recall that v has the following explicit expression

$$
v(x)=\int_{\omega_{n}|x|^{n}}^{+\infty} \frac{\left|\nabla^{\mathrm{a}} u\right|_{*}(t)}{n \omega_{n}^{\frac{1}{n}} t^{1-\frac{1}{n}}} d t+\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{s} u\right|\left(\mathbb{R}^{n}\right) \chi_{[0,|\Omega|]}\left(\omega_{n}\left|x^{n}\right|\right),
$$

Rearrangement of gradient
for $x \in \mathbb{R}^{n}$.
This symmetrization procedure keeps the absolutely continuous part separate from the singular part, indeed

$$
\begin{aligned}
& \left|D^{\mathrm{a}} u\right|\left(\mathbb{R}^{n}\right)=\int_{\mathbb{R}^{n}}\left|\nabla^{\mathrm{a}} u\right| d x=\int_{\Omega^{\sharp}}\left|\nabla^{\mathrm{a}} v\right| d x=\left|D^{\mathrm{a}} v\right|\left(\mathbb{R}^{n}\right) ; \\
& \left|D^{\mathrm{s}} u\right|\left(\mathbb{R}^{n}\right)=\operatorname{Per}\left(\Omega^{\sharp}\right)\left(\frac{1}{\operatorname{Per}\left(\Omega^{\sharp}\right)}\left|D^{\mathrm{s}} u\right|\left(\mathbb{R}^{n}\right)\right)=\left|D^{\mathrm{s}} v\right|\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

MPS

Rearrangement of gradient

Andrea Gentile

Applications

MPS

Robin Torsional Rigidity (1)

Let $\beta>0, \Omega \subset \mathbb{R}^{n}$ a bounded open set with Lipschitz boundary and let us consider the functional
$\mathcal{F}_{\beta}(\Omega, w)=\frac{\int_{\Omega}|\nabla w|^{2} d x+\beta \operatorname{Per}(\Omega) \int_{\partial \Omega} w^{2} d \mathcal{H}^{n-1}}{\left(\int_{\Omega} w d x\right)^{2}}$
Rearrangement of gradient

Andrea Gentile
and the associate minimum problem

$$
\frac{1}{T(\Omega, \beta)}=\min _{w \in \mathcal{H}^{1}(\Omega)} \mathcal{F}_{\beta}(\Omega, w)
$$

MPS

Robin Torsional Rigidity (1)

Let $\beta>0, \Omega \subset \mathbb{R}^{n}$ a bounded open set with Lipschitz boundary
Rearrangement of gradient and let us consider the functional
$\mathcal{F}_{\beta}(\Omega, w)=\frac{\int_{\Omega}|\nabla w|^{2} d x+\beta \operatorname{Per}(\Omega) \int_{\partial \Omega} w^{2} d \mathcal{H}^{n-1}}{\left(\int_{\Omega} w d x\right)^{2}}$

$$
w \in H^{1}(\Omega)
$$

Introduction

Sobolev case
BV case
and the associate minimum problem

$$
\frac{1}{T(\Omega, \beta)}=\min _{w \in \mathcal{H}^{1}(\Omega)} \mathcal{F}_{\beta}(\Omega, w)
$$

The minimum is a weak solution to

$$
\begin{cases}-\Delta u=1 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}+\beta \operatorname{Per}(\Omega) u=0 & \text { on } \partial \Omega\end{cases}
$$

MPS

Robin Torsional Rigidity (2)

Corollary (Amato, G. - to appear on Rendiconti Lincei) Let $\beta>0$, let $\Omega \subset \mathbb{R}^{n}$ be a bounded open and Lipschitz set. If we denote with Ω^{\sharp} the ball centered at the origin with same measure as Ω, it holds

$$
T(\Omega, \beta) \leq T\left(\Omega^{\sharp}, \beta\right)
$$

Rearrangement of gradient

Weightded L^{1} comparison

Moreover we generalize a result by Talenti (1994).
Rearrangement of gradient

Andrea Gentile
Theorem (Amato, G. - to appear on Rendiconti Lincei)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open and Lipschitz set and $u \in W^{1, p}(\Omega)$. Let f be in $L^{\infty}(\Omega)$ a function such that

$$
f^{*}(t) \geq\left(1-\frac{1}{n}\right) \frac{1}{t} \int_{0}^{t} f^{*}(s) d s \quad \forall t \in[0,|\Omega|]
$$

Then it holds

$$
\int_{\Omega} f(x) u(x) d x \leq \int_{\Omega^{\sharp}} f^{\sharp}(x) v(x) d x .
$$

where v is the radially symmetric function such that

$$
\begin{cases}|\nabla v|(x)=|\nabla u|_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\ v=\frac{\int_{\partial \Omega} u d \mathcal{H}^{n-1}}{\operatorname{Per}\left(\Omega^{\sharp}\right)} & \text { on } \partial \Omega^{\sharp} .\end{cases}
$$

