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The Poisson problem with Robin boundary conditions

Let Ω ⊂ Rn be an open, bounded and Lipschitz set. We consider the
following problem for the p−Laplace operator:

−∆pu = f in Ω

|∇u|p−2∂u

∂ν
+ β|u|p−2u = 0 on ∂Ω,

(P )

∆pu = div(|∇u|p−2∇u)

f is a positive function in Lq(Ω), q = p/(p− 1)

β is a positive parameter;
ν is the outer unit normal to ∂Ω.

There exists a unique, positive, weak solution to (P ).
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The symmetrized problem

Let Ω♯ be the ball satisfying |Ω| = |Ω♯|. We consider
−∆pv = f ♯ in Ω♯

|∇v|p−2 ∂v

∂ν
+ β|v|p−2v = 0 on ∂Ω♯,

(P ∗)

f ♯ is the Schwarz rearrangement of f

f f#

{f > t} {f# > t}

t

Can we compare the solutions u and v? Which is the right way to compare
them?
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The Dirichlet case

G. Talenti- 1976, Ann. Scuola Sup. Pisa (linear case)
G. Talenti- 1979, Ann. Mat. Pura Appl. (nonlinear case)®

−∆puD = f inΩ
uD = 0 on ∂Ω.

®
−∆pvD = f ♯ inΩ♯

vD = 0 on ∂Ω♯.

u♯D(x) ≤ vD(x), ∀x ∈ Ω♯

These results hold for more general elliptic operators in divergence form!

Question
Does u♯ ≤ v hold also in the Robin case?
Does a weaker result hold?
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Applications

The ball maximizes every Lk norm of the solutions:

u♯D(x) ≤ vD(x) =⇒ ∥uD∥Lk(Ω) = ∥u♯D∥Lk(Ω♯) ≤ ∥vD∥Lk(Ω♯)

This gives sharp a priori estimates on the Lk-norm of the solution to
(P )

when f ≡ 1 we recover the Saint-Venaint inequality

T (Ω) =

ˆ
Ω
uD dx ≤

ˆ
Ω♯

vD dx = T (Ω♯)
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Applications

Another proof of the Faber-Krahn inequality, for all p, n:®
−∆pw = Λp(Ω)w

p−1 in Ω

w = 0 on ∂ Ω,

®
−∆pz = Λp(Ω)(w

♯)p−1 in Ω♯

z = 0 on ∂ Ω♯,

w♯ ≤ z =⇒
ˆ
Ω♯
(w♯)p−1z ≤

Åˆ
Ω♯
(w♯)p

ã p−1
p
Åˆ

Ω♯
zp
ã 1

p

≤
ˆ
Ω♯

zp

Λp(Ω) =

´
Ω♯ |∇z|p´

Ω♯(w♯)p−1z
≥
´
Ω♯ |∇z|p´
Ω♯ zp

≥ Λp(Ω
♯)

Remark
It is sufficient ∥w∥Lp(Ω) ≤ ∥z∥Lp(Ω♯) to prove the Faber-Khran
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The linear case

A. Alvino-C. Nitsch-C. Trombetti, Comm. Pure Appl. Math. 2022
Let u and v the solution respectively to−∆u = f in Ω,

∂u

∂ν
+ βu = 0 on ∂Ω,

−∆v = f ♯ in Ω♯,
∂v

∂ν
+ βv = 0 on ∂Ω♯,

If f ∈ L2(Ω), f > 0 then

∥u∥Lk,1(Ω) ≤ ∥v∥Lk,1(Ω♯) ∀0 < k ≤ n

2n− 2

∥u∥L2k,2(Ω) ≤ ∥v∥L2k,2(Ω♯) ∀0 < k ≤ n

3n− 4

Moreover, if f ≡ 1

u♯(x) ≤ v(x), n = 2,

∥u∥Lk(Ω) ≤ ∥v∥Lk(Ω), n ≥ 2, k = 1, 2.
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The nonlinear case

V. Amato-A. Gentile- A. L. M., Ann. Mat. Pura Appl. 2022
Let u and v the solution respectively to®

−∆pu = f in Ω,

Robin BC on ∂Ω,

®
−∆pv = f ♯ in Ω♯,

Robin BC on ∂Ω♯,

If f ∈ Lq(Ω), f > 0 then

∥u∥Lk,1(Ω) ≤ ∥v∥Lk,1(Ω♯) ∀0 < k ≤ n(p− 1)

(n− 1)p

∥u∥Lpk,p(Ω) ≤ ∥v∥Lpk,p(Ω♯) ∀0 < k ≤ n(p− 1)

(n− 2)p+ n
.

