Maximisation of Neumann eigenvalues

Eloi MARTINET
PhD student under the supervision of D.Bucur and E.Oudet.
LAMA / LJK

Sommaire

(1) Problem setting

(2) Relaxation in a class of densities
(3) Simulations
(4) Neumann problem on the sphere
(5) Numerical explorations
(6) What next?

Problem setting

Introduction

Spectrum of the Laplacian with Neumann b.c.

Let $N \geq 1$ and $\Omega \subseteq \mathbb{R}^{N}$ be an bounded open set with Lipschitz boundary.
We consider the problem : find $u \in H^{1}(\Omega) \backslash\{0\}, \mu \in \mathbb{R}$ such that

$$
\left\{\begin{array}{ll}
-\Delta u & =\mu u \text { dans } \Omega \\
\frac{\partial u}{\partial n} & =0 \operatorname{sur} \partial \Omega
\end{array} .\right.
$$

This problem has a discrete sequence of eigenvalues going to infinity:

$$
0=\mu_{0}(\Omega) \leq \mu_{1}(\Omega) \leq \mu_{2}(\Omega) \leq \ldots \rightarrow+\infty
$$

Introduction

For $m>0$, we consider the following problem :

Problem

$$
\max \left\{\mu_{k}(\Omega): \Omega \subseteq \mathbb{R}^{N}, \Omega \text { open bounded Lipschitz , }|\Omega|=m\right\} .
$$

Introduction

For $m>0$, we consider the following problem :

Problem

$$
\max \left\{\mu_{k}(\Omega): \Omega \subseteq \mathbb{R}^{N}, \Omega \text { open bounded Lipschitz , }|\Omega|=m\right\} .
$$

By scale-invariance, we can consider :

Equivalent problem

$$
\max \left\{|\Omega|^{\frac{2}{N}} \mu_{k}(\Omega): \Omega \subseteq \mathbb{R}^{N}, \Omega \text { open bounded Lipschitz }\right\} .
$$

Introduction

Remark

This question is related to the famous Pólya conjecture :

$$
\mu_{k}(\Omega) \leq \frac{4 \pi^{2} k^{\frac{2}{N}}}{\left(\omega_{N}|\Omega|\right)^{\frac{2}{N}}}
$$

with ω_{N} the volume of the unit ball of \mathbb{R}^{N}.

State of the art

- For $k=1$ the ball is optimal : proved by Szegö (1954) for simply connected domains in \mathbb{R}^{2} and by Weinberger (1956) in \mathbb{R}^{N} with no topological constraints;

State of the art

- For $k=1$ the ball is optimal : proved by Szegö (1954) for simply connected domains in \mathbb{R}^{2} and by Weinberger (1956) in \mathbb{R}^{N} with no topological constraints;
- For $k=2$, the disjoint union of two same balls is optimal : proved by Girouard, Nadirashvili and Polterovich (2009) for simply connected domains in \mathbb{R}^{2} and by Bucur and Henrot in general (2016);

State of the art

- For $k=1$ the ball is optimal : proved by Szegö (1954) for simply connected domains in \mathbb{R}^{2} and by Weinberger (1956) in \mathbb{R}^{N} with no topological constraints;
- For $k=2$, the disjoint union of two same balls is optimal : proved by Girouard, Nadirashvili and Polterovich (2009) for simply connected domains in \mathbb{R}^{2} and by Bucur and Henrot in general (2016);
- For $k \geq 3$, we know nothing; not even the existence of an optimal domain.

State of the art

- For $k=1$ the ball is optimal : proved by Szegö (1954) for simply connected domains in \mathbb{R}^{2} and by Weinberger (1956) in \mathbb{R}^{N} with no topological constraints;
- For $k=2$, the disjoint union of two same balls is optimal : proved by Girouard, Nadirashvili and Polterovich (2009) for simply connected domains in \mathbb{R}^{2} and by Bucur and Henrot in general (2016);
- For $k \geq 3$, we know nothing; not even the existence of an optimal domain.
Why?

Non-monotonicity

In the case of Dirichlet b.c. we have

$$
\Omega_{1} \subseteq \Omega_{2} \Longrightarrow \mu_{k}\left(\Omega_{1}\right) \geq \mu_{k}\left(\Omega_{2}\right)
$$

which isn't the case for Neumann b.c. :

Here $\Omega_{1} \subseteq \Omega_{2}$ but $\mu_{1}\left(\Omega_{1}\right)<\mu_{1}\left(\Omega_{2}\right)$.

Instability

Let $\Omega=(0,1)^{2}$ and Ω_{ε} shown on the following figure. Then $\mu_{1}\left(\Omega_{\varepsilon}\right)$ does not converges to $\mu_{1}(\Omega)$.