Lorentz comparison

Let $\Omega \subseteq \mathbb{R}^{n}$ a measurable set, $0<p<+\infty$ and $0<q<+\infty$. Then a function w belongs to the Lorentz space $L^{p, q}(\Omega)$ if

$$
\|w\|_{L^{p, q}(\Omega)}=\left(\int_{0}^{+\infty}\left[t^{\frac{1}{p}} w^{*}(t)\right]^{q} \frac{d t}{t}\right)^{\frac{1}{q}}<+\infty
$$

Rearrangement of gradient

Andrea Gentile

Introduction
Sobolev case
BV case
(25) Applications

MPS

Lorentz comparison

Let $\Omega \subseteq \mathbb{R}^{n}$ a measurable set, $0<p<+\infty$ and $0<q<+\infty$.
Rearrangement of gradient
Then a function w belongs to the Lorentz space $L^{p, q}(\Omega)$ if

$$
\|w\|_{L^{p, q}(\Omega)}=\left(\int_{0}^{+\infty}\left[t^{\frac{1}{p}} w^{*}(t)\right]^{q} \frac{d t}{t}\right)^{\frac{1}{q}}<+\infty
$$

Corollary (Amato, G. - to appear on Rendiconti Lincei) Let $1 \leq p \leq \frac{n}{n-1}$, let $\Omega \subset \mathbb{R}^{n}$ be a bounded open and Lipschitz set and $u \in W^{1, p}(\Omega)$ a non-negative function. Then it holds

$$
\|u\|_{L^{p, 1}(\Omega)} \leq\|v v\|_{L^{p, 1}\left(\Omega^{\sharp}\right)}
$$

where u^{\star} is the function

$$
\begin{cases}|\nabla v|(x)=|\nabla u|_{\sharp}(x) & \text { a.e. in } \Omega^{\sharp} \\ v=\frac{\int_{\partial \Omega} u d \mathcal{H}^{n-1}}{\operatorname{Per}\left(\Omega^{\sharp}\right)} & \text { on } \partial \Omega^{\sharp} .\end{cases}
$$

MPS

An insulating problem (1)

Now we deal with the functional

$$
\mathcal{G}(\psi):=\frac{\int_{\Omega}|\nabla \psi|^{2} d x-\frac{1}{m}\left(\int_{\partial \Omega}|\psi| d \mathcal{H}^{n-1}\right)^{2}}{\left(\int_{\Omega}|\psi| d x\right)^{2}}
$$

Rearrangement of gradient

Introduction

Sobolev case
BV case
(26) Applications
with $m>0$ and the associate minimum problem

$$
\frac{1}{T_{\mathcal{G}}(\Omega)}:=\min _{\psi \in H^{1}(\Omega)} \mathcal{G}(\psi) .
$$

MPS

An insulating problem (1)

Now we deal with the functional

$$
\mathcal{G}(\psi):=\frac{\int_{\Omega}|\nabla \psi|^{2} d x-\frac{1}{m}\left(\int_{\partial \Omega}|\psi| d \mathcal{H}^{n-1}\right)^{2}}{\left(\int_{\Omega}|\psi| d x\right)^{2}}
$$

Rearrangement of gradient

Introduction

Sobolev case
BV case
(26) Applications
with $m>0$ and the associate minimum problem

$$
\frac{1}{T_{\mathcal{G}}(\Omega)}:=\min _{\psi \in H^{2}(\Omega)} \mathcal{G}(\psi) .
$$

Why this functional?

MPS

An insulating problem (2)

The functional is linked to the problem of optimal insulation of a given domain $\Omega \subset \mathbb{R}^{n}$.

Rearrangement of gradient

Andrea Gentile

Introduction

Sobolev case
BV case
Applications

MPS

An insulating problem (2)

The functional is linked to the problem of optimal insulation of a given domain $\Omega \subset \mathbb{R}^{n}$.

Introduction

Sobolev case
BV case
Applications

MPS

An insulating problem (2)

The functional is linked to the problem of optimal insulation of a given domain $\Omega \subset \mathbb{R}^{n}$.

Introduction

Sobolev case
BV case
Applications

Corollary (Amato, G. - to appear on Rendiconti Lincei)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and open set, let Ω^{\sharp} be the centered ball with same measure as Ω and let $m>0$, then

$$
T_{\mathcal{G}}(\Omega) \leq T_{\mathcal{G}}\left(\Omega^{\sharp}\right) .
$$

MPS

Thanks for your attention!

SSM
Scuola Superiore Meridionale

