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Problem setting



Introduction

Spectrum of the Laplacian with Neumann b.c.
Let N ≥ 1 and Ω ⊆ RN be an bounded open set with Lipschitz
boundary.

We consider the problem : find u ∈ H1(Ω) \ {0}, µ ∈ R such that{
−∆u = µu dans Ω
∂u
∂n = 0 sur ∂Ω

.

This problem has a discrete sequence of eigenvalues going to
infinity:

0 = µ0(Ω) ≤ µ1(Ω) ≤ µ2(Ω) ≤ . . . → +∞.

2



Introduction

For m > 0, we consider the following problem :

Problem

max
{
µk(Ω) : Ω ⊆ RN,Ω open bounded Lipschitz , |Ω| = m

}
.

By scale-invariance, we can consider :

Equivalent problem

max
{
|Ω| 2

N µk(Ω) : Ω ⊆ RN,Ω open bounded Lipschitz
}
.
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Introduction

Remark
This question is related to the famous Pólya conjecture :

µk(Ω) ≤
4π2k 2

N

(ωN|Ω|)
2
N
.

with ωN the volume of the unit ball of RN.
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State of the art

• For k = 1 the ball is optimal : proved by Szegö (1954) for simply
connected domains in R2 and by Weinberger (1956) in RN with
no topological constraints;

• For k = 2, the disjoint union of two same balls is optimal :
proved by Girouard, Nadirashvili and Polterovich (2009) for
simply connected domains in R2 and by Bucur and Henrot in
general (2016);

• For k ≥ 3, we know nothing; not even the existence of an optimal
domain.

Why ?
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Non-monotonicity

In the case of Dirichlet b.c. we have

Ω1 ⊆ Ω2 =⇒ µk(Ω1) ≥ µk(Ω2),

which isn’t the case for Neumann b.c. :

Here Ω1 ⊆ Ω2 but µ1(Ω1) < µ1(Ω2).
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Instability

Let Ω = (0, 1)2 and Ωε shown on the following figure. Then µ1(Ωε)

does not converges to µ1(Ω).

Here µ1(Ωε) → 0 and µ1(Ω) = π2 (Courant-Hilbert, 1953).
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Relaxation in a class of densities



Relaxation

Theorem (Courant-Hilbert)
For all k ≥ 1,

µk(Ω) = min
S∈Sk+1

max
u∈S\{0}

∫
Ω
|∇u|2dx∫
Ω

u2dx ,

where Sk is the set of subspaces of dimension k in H1(Ω).
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Relaxation

Definition
Let ρ : RN → [0, 1] such that 0 <

∫
RN ρdx < +∞. We consider the

following degenerate problem : for k ≥ 0

µk(ρ) := inf
S∈Sk+1

max
u∈S

∫
RN ρ|∇u|2dx∫
RN ρu2dx ,

with Sk+1 the set of subspaces of dimension k + 1 in

{u · 1{ρ(x)>0} : u ∈ C∞
c (RN)}.

Remark
If ρ is regular enough it is the spectrum of an operator (ex : ρ = 1Ω).
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Relaxation

We now focus on the new problem

max

{
µk(ρ) : ρ : RN → [0, 1],

∫
RN

ρdx = m
}
.

Remark
For k = 1, 2, Bucur and Henrot have shown that this problem is
equivalent to the shape optimization problem.

10



Relaxation

We now focus on the new problem

max

{
µk(ρ) : ρ : RN → [0, 1],

∫
RN

ρdx = m
}
.

Remark
For k = 1, 2, Bucur and Henrot have shown that this problem is
equivalent to the shape optimization problem.

10



Relaxation

Questions :
1. Does the optimal density exists for every dimension N and every
eigenvalue k ?

2. Is the relaxed problem equivalent to the original one for k ≥ 3 ?
3. Can we extrapolate Pòlya’s conjecture in the class of densities ?
4. What does the optimal densities looks like for k ≥ 3 ?
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Existence of a collection of densities

Theorem (D.Bucur, E.M, E.Oudet)

max

{
µk(ρ) : ρ : RN → [0, 1],

∫
RN

ρdx = m
}
.

is attained. More precisely, there exists j ∈ N, j ≤ k,
ρ1, . . . , ρj : RN → [0, 1] and n1, . . . , nj ∈ N with
n1 + · · ·+ nj = k + 1 − j such that

j∑
i=1

∫
RN

ρidx = m et µ∗
k = µn1(ρ1) = · · · = µnj(ρj).
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Solution to the Pòlya’s in dimension 1

Theorem (D.Bucur, E.M.,E.Oudet)
Let ρ : R → [0, 1],

∫
R ρ = m. Then

∀k ∈ N, µk(ρ) ≤
π2k2

m2 .