Here $\mu_{1}\left(\Omega_{\varepsilon}\right) \rightarrow 0$ and $\mu_{1}(\Omega)=\pi^{2}$ (Courant-Hilbert, 1953).

Relaxation in a class of densities

Relaxation

Theorem (Courant-Hilbert)

For all $k \geq 1$,

$$
\mu_{k}(\Omega)=\min _{S \in \mathcal{S}_{k+1}} \max _{u \in S \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x}
$$

where \mathcal{S}_{k} is the set of subspaces of dimension k in $H^{1}(\Omega)$.

Relaxation

Definition

Let $\rho: \mathbb{R}^{N} \rightarrow[0,1]$ such that $0<\int_{\mathbb{R}^{N}} \rho d x<+\infty$. We consider the following degenerate problem : for $k \geq 0$

$$
\mu_{k}(\rho):=\inf _{S \in \mathcal{S}_{k+1}} \max _{u \in S} \frac{\int_{\mathbb{R}^{N}} \rho|\nabla u|^{2} d x}{\int_{\mathbb{R}^{N}} \rho u^{2} d x},
$$

with \mathcal{S}_{k+1} the set of subspaces of dimension $k+1$ in

$$
\left\{u \cdot 1_{\{\rho(x)>0\}}: u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)\right\} .
$$

Relaxation

Definition

Let $\rho: \mathbb{R}^{N} \rightarrow[0,1]$ such that $0<\int_{\mathbb{R}^{N}} \rho d x<+\infty$. We consider the following degenerate problem : for $k \geq 0$

$$
\mu_{k}(\rho):=\inf _{S \in \mathcal{S}_{k+1}} \max _{u \in S} \frac{\int_{\mathbb{R}^{N}} \rho|\nabla u|^{2} d x}{\int_{\mathbb{R}^{N}} \rho u^{2} d x},
$$

with \mathcal{S}_{k+1} the set of subspaces of dimension $k+1$ in

$$
\left\{u \cdot 1_{\{\rho(x)>0\}}: u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)\right\} .
$$

Remark

If ρ is regular enough it is the spectrum of an operator (ex : $\rho=\mathbf{1}_{\Omega}$).

Relaxation

We now focus on the new problem

$$
\max \left\{\mu_{k}(\rho): \rho: \mathbb{R}^{N} \rightarrow[0,1], \int_{\mathbb{R}^{N}} \rho d x=m\right\} .
$$

Relaxation

We now focus on the new problem

$$
\max \left\{\mu_{k}(\rho): \rho: \mathbb{R}^{N} \rightarrow[0,1], \int_{\mathbb{R}^{N}} \rho d x=m\right\} .
$$

Remark

For $k=1,2$, Bucur and Henrot have shown that this problem is equivalent to the shape optimization problem.

Relaxation

Questions:

1. Does the optimal density exists for every dimension N and every eigenvalue k ?

Relaxation

Questions:

1. Does the optimal density exists for every dimension N and every eigenvalue k ?
2. Is the relaxed problem equivalent to the original one for $k \geq 3$?

Relaxation

Questions:

1. Does the optimal density exists for every dimension N and every eigenvalue k ?
2. Is the relaxed problem equivalent to the original one for $k \geq 3$?
3. Can we extrapolate Pòlya's conjecture in the class of densities ?

Relaxation

Questions:

1. Does the optimal density exists for every dimension N and every eigenvalue k ?
2. Is the relaxed problem equivalent to the original one for $k \geq 3$?
3. Can we extrapolate Pòlya's conjecture in the class of densities ?
4. What does the optimal densities looks like for $k \geq 3$?

Existence of a collection of densities

Theorem (D.Bucur, E.M, E.Oudet)

$$
\max \left\{\mu_{k}(\rho): \rho: \mathbb{R}^{N} \rightarrow[0,1], \int_{\mathbb{R}^{N}} \rho d x=m\right\}
$$

is attained. More precisely, there exists $j \in \mathbb{N}, j \leq k$, $\rho_{1}, \ldots, \rho_{j}: \mathbb{R}^{N} \rightarrow[0,1]$ and $n_{1}, \ldots, n_{j} \in \mathbb{N}$ with $n_{1}+\cdots+n_{j}=k+1-j$ such that

$$
\sum_{i=1}^{j} \int_{\mathbb{R}^{N}} \rho_{i} d x=m \quad \text { et } \quad \mu_{k}^{*}=\mu_{n_{1}}\left(\rho_{1}\right)=\cdots=\mu_{n_{j}}\left(\rho_{j}\right)
$$

Solution to the Pòlya's in dimension 1

Theorem (D.Bucur, E.M.,E.Oudet)

Let $\rho: \mathbb{R} \rightarrow[0,1], \int_{\mathbb{R}} \rho=m$. Then

$$
\forall k \in \mathbb{N}, \mu_{k}(\rho) \leq \frac{\pi^{2} k^{2}}{m^{2}}
$$

The equality is realized for a density ρ being the characteristic function of k disjoint segments of length m / k.