Moreover, if f ≡ 1

u♯(x) ≤ v(x), 1 < p ≤ n

n− 1
,

∥u∥Lk(Ω) ≤ ∥v∥Lk(Ω♯) k = 1, p.
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Definition

∥u∥Lp,q =


p

1
q

Åˆ ∞

0
tqµ(t)

q
p
dt

t

ã 1
q

0 < q < ∞

sup
t>0

(tpµ(t)) q = ∞

where µ(t) = |{u > t}|, is the distibution function of u.

Remark
If p = q, we recover the classical Lp norm, as a consequence of the
Cavalieri principle: ˆ

Ω
|u|p = p

ˆ +∞

0
tp−1µ(t)
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Applications

The ball maximizes the Lk,1 and Lpk,p norm of the solutions for
certain values of k;

The ball maximizes the L1 and Lp norm of the solution if p ≥ n:

∥u∥Lk,1(Ω) ≤ ∥v∥Lk,1(Ω♯) ∀0 < k ≤ n(p− 1)

(n− 1)p
≥ 1

∥u∥Lpk,p(Ω) ≤ ∥v∥Lpk,p(Ω♯) ∀0 < k ≤ n(p− 1)

(n− 2)p+ n
≥ 1.

The ball maximizes the p−Torsion in any dimension;
The alternative proof of the Faber-Krahn inequality holds if p ≥ n.
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Characterize the equality case

Can we obtain some information if the equality holds in one of the previous
estimates?

In the Dirichlet case

A. Alvino-P. L. Lions-G. Trombetti (Proc. Roy. Soc. Edinburgh Sect.
A, 1986)
Let uD and vD be the solutions respectively to®

−∆uD = f in Ω,

uD = 0 on ∂Ω,

®
−∆vD = f ♯ in Ω♯,

vD = 0 on ∂Ω♯,

If u♯D(x) = vD(x) for almost every x ∈ Ω♯, then

Ω = Ω♯ + x0, uD(·) = u♯D(·+ x0), f(·) = f ♯(·+ x0)
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In the Robin Case
Linear case: A. L. M., G. Paoli, to appear on J. Geom. Anal.
we study the case n = 2, f = 1, for which a pointwise comparison
holds;
Nonlinear case: A. L. M., G. Paoli, preprint
we treat the general p−Laplace case.
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The results

V. Amato-A. Gentile-A. L. M., Ann. Mat. Pura Appl. 2022
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The results

A. L. M.-G. Paoli, preprint

Let Ω ⊂ Rn be a bounded, open and Lipschitz set and let Ω♯ be the ball
centered at the origin with the same measure as Ω. Let u be the solution
to (P) and let v be a solution to (P*). If

∥u∥Lpk,p(Ω) = ∥v∥Lpk,p(Ω♯), for some k ∈
ò
0,

n(p− 1)

(n− 2)p+ n

ò
then, there exists x0 ∈ Rn such that

Ω = Ω♯ + x0, u(·+ x0) = v(·), f(·+ x0) = f ♯(·).

sketch of the proof for n = 2, p = 2, f ≡ 1
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Some Notation

∂Uext
t

Ut

Ω

∂U int
t

Ut = {x ∈ Ω : u(x) > t} ,
∂U int

t = ∂Ut ∩ Ω,

∂U ext
t = ∂Ut ∩ ∂Ω.

µ(t) = |{x ∈ Ω : u(x) > t}|,
ϕ(t) = |{x ∈ Ω♯ : v(x) > t|}, Vt =

{
x ∈ Ω♯ : v(x) > t

}
.
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Some properties

Let us denote by um = minΩ u and vm = minΩ♯ v that are achieved
on the boundary. Since β > 0, we have that um, vm > 0.

v is radial and decreasing
Vt is a ball concentric to Ω♯ and strictly contained in it

It holds that vm ≥ um. Indeed:

vmP(Ω♯) =

ˆ
∂Ω♯

v(x) dH1 =
1

β

ˆ
Ω♯

dx =
1

β

ˆ
Ω
dx

=

ˆ
∂Ω

u(x) dH1 ≥ umP(Ω) ≥ umP(Ω♯).
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M.-Paoli, preprint

Let Ω ⊂ Rn be a bounded, open and Lipschitz set and let Ω♯ be the ball
centered at the origin with the same measure as Ω. Let u be the solution
to (P) and let v be a solution to (P*). If

∥u∥Lpk,p(Ω) = ∥v∥Lpk,p(Ω♯), for some k ∈
ò
0,

n(p− 1)

(n− 2)p+ n

ò
then, there exists x0 ∈ Rn such that

Ω = Ω♯ + x0, u(·+ x0) = v(·), f(·+ x0) = f ♯(·).
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Talenti comparison for Robin: case n = 2 and f ≡ 1

∥u(x)∥L2k,2(Ω) ≤ ∥v(x)∥L2k,2(Ω♯). (1)