The equality is realized for a density ρ being the characteristic
function of k disjoint segments of length m/k.
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Solution to the Pòlya’s in dimension 1

The proof consists in the construction a ”good” test function which
relies on a topological degree argument and on the properties of the
eigenfunctions associated to non-degenerate densities.

Test functions used for the proof.
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Kröger-type inequalities

Kröger (1992) showed that for a domain Ω

µk(Ω) ≤ 4π2

(
(N + 2)k
2ωN|Ω|

)2/N

.

This result translates into the density framework :

Theorem (D.Bucur, E.M., E.Oudet)

Let ρ : RN → [0, 1], 0 <
∫
RN ρ < ∞. Then

µk(ρ) ≤ 4π2

(
(N + 2)k

2ωN

||ρ||∞
||ρ||1

)2/N

.
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Simulations



An approximation result

Question
Can the degenerated eigenvalues be approximated by eigenvalues
of well-posed problems ?
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An approximation result

Let D = (0, 1)2.

Definition
Let ρ : D → [0, 1] and ε > 0 be small. Define

µε
k(ρ) := min

dim(S) = k + 1
S ⊂ H1(D)

max
u∈S\{0}

∫
RN(ρ+ ε)|∇u|2dx∫
RN(ρ+ ε2)u2dx . (1)

Remark
Those are the eigenvalues of the elliptic problem{

−div [(ρ+ ϵ)∇u] =µϵ
k(ρ)(ρ+ ϵ2)u in D

∂nu = 0 on ∂D
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An approximation result

Lemma (D.Bucur, E.M., E.Oudet)

Under the previous notations,

µε
k(ρ) −−−→

ε→0
µk(ρ).

Theorem (D.Bucur, E.M., E.Oudet)

Under the previous notations,

max
ρ

µε
k(ρ) −−−→

ε→0
max

ρ
µk(ρ).
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Implementation

Suppose that D is meshed by a set of triangles (Tp)p.

The set of densities ρ : D → [0, 1] is approximated by a finite element
space Vh and H1(D) is approximated by a finite element space Uh.

The following problem is then solved

max
ρ ∈ Vh

µε
k(ρ)

s.t. ‖ρ‖1 = m,

0 ≤ ρ ≤ 1

(2)

19



Implementation

Suppose that D is meshed by a set of triangles (Tp)p.

The set of densities ρ : D → [0, 1] is approximated by a finite element
space Vh and H1(D) is approximated by a finite element space Uh.

The following problem is then solved

max
ρ ∈ Vh

µε
k(ρ)

s.t. ‖ρ‖1 = m,

0 ≤ ρ ≤ 1

(2)

19



Results : µ1

Play
20


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Results : µ2

Play
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Results : µ3

Play
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Results

Approximation of µk for k = 3, .., 8
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Neumann problem on the sphere



Problem setting

Let SN be the unit sphere of RN+1 and Ω ⊆ SN be a Lipschitz domain
on SN. Let

0 = µ0(Ω) ≤ µ1(Ω) ≤ µ2(Ω) ≤ . . . → +∞.

be the eigenvalues of the problem{
−∆Γu = µk(Ω)u in Ω

∂u
∂n = 0 on ∂Ω

with u ∈ H1(Ω) \ {0}.
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Problem setting

For 0 < m ≤ |SN| we consider the same problem as previously

max
{
µk(Ω) s.t. Ω ⊆ SN,Ω open, Lipschitz , |Ω| = m

}
.

Remark
We don’t have scale invariance of the eigenvalues on the sphere !
This will lead to different behaviours when making m vary.
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State of the art

• In an hemisphere, the geodesic ball of surface m maximizes the
first eigenvalue (Ashbaugh and Benguria, 1995);

• On S2, Laugesen and Langford (2022) showed that the geodesic
ball is optimal for µ1 and 0 < m < 0.94|S2| among simply
connected domains;

• In the whole sphere and for other eigenvalues, we don’t know.
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State of the art

Questions

• Does the geodesic ball maximizes µ1 in all SN with the
additionnal constraint that m < |SN|

2 ? What about m > |SN|
2 ?