Solution to the Pòlya's in dimension 1

The proof consists in the construction a "good" test function which relies on a topological degree argument and on the properties of the eigenfunctions associated to non-degenerate densities.

Test functions used for the proof.

Kröger-type inequalities

Kröger (1992) showed that for a domain Ω

$$
\mu_{k}(\Omega) \leq 4 \pi^{2}\left(\frac{(N+2) k}{2 \omega_{N}|\Omega|}\right)^{2 / N}
$$

This result translates into the density framework:
Theorem (D.Bucur, E.M., E.Oudet)

$$
\text { Let } \rho: \mathbb{R}^{N} \rightarrow[0,1], 0<\int_{\mathbb{R}^{N}} \rho<\infty \text {. Then }
$$

$$
\mu_{k}(\rho) \leq 4 \pi^{2}\left(\frac{(N+2) k}{2 \omega_{N}} \frac{\|\rho\|_{\infty}}{\|\rho\|_{1}}\right)^{2 / N}
$$

Simulations

An approximation result

Question

Can the degenerated eigenvalues be approximated by eigenvalues of well-posed problems?

An approximation result

Let $D=(0,1)^{2}$.

Definition

Let $\rho: D \rightarrow[0,1]$ and $\varepsilon>0$ be small. Define

$$
\begin{align*}
\mu_{k}^{\varepsilon}(\rho):= & \min ^{\operatorname{dim}(S)=k+1} \max _{u \in S \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}(\rho+\varepsilon)|\nabla u|^{2} d x}{\int_{\mathbb{R}^{N}}\left(\rho+\varepsilon^{2}\right) u^{2} d x} . \tag{1}\\
& S \subset \mathbf{H}^{1}(D)
\end{align*}
$$

An approximation result

Let $D=(0,1)^{2}$.

Definition

Let $\rho: D \rightarrow[0,1]$ and $\varepsilon>0$ be small. Define

$$
\begin{align*}
\mu_{k}^{\varepsilon}(\rho):= & \min ^{\operatorname{dim}(S)=k+1} \max _{u \in S \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}(\rho+\varepsilon)|\nabla u|^{2} d x}{\int_{\mathbb{R}^{N}}\left(\rho+\varepsilon^{2}\right) u^{2} d x} . \tag{1}\\
& S \subset \mathbf{H}^{1}(D)
\end{align*}
$$

Remark

Those are the eigenvalues of the elliptic problem

$$
\left\{\begin{array}{c}
-\operatorname{div}[(\rho+\epsilon) \nabla u]=\mu_{k}^{\epsilon}(\rho)\left(\rho+\epsilon^{2}\right) u \text { in } D \\
\partial_{n} u=0 \text { on } \partial D
\end{array}\right.
$$

An approximation result

Lemma (D.Bucur, E.M., E.Oudet)
Under the previous notations,

$$
\mu_{k}^{\varepsilon}(\rho) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \mu_{k}(\rho) .
$$

Theorem (D.Bucur, E.M., E.Oudet)
Under the previous notations,

$$
\max _{\rho} \mu_{k}^{\varepsilon}(\rho) \xrightarrow[\varepsilon \rightarrow 0]{ } \max _{\rho} \mu_{k}(\rho)
$$

Implementation

Suppose that D is meshed by a set of triangles $\left(T_{p}\right)_{p}$.
The set of densities $\rho: D \rightarrow[0,1]$ is approximated by a finite element space V_{h} and $\mathbf{H}^{1}(D)$ is approximated by a finite element space U_{h}.

Implementation

Suppose that D is meshed by a set of triangles $\left(T_{p}\right)_{p}$.
The set of densities $\rho: D \rightarrow[0,1]$ is approximated by a finite element space V_{h} and $\mathbf{H}^{1}(D)$ is approximated by a finite element space U_{h}.