Lemma: Talenti comparison [ANT]
Recalling µ(t) = |{u > t}|, ϕ(t) = |{v > t}|, it holds

4π ≤
Ç
−µ′(t) +

1

β

ˆ
∂Uext

t

1

u
dH1

å
(2)

and
4π =

Å
−ϕ′(t) +

1

β

ˆ
∂Vt∩∂Ω♯

1

v
dH1

ã
. (3)

From (2) and (3) one can prove (1).
These (in)equalities are the key to the rigidity result.
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Lemma: idea of the proof

The key points in proving this inequality (2) are:
the isoperimetric inequality applied on the super level set of u and v
resp. Ut and Vt;
the Hölder inequality applied on the function g

g(x) =

®
|∇u| if x ∈ ∂U int

t ,

βu if x ∈ ∂U ext
t .

that satisfies ˆ
∂{u>t}

g(x) dH1 =

ˆ
{u>t}

dx = µ(t).
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Sketch of the proof of the Rigidity result

From the hypothesis

∥u(x)∥L2k,2(Ω) = ∥v(x)∥L2k,2(Ω♯).

one can prove the equality in the Talenti comparison, i.e.

4π =

Ç
−µ′(t) +

1

β

ˆ
∂Uext

t

1

u
dH1

å
,

for almost every t ∈ [0, uM ], where uM = max
Ω

u.
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Sketch of the proof of the Rigidity result

Step 1: We prove that every super level set is a ball.

Equality in the Talenti comparison implies that

2
√
πµ(t)

1
2 = P (Ut), for a. e. t

that means that a.e level set is a ball.

For all t ∈ [um, uM ), there exists {tk} s.t.
1 tk → t;
2 tk > tk+1;
3 {u > tk} is a ball for all k.

Then, since {u > t} = ∪k{u > tk}, we have that {u > t} is a ball for
all t.
In particular, Ω is a ball!
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Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.

In order to do that, we show that u− um solves®
−∆(u− um) = 1 in Ω,

u− um = 0 on ∂Ω,

and if one compares w = u− um with the solution to®
−∆z = 1 in Ω♯,

z = 0 on ∂Ω♯,

it holds
w♯(x) = z(x), in Ω♯ .
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Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.

In order to do that, we show that u− um solves®
−∆p(u− um) = f in Ω,

u− um = 0 on ∂Ω,

and if one compares w = u− um with the solution to®
−∆pz = f ♯ in Ω♯,

z = 0 on ∂Ω,

it holds
w♯(x) = z(x), in Ω♯ .

If one can prove a rigidity result for the Dirichlet p−Laplacian, we achieve
Step 2.
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Dirichlet p−Laplacian

A. L. M., G. Paoli– Preprint

Let Ω ⊂ Rn be an open, bounded and Lipschitz set. Let f ∈ Lp′(Ω) be a
positive function and let w and z be weak solutions respectively to®

−∆pw = f in Ω

w = 0 on ∂Ω,

®
−∆pz = f ♯ in Ω♯

z = 0 on ∂Ω♯.

If w♯(x) = z(x), for all x ∈ Ω♯, then there exists x0 ∈ Rn such that

Ω = Ω♯ + x0, w(·+ x0) = z(·), f(·+ x0) = f ♯(·).

This result seems new in the literature!
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Main differences with ALT

Solutions to p−Laplace equation are not, in general, continuous or
C1,α(Ω̄);

The proof of the rigidity results by A-L-T strongly relies on the fact
that they are dealing with a linear operator and the high regularity of
the solutions that can be lost for a generic p.
To overcome this regularity issue, we show that w satisfies the
Brothers-Ziemer result:
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Brothers, Ziemer, J. Reine Angew. Math.

Let w ∈ W 1,p
0 (Ω), let

wM :=

®
∥w∥∞ if w ∈ L∞(Ω)

+∞ otherwise.
.

If ˆ
Ω
|∇w|p =

ˆ
Ω
|∇w♯|p,

and ∣∣∣¶ |∇w♯| = 0
©
∩
¶
0 < w♯ < wM

©∣∣∣ = 0

then, w = w♯ up to a translation.

So w = u− um is radial and decreasing, and u = w + um too!
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Open Problems

Generalize the rigidity results in the anisotropic setting or to the mixed
boundary condition setting, for which Talenti-type results are proved in

1 R. Sannipoli, Nonlinear Anal. (2022),
2 A. Alvino, C. Chiacchio, C. Nitsch, C. Trombetti, J. Math Pures Appl.,

(2021).

Is it true that the ball maximizes every Lk norm of the Torsion
function (with Robin boundary conditions) in any dimension?
A first evidence is contained in "R. Sannipoli Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl." where it is proved that the ball is a critical
shape for every Lk norm.
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Thank you for your attention!
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