• What about µ2, µ3 ... ?
• What happens in the density framework ?
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Existence result in the class of densities

Just like in RN, we can define the degenerate eigenvalues of a
density ρ : SN → [0, 1]

µk(ρ) := inf
S∈Sk+1

max
u∈S

∫
SN ρ|∇Γu|2dx∫

SN ρu2dx , (3)

Theorem (E.M.)
Let 0 < m < |SN|. For all k ∈ N, there exists ρ̄ such that

µk(ρ̄) = max

{
µk(ρ) s.t. ρ : SN → [0, 1],

∫
SN

ρ = m
}
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Numerical explorations



Two numerical methods

We have now two problems which are alike but maybe not identical :

• Shape optimization :

max
{
µk(Ω) s.t. Ω ⊆ SN,Ω open, Lipschitz , |Ω| = m

}
.

• Density optimization :

max

{
µk(ρ) s.t. ρ : SN → [0, 1],

∫
SN

ρ = m
}

=⇒ This will lead to two different optimization techniques !
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Density optimization

Same technique as in the plane !

To compare, let UBm
k be the union of k disjoint geodesic balls of total

measure m. For k > 0 and

0 < m < |S2| ≈ 12.56,

we will compute µk(UBm
k ) and compare it to µk(ρ̄).
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Density optimization : results for µ1

Examples of optimal densities for µ1 and m ∈ {2.0, 4.98, 8.05, 11.2}.

Remark
The optimal density isn’t always ”bang-bang”. An important
consequence is that even in the geodesic ball is optimal among the
domains, it will be impossible to prove it by a ”Weinberger-type”
argument.
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Density optimization : results for µ1

We display the optimal values of µ1(ρ̄) along with the values of
µ1(Bm):

Optimal values for µ1 as function of m obtained by the density method.
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Density optimization : results for µ1

Conjecture
Let m ∈ (0, |SN|). The optimal density of the problem

max

{
µ1(ρ) : ρ : Sn → [0, 1],

∫
Sn
ρdx = m

}
.

is axially symmetric.

Conjecture
There exists δ > 0 such that for all m ∈ (0, δ) the optimal density is
the characteristic function of a geodesic ball.

33



Density optimization : results for µ1

Conjecture
Let m ∈ (0, |SN|). The optimal density of the problem

max

{
µ1(ρ) : ρ : Sn → [0, 1],

∫
Sn
ρdx = m

}
.

is axially symmetric.

Conjecture
There exists δ > 0 such that for all m ∈ (0, δ) the optimal density is
the characteristic function of a geodesic ball.

33



Density optimization : results for µ2

Here are some optimal densities for µ2 for different values of m:

Examples of optimal densities for µ2 and m ∈ {2.31, 5.46, 8.23, 11.01}.

Remark
In opposition to µ1, the optimal density seems to always be the one
of two geodesic balls.

34



Density optimization : results for µ2

Here are some optimal densities for µ2 for different values of m:

Examples of optimal densities for µ2 and m ∈ {2.31, 5.46, 8.23, 11.01}.

Remark
In opposition to µ1, the optimal density seems to always be the one
of two geodesic balls.

34



Density optimization : results for µ2

Theorem (D. Bucur, E.M., M. Nahon)
Let 0 < m < |SN|. The density for which µ2 is maximal is the
characteristic function of two disjoint balls of equal measure.

Surprisingly, this result generalizes the one of Ashbaugh and Beguria
for µ1 :

Theorem (D. Bucur, E.M., M. Nahon)
Let 0 < m < |SN| and ρ : SN \ Bm → [0, 1] with

∫
SN\Bm ρ = m. Then

µ1(ρ) ≤ µ1(Bm).
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Density optimization : results for µ3

The case of µ3 shows a wide varietey of optima :

Examples of optimal densities for µ3 and m ∈ {2.0, 5.0, 8.03, 11.0}.
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Density optimization : results for µ3

Optimal values for µ3 as function of m obtained by the density method.
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Shape optimization : the level set method in 2 minutes

Let Ω(t) ⊂ SN be a domain moving depending on t ∈ [0,T]. We can
represent the domain Ω(t) by a level set function ϕ : [0,T]× SN → R
such that

∀x ∈ SN, ∀t ∈ [0,T],


ϕ(t, x) < 0 if x ∈ Ω(t)
ϕ(t, x) = 0 if x ∈ ∂Ω(t)
ϕ(t, x) > 0 if x ∈c Ω(t)

.
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Shape optimization : the level set method in 2 minutes

Let us suppose that Ω(t) evolves according to a velocity field
V : SN → TSN. More precisely, if Ω0 ⊂ SN and χ is the flow of V,

Ω(t) := χ(Ω0, t).