The following problem is then solved

$$
\begin{array}{cl}
\max _{\rho \in V_{h}} & \mu_{k}^{\varepsilon}(\rho) \\
\text { s.t. } & \|\rho\|_{1}=m \tag{2}\\
& 0 \leq \rho \leq 1
\end{array}
$$

Results : μ_{1}

Results : μ_{2}

Results : μ_{3}

Results

Approximation of μ_{k} for $k=3, . ., 8$

Neumann problem on the sphere

Problem setting

Let \mathbf{S}^{N} be the unit sphere of \mathbb{R}^{N+1} and $\Omega \subseteq \mathbf{S}^{N}$ be a Lipschitz domain on \mathbf{S}^{N}. Let

$$
0=\mu_{0}(\Omega) \leq \mu_{1}(\Omega) \leq \mu_{2}(\Omega) \leq \ldots \rightarrow+\infty
$$

be the eigenvalues of the problem

$$
\begin{cases}-\Delta_{\Gamma} u & =\mu_{k}(\Omega) u \text { in } \Omega \\ \frac{\partial u}{\partial n} & =0 \text { on } \partial \Omega\end{cases}
$$

with $u \in H^{1}(\Omega) \backslash\{0\}$.

Problem setting

For $0<m \leq\left|\mathbf{S}^{N}\right|$ we consider the same problem as previously

$$
\max \left\{\mu_{k}(\Omega) \text { s.t. } \Omega \subseteq \mathbf{S}^{N}, \Omega \text { open, Lipschitz , }|\Omega|=m\right\} \text {. }
$$

Problem setting

For $0<m \leq\left|\mathbf{S}^{N}\right|$ we consider the same problem as previously

$$
\max \left\{\mu_{k}(\Omega) \text { s.t. } \Omega \subseteq \mathbf{S}^{N}, \Omega \text { open, Lipschitz , }|\Omega|=m\right\} \text {. }
$$

Remark

We don't have scale invariance of the eigenvalues on the sphere !
This will lead to different behaviours when making m vary.

State of the art

- In an hemisphere, the geodesic ball of surface m maximizes the first eigenvalue (Ashbaugh and Benguria, 1995);

State of the art

- In an hemisphere, the geodesic ball of surface m maximizes the first eigenvalue (Ashbaugh and Benguria, 1995);
- On \mathbf{S}^{2}, Laugesen and Langford (2022) showed that the geodesic ball is optimal for μ_{1} and $0<m<0.94\left|\mathbf{S}^{2}\right|$ among simply connected domains;

State of the art

- In an hemisphere, the geodesic ball of surface m maximizes the first eigenvalue (Ashbaugh and Benguria, 1995);
- On \mathbf{S}^{2}, Laugesen and Langford (2022) showed that the geodesic ball is optimal for μ_{1} and $0<m<0.94\left|\mathbf{S}^{2}\right|$ among simply connected domains;
- In the whole sphere and for other eigenvalues, we don't know.

State of the art

Questions

- Does the geodesic ball maximizes μ_{1} in all \mathbf{S}^{N} with the additionnal constraint that $m<\frac{\left|\mathbf{S}^{N}\right|}{2}$? What about $m>\frac{\left|\mathbf{S}^{N}\right|}{2}$?

State of the art

Questions

- Does the geodesic ball maximizes μ_{1} in all \mathbf{S}^{N} with the additionnal constraint that $m<\frac{\left|\mathbf{S}^{N}\right|}{2}$? What about $m>\frac{\left|\mathbf{S}^{N}\right|}{2}$?
- What about μ_{2}, μ_{3}... ?

State of the art

Questions

- Does the geodesic ball maximizes μ_{1} in all \mathbf{S}^{N} with the additionnal constraint that $m<\frac{\left|\mathbf{S}^{N}\right|}{2}$? What about $m>\frac{\left|\mathbf{S}^{N}\right|}{2}$?
- What about μ_{2}, μ_{3}... ?
-What happens in the density framework?

Existence result in the class of densities

Just like in \mathbb{R}^{N}, we can define the degenerate eigenvalues of a density $\rho: \mathbf{S}^{N} \rightarrow[0,1]$

$$
\begin{equation*}
\mu_{k}(\rho):=\inf _{S \in \mathcal{S}_{k+1}} \max _{u \in S} \frac{\int_{\mathbf{S}^{N}} \rho\left|\nabla_{\Gamma} u\right|^{2} d x}{\int_{\mathbf{S}^{N}} \rho u^{2} d x}, \tag{3}
\end{equation*}
$$

Existence result in the class of densities

Just like in \mathbb{R}^{N}, we can define the degenerate eigenvalues of a density $\rho: \mathbf{S}^{N} \rightarrow[0,1]$

$$
\begin{equation*}
\mu_{k}(\rho):=\inf _{S \in \mathcal{S}_{k+1}} \max _{u \in S} \frac{\int_{\mathbf{S}^{N}} \rho\left|\nabla_{\Gamma} u\right|^{2} d x}{\int_{\mathbf{S}^{N}} \rho u^{2} d x} \tag{3}
\end{equation*}
$$

Theorem (E.M.)

Let $0<m<\left|\mathbf{S}^{N}\right|$. For all $k \in \mathbb{N}$, there exists $\bar{\rho}$ such that

$$
\mu_{k}(\bar{\rho})=\max \left\{\mu_{k}(\rho) \text { s.t. } \rho: \mathbf{S}^{N} \rightarrow[0,1], \int_{\mathbf{S}^{N}} \rho=m\right\}
$$

Numerical explorations

Two numerical methods

We have now two problems which are alike but maybe not identical :

Two numerical methods

We have now two problems which are alike but maybe not identical :

- Shape optimization:

$$
\max \left\{\mu_{k}(\Omega) \text { s.t. } \Omega \subseteq \mathbf{S}^{N}, \Omega \text { open, Lipschitz , }|\Omega|=m\right\} \text {. }
$$

Two numerical methods

We have now two problems which are alike but maybe not identical :

- Shape optimization:

$$
\max \left\{\mu_{k}(\Omega) \text { s.t. } \Omega \subseteq \mathbf{S}^{N}, \Omega \text { open, Lipschitz , }|\Omega|=m\right\} \text {. }
$$

- Density optimization:

$$
\max \left\{\mu_{k}(\rho) \text { s.t. } \rho: \mathbf{S}^{N} \rightarrow[0,1], \int_{\mathbf{S}^{N}} \rho=m\right\}
$$

Two numerical methods

We have now two problems which are alike but maybe not identical :

- Shape optimization:

$$
\max \left\{\mu_{k}(\Omega) \text { s.t. } \Omega \subseteq \mathbf{S}^{N}, \Omega \text { open, Lipschitz , }|\Omega|=m\right\} \text {. }
$$

- Density optimization:

$$
\max \left\{\mu_{k}(\rho) \text { s.t. } \rho: \mathbf{S}^{N} \rightarrow[0,1], \int_{\mathbf{S}^{N}} \rho=m\right\}
$$

\Longrightarrow This will lead to two different optimization techniques!

Density optimization

Same technique as in the plane !
To compare, let $U B_{k}^{m}$ be the union of k disjoint geodesic balls of total measure m. For $k>0$ and

$$
0<m<\left|\mathbf{S}^{2}\right| \approx 12.56,
$$

we will compute $\mu_{k}\left(U B_{k}^{m}\right)$ and compare it to $\mu_{k}(\bar{\rho})$.

Density optimization : results for μ_{1}

Examples of optimal densities for μ_{1} and $m \in\{2.0,4.98,8.05,11.2\}$.

Density optimization : results for μ_{1}

Examples of optimal densities for μ_{1} and $m \in\{2.0,4.98,8.05,11.2\}$.

Remark

The optimal density isn't always "bang-bang". An important consequence is that even in the geodesic ball is optimal among the domains, it will be impossible to prove it by a "Weinberger-type" argument.

Density optimization : results for μ_{1}

We display the optimal values of $\mu_{1}(\bar{\rho})$ along with the values of $\mu_{1}\left(B^{m}\right)$:

Optimal values for μ_{1} as function of m obtained by the density method.

Density optimization : results for μ_{1}

Conjecture

Let $m \in\left(0,\left|\mathbf{S}^{N}\right|\right)$. The optimal density of the problem

$$
\max \left\{\mu_{1}(\rho): \rho: \mathbf{S}^{n} \rightarrow[0,1], \int_{\mathbf{S}^{n}} \rho d x=m\right\}
$$

is axially symmetric.

Density optimization : results for μ_{1}

Conjecture

Let $m \in\left(0,\left|\mathbf{S}^{N}\right|\right)$. The optimal density of the problem

$$
\max \left\{\mu_{1}(\rho): \rho: \mathbf{S}^{n} \rightarrow[0,1], \int_{\mathbf{S}^{n}} \rho d x=m\right\}
$$

is axially symmetric.

Conjecture

There exists $\delta>0$ such that for all $m \in(0, \delta)$ the optimal density is the characteristic function of a geodesic ball.

Density optimization : results for μ_{2}

Here are some optimal densities for μ_{2} for different values of m :

Examples of optimal densities for μ_{2} and $m \in\{2.31,5.46,8.23,11.01\}$.

Density optimization : results for μ_{2}

Here are some optimal densities for μ_{2} for different values of m :

Examples of optimal densities for μ_{2} and $m \in\{2.31,5.46,8.23,11.01\}$.

Remark

In opposition to μ_{1}, the optimal density seems to always be the one of two geodesic balls.

Density optimization : results for μ_{2}

Theorem (D. Bucur, E.M., M. Nahon)

Let $0<m<\left|\mathbf{S}^{N}\right|$. The density for which μ_{2} is maximal is the characteristic function of two disjoint balls of equal measure.