THe motion of Ω(t) is equivalent to the advection of its level set

∂tϕ(t, x) + V(x) · ∇ϕ(t, x) = 0 on (0,T)× SN.

If we suppose that V(x) = v(x)nΩ(t)(x) then :

∂tϕ(t, x) + v(x)|∇ϕ(t, x)| = 0 on (0,T)× SN.

We now have to determine v thanks to the shape derivative of µk.
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Shape optimization : the level set method in 2 minutes

Theorem (Zanger (2001))
Define

µ′
k(Ω0,V) := lim

t→0+

µk(Ω(t))− µk(Ω0)

t .

Under some assumptions on Ω0, this limit exists and is equal to

µ′
k(Ω0,V) =

∫
∂Ω0

(
|∇u|2 − µk(Ω0)u2) (V.n)dσ

where u is a unitary eigenfunction associated to µk(Ω0).

One candidate for a gradient-type algorithm could be

v = |∇u|2 − µk(Ω0)u2.
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Shape optimization : the level set method in 2 minutes

Algorithm
1. Initialization of the level set function

2. Until convergence :
2.1 Compute the eigen elements
2.2 Compute the shape derivative
2.3 Advect the level set function according to the field v given by the

shape derivative
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Levelset : Results for µ1.

Optimal values for µ1 obtained by the level set method.
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Levelset : Results for µ1

Play Play Play Play
Examples of optimal domains for µ1 and m ∈ {2.03, 5.1, 8.0, 10.85}.

Remark
For a large enough mass, the geodesic ball isn’t optimal.

Remark
For a large enough mass, the method seems to try to ”homogenize”.
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Levelset : Results for µ2

The results are compliant with the theorem :

Play Play Play Play
Examples of optimal domains for µ2 and m ∈ {2.12, 5.1, 8.13, 11.17}.
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Levelset : Results for µ3

Play Play Play Play
Examples of optimal domains for µ3 and m ∈ {2.0, 5.22, 8.0, 11.04}.
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Levelset : Results for µ3

Optimal values for µ3 obtained by the level set method.
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What next ?



What next ?

Play
• Study in greater details the
homogenization phenomenon µ1;

• Provide a theoretical proof of the
non-optimality of the geodesic ball
for m large enough (work in progress
with D.Bucur, R.Laugesen and
M.Nahon).
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Resources

• Preprint for the optimization in Rn :
https://arxiv.org/abs/2204.11472

• Preprint for the optimization in Sn :
https://arxiv.org/abs/2208.11413

• Optimal domains and densities on the sphere (MEDIT format):
https://github.com/EloiMartinet/Neumann_Sphere/
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Thanks for your attention.
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The two different implementations of the level set method

The ersatz material approach
The problem is approximated by the
following one, posed on the whole
sphere

−div [(1Ω + ε)∇u] = µε
k(1Ω)(1Ω + ε2)u.

This allows to always keep the same
mesh.

• Faster method ;
• Handles topology changes easily.

Remeshing approach
At each iteration, we remesh
the domain Ω(t) = {ϕ < 0}
and solve the original
problem on Ω

−∆u = µk (Ω(t)) u.

We then need to define the
velocity field v on all S2 by
extension-regularisation.

• More precise.
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Handling area constraint

Let b,m′ > 0. To handle the area constraint we add a penality term.
However, the functionnal

Ω 7→ µk(Ω)− b(|Ω| − m′)2

has maximal equal to +∞ (take the sequence Bε, ε → 0).

We use this result :

Theorem (Strichartz, 1996)
Let Ω ⊂ S2. Then

|Ω|µk(Ω) ≤ 2πk2.

We will then optimize the functionnal

Ω 7→ |Ω|µk(Ω)− b(|Ω| − m′)2
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