Density optimization : results for μ_{2}

Theorem (D. Bucur, E.M., M. Nahon)

Let $0<m<\left|\mathbf{S}^{N}\right|$. The density for which μ_{2} is maximal is the characteristic function of two disjoint balls of equal measure.

Surprisingly, this result generalizes the one of Ashbaugh and Beguria for μ_{1} :

Theorem (D. Bucur, E.M., M. Nahon)
Let $0<m<\left|\mathbf{S}^{N}\right|$ and $\rho: \mathbf{S}^{N} \backslash B^{m} \rightarrow[0,1]$ with $\int_{\mathbf{S}^{N} \backslash B^{m}} \rho=m$. Then

$$
\mu_{1}(\rho) \leq \mu_{1}\left(B^{m}\right)
$$

Density optimization : results for μ_{3}

The case of μ_{3} shows a wide varietey of optima :

Examples of optimal densities for μ_{3} and $m \in\{2.0,5.0,8.03,11.0\}$.

Density optimization : results for μ_{3}

Optimal values for μ_{3} as function of m obtained by the density method.

Shape optimization : the level set method in 2 minutes

Let $\Omega(t) \subset \mathbf{S}^{N}$ be a domain moving depending on $t \in[0, T]$. We can represent the domain $\Omega(t)$ by a level set function $\phi:[0, T] \times \mathbf{S}^{N} \rightarrow \mathbb{R}$ such that

$$
\forall x \in \mathbf{S}^{N}, \forall t \in[0, T], \begin{cases}\phi(t, x)<0 & \text { if } x \in \Omega(t) \\ \phi(t, x)=0 & \text { if } x \in \partial \Omega(t) . \\ \phi(t, x)>0 & \text { if } x \in^{c} \Omega(t)\end{cases}
$$

Shape optimization : the level set method in 2 minutes

Let us suppose that $\Omega(t)$ evolves according to a velocity field $V: \mathbf{S}^{N} \rightarrow \mathbf{T S}^{N}$. More precisely, if $\Omega_{0} \subset \mathbf{S}^{N}$ and χ is the flow of V,

$$
\Omega(t):=\chi\left(\Omega_{0}, t\right) .
$$

Shape optimization : the level set method in 2 minutes

Let us suppose that $\Omega(t)$ evolves according to a velocity field $V: \mathbf{S}^{N} \rightarrow \mathbf{T S} \mathbf{S}^{N}$. More precisely, if $\Omega_{0} \subset \mathbf{S}^{N}$ and χ is the flow of V,

$$
\Omega(t):=\chi\left(\Omega_{0}, t\right)
$$

THe motion of $\Omega(t)$ is equivalent to the advection of its level set

$$
\partial_{t} \phi(t, x)+V(x) \cdot \nabla \phi(t, x)=0 \text { on }(0, T) \times \mathbf{S}^{N} .
$$

Shape optimization : the level set method in 2 minutes

Let us suppose that $\Omega(t)$ evolves according to a velocity field $V: \mathbf{S}^{N} \rightarrow \mathbf{T S} \mathbf{S}^{N}$. More precisely, if $\Omega_{0} \subset \mathbf{S}^{N}$ and χ is the flow of V,

$$
\Omega(t):=\chi\left(\Omega_{0}, t\right)
$$

THe motion of $\Omega(t)$ is equivalent to the advection of its level set

$$
\partial_{t} \phi(t, x)+V(x) \cdot \nabla \phi(t, x)=0 \text { on }(0, T) \times \mathbf{S}^{N} .
$$

If we suppose that $V(x)=v(x) n_{\Omega(t)}(x)$ then:

$$
\partial_{t} \phi(t, x)+v(x)|\nabla \phi(t, x)|=0 \text { on }(0, T) \times \mathbf{S}^{N} .
$$

Shape optimization : the level set method in 2 minutes

Let us suppose that $\Omega(t)$ evolves according to a velocity field $V: \mathbf{S}^{N} \rightarrow \mathbf{T S} \mathbf{S}^{N}$. More precisely, if $\Omega_{0} \subset \mathbf{S}^{N}$ and χ is the flow of V,

$$
\Omega(t):=\chi\left(\Omega_{0}, t\right)
$$

THe motion of $\Omega(t)$ is equivalent to the advection of its level set

$$
\partial_{t} \phi(t, x)+V(x) \cdot \nabla \phi(t, x)=0 \text { on }(0, T) \times \mathbf{S}^{N} .
$$

If we suppose that $V(x)=v(x) n_{\Omega(t)}(x)$ then:

$$
\partial_{t} \phi(t, x)+v(x)|\nabla \phi(t, x)|=0 \text { on }(0, T) \times \mathbf{S}^{N} .
$$

We now have to determine v thanks to the shape derivative of μ_{k}.

Shape optimization : the level set method in 2 minutes

Theorem (Zanger (2001))

Define

$$
\mu_{k}^{\prime}\left(\Omega_{0}, V\right):=\lim _{t \rightarrow 0^{+}} \frac{\mu_{k}(\Omega(t))-\mu_{k}\left(\Omega_{0}\right)}{t}
$$

Under some assumptions on Ω_{0}, this limit exists and is equal to

$$
\mu_{k}^{\prime}\left(\Omega_{0}, V\right)=\int_{\partial \Omega_{0}}\left(|\nabla u|^{2}-\mu_{k}\left(\Omega_{0}\right) u^{2}\right)(V \cdot n) d \sigma
$$

where u is a unitary eigenfunction associated to $\mu_{k}\left(\Omega_{0}\right)$.

Shape optimization : the level set method in 2 minutes

Theorem (Zanger (2001))

Define

$$
\mu_{k}^{\prime}\left(\Omega_{0}, V\right):=\lim _{t \rightarrow 0^{+}} \frac{\mu_{k}(\Omega(t))-\mu_{k}\left(\Omega_{0}\right)}{t}
$$

Under some assumptions on Ω_{0}, this limit exists and is equal to

$$
\mu_{k}^{\prime}\left(\Omega_{0}, V\right)=\int_{\partial \Omega_{0}}\left(|\nabla u|^{2}-\mu_{k}\left(\Omega_{0}\right) u^{2}\right)(V \cdot n) d \sigma
$$

where u is a unitary eigenfunction associated to $\mu_{k}\left(\Omega_{0}\right)$.
One candidate for a gradient-type algorithm could be

$$
v=|\nabla u|^{2}-\mu_{k}\left(\Omega_{0}\right) u^{2} .
$$

Shape optimization : the level set method in 2 minutes

Algorithm

1. Initialization of the level set function

Shape optimization : the level set method in 2 minutes

Algorithm

1. Initialization of the level set function
2. Until convergence :

Shape optimization : the level set method in 2 minutes

Algorithm

1. Initialization of the level set function
2. Until convergence :
2.1 Compute the eigen elements

Shape optimization : the level set method in 2 minutes

Algorithm

1. Initialization of the level set function
2. Until convergence :
2.1 Compute the eigen elements
2.2 Compute the shape derivative

Shape optimization : the level set method in 2 minutes

Algorithm

1. Initialization of the level set function
2. Until convergence :
2.1 Compute the eigen elements
2.2 Compute the shape derivative
2.3 Advect the level set function according to the field v given by the shape derivative

Levelset : Results for μ_{1}.

Optimal values for μ_{1} obtained by the level set method.

Levelset : Results for μ_{1}

Play Play Play Play

Examples of optimal domains for μ_{1} and $m \in\{2.03,5.1,8.0,10.85\}$.

Levelset : Results for μ_{1}

Play Play Play Play

Examples of optimal domains for μ_{1} and $m \in\{2.03,5.1,8.0,10.85\}$.

Remark

For a large enough mass, the geodesic ball isn't optimal.

Levelset : Results for μ_{1}

Play Play Play Play

Examples of optimal domains for μ_{1} and $m \in\{2.03,5.1,8.0,10.85\}$.

Remark

For a large enough mass, the geodesic ball isn't optimal.
Remark
For a large enough mass, the method seems to try to "homogenize".

Levelset : Results for μ_{2}

The results are compliant with the theorem :

Play Play Play Play

Examples of optimal domains for μ_{2} and $m \in\{2.12,5.1,8.13,11.17\}$.

Levelset : Results for μ_{3}

Play Play Play Play

Examples of optimal domains for μ_{3} and $m \in\{2.0,5.22,8.0,11.04\}$.

Levelset : Results for μ_{3}

Optimal values for μ_{3} obtained by the level set method.

What next?

What next?

Play

- Study in greater details the homogenization phenomenon μ_{1};

What next?

Play

- Study in greater details the homogenization phenomenon μ_{1};
- Provide a theoretical proof of the non-optimality of the geodesic ball for m large enough (work in progress with D.Bucur, R.Laugesen and M.Nahon).

Resources

- Preprint for the optimization in \mathbb{R}^{n} : https://arxiv.org/abs/2204.11472
- Preprint for the optimization in \mathbf{S}^{n} : https://arxiv.org/abs/2208.11413
- Optimal domains and densities on the sphere (MEDIT format): https://github.com/EloiMartinet/Neumann_Sphere/

Thanks for your attention.

The two different implementations of the level set method

The ersatz material approach

The problem is approximated by the following one, posed on the whole sphere
$-\operatorname{div}\left[\left(\mathbf{1}_{\Omega}+\varepsilon\right) \nabla u\right]=\mu_{k}^{\varepsilon}\left(\mathbf{1}_{\Omega}\right)\left(\mathbf{1}_{\Omega}+\varepsilon^{2}\right) u$.
This allows to always keep the same mesh.

The two different implementations of the level set method

The ersatz material approach

The problem is approximated by the following one, posed on the whole sphere
$-\operatorname{div}\left[\left(\mathbf{1}_{\Omega}+\varepsilon\right) \nabla u\right]=\mu_{k}^{\varepsilon}\left(\mathbf{1}_{\Omega}\right)\left(\mathbf{1}_{\Omega}+\varepsilon^{2}\right) u$.
This allows to always keep the same mesh.

Remeshing approach

At each iteration, we remesh the domain $\Omega(t)=\{\phi<0\}$ and solve the original problem on Ω

$$
-\Delta u=\mu_{k}(\Omega(t)) u
$$

We then need to define the velocity field v on all \mathbf{S}^{2} by extension-regularisation.

The two different implementations of the level set method

The ersatz material approach

The problem is approximated by the following one, posed on the whole sphere
$-\operatorname{div}\left[\left(\mathbf{1}_{\Omega}+\varepsilon\right) \nabla u\right]=\mu_{k}^{\varepsilon}\left(\mathbf{1}_{\Omega}\right)\left(\mathbf{1}_{\Omega}+\varepsilon^{2}\right) u$.
This allows to always keep the same mesh.

- Faster method ;
- Handles topology changes easily.

Remeshing approach

At each iteration, we remesh the domain $\Omega(t)=\{\phi<0\}$ and solve the original problem on Ω

$$
-\Delta u=\mu_{k}(\Omega(t)) u
$$

We then need to define the velocity field v on all \mathbf{S}^{2} by extension-regularisation.

The two different implementations of the level set method

The ersatz material approach

The problem is approximated by the following one, posed on the whole sphere
$-\operatorname{div}\left[\left(\mathbf{1}_{\Omega}+\varepsilon\right) \nabla u\right]=\mu_{k}^{\varepsilon}\left(\mathbf{1}_{\Omega}\right)\left(\mathbf{1}_{\Omega}+\varepsilon^{2}\right) u$.
This allows to always keep the same mesh.

- Faster method ;
- Handles topology changes easily.

Remeshing approach

At each iteration, we remesh the domain $\Omega(t)=\{\phi<0\}$ and solve the original problem on Ω

$$
-\Delta u=\mu_{k}(\Omega(t)) u
$$

We then need to define the velocity field v on all \mathbf{S}^{2} by extension-regularisation.

- More precise.

Handling area constraint

Let $b, m^{\prime}>0$. To handle the area constraint we add a penality term.
However, the functionnal

$$
\Omega \mapsto \mu_{k}(\Omega)-b\left(|\Omega|-m^{\prime}\right)^{2}
$$

has maximal equal to $+\infty$ (take the sequence $\mathbf{B}^{\varepsilon}, \varepsilon \rightarrow 0$).

Handling area constraint

Let $b, m^{\prime}>0$. To handle the area constraint we add a penality term.
However, the functionnal

$$
\Omega \mapsto \mu_{k}(\Omega)-b\left(|\Omega|-m^{\prime}\right)^{2}
$$

has maximal equal to $+\infty$ (take the sequence $\mathbf{B}^{\varepsilon}, \varepsilon \rightarrow 0$).
We use this result :

Theorem (Strichartz, 1996)

Let $\Omega \subset \mathbf{S}^{2}$. Then

$$
|\Omega| \mu_{k}(\Omega) \leq 2 \pi k^{2} .
$$

Handling area constraint

Let $b, m^{\prime}>0$. To handle the area constraint we add a penality term.
However, the functionnal

$$
\Omega \mapsto \mu_{k}(\Omega)-b\left(|\Omega|-m^{\prime}\right)^{2}
$$

has maximal equal to $+\infty$ (take the sequence $\mathbf{B}^{\varepsilon}, \varepsilon \rightarrow 0$).
We use this result :

Theorem (Strichartz, 1996)

Let $\Omega \subset \mathbf{S}^{2}$. Then

$$
|\Omega| \mu_{k}(\Omega) \leq 2 \pi k^{2} .
$$

We will then optimize the functionnal

$$
\Omega \mapsto|\Omega| \mu_{k}(\Omega)-b\left(|\Omega|-m^{\prime}\right)^{2}
$$

