Rigidity results for the Robin p-Laplacian

Shape Optimization, Geometric Inequalities, and Related Topics Two days workshop for young researchers in Naples.

Alba Lia Masiello

Università degli studi di Napoli "Federico II"
30 gennaio 2023

The Poisson problem with Robin boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. We consider the following problem for the p-Laplace operator:

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega \tag{P}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}+\beta|u|^{p-2} u=0 & \text { on } \partial \Omega\end{cases}
$$

The Poisson problem with Robin boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. We consider the following problem for the p-Laplace operator:

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega \tag{P}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}+\beta|u|^{p-2} u=0 & \text { on } \partial \Omega\end{cases}
$$

- $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$

The Poisson problem with Robin boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. We consider the following problem for the p-Laplace operator:

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega \tag{P}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}+\beta|u|^{p-2} u=0 & \text { on } \partial \Omega\end{cases}
$$

- $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$
- f is a positive function in $L^{q}(\Omega), q=p /(p-1)$

The Poisson problem with Robin boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. We consider the following problem for the p-Laplace operator:

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega \tag{P}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}+\beta|u|^{p-2} u=0 & \text { on } \partial \Omega\end{cases}
$$

- $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$
- f is a positive function in $L^{q}(\Omega), q=p /(p-1)$
- β is a positive parameter;

The Poisson problem with Robin boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. We consider the following problem for the p-Laplace operator:

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega \tag{P}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}+\beta|u|^{p-2} u=0 & \text { on } \partial \Omega\end{cases}
$$

- $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$
- f is a positive function in $L^{q}(\Omega), q=p /(p-1)$
- β is a positive parameter;
- ν is the outer unit normal to $\partial \Omega$.

The Poisson problem with Robin boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. We consider the following problem for the p-Laplace operator:

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega \tag{P}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}+\beta|u|^{p-2} u=0 & \text { on } \partial \Omega\end{cases}
$$

- $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$
- f is a positive function in $L^{q}(\Omega), q=p /(p-1)$
- β is a positive parameter;
- ν is the outer unit normal to $\partial \Omega$.

There exists a unique, positive, weak solution to (P).

The symmetrized problem

Let Ω^{\sharp} be the ball satisfying $|\Omega|=\left|\Omega^{\sharp}\right|$. We consider

$$
\begin{cases}-\Delta_{p} v=f^{\sharp} & \text { in } \Omega^{\sharp} \\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu}+\beta|v|^{p-2} v=0 & \text { on } \partial \Omega^{\sharp},\end{cases}
$$

The symmetrized problem

Let Ω^{\sharp} be the ball satisfying $|\Omega|=\left|\Omega^{\sharp}\right|$. We consider

$$
\begin{cases}-\Delta_{p} v=f^{\sharp} & \text { in } \Omega^{\sharp} \\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu}+\beta|v|^{p-2} v=0 & \text { on } \partial \Omega^{\sharp},\end{cases}
$$

f^{\sharp} is the Schwarz rearrangement of f

The symmetrized problem

Let Ω^{\sharp} be the ball satisfying $|\Omega|=\left|\Omega^{\sharp}\right|$. We consider

$$
\begin{cases}-\Delta_{p} v=f^{\sharp} & \text { in } \Omega^{\sharp} \tag{*}\\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu}+\beta|v|^{p-2} v=0 & \text { on } \partial \Omega^{\sharp},\end{cases}
$$

f^{\sharp} is the Schwarz rearrangement of f

Can we compare the solutions u and v ? Which is the right way to compare them?

The Dirichlet case

G. Talenti- 1976, Ann. Scuola Sup. Pisa (linear case)
G. Talenti- 1979, Ann. Mat. Pura Appl. (nonlinear case)

$$
\begin{array}{cl}
\left\{\begin{array} { l l }
{ - \Delta _ { p } u _ { D } = f } & { \text { in } \Omega } \\
{ u _ { D } = 0 } & { \text { on } \partial \Omega . }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta_{p} v_{D}=f^{\sharp} & \text { in } \Omega^{\sharp} \\
v_{D}=0 & \text { on } \partial \Omega^{\sharp .} \\
u_{D}^{\sharp}(x) \leq v_{D}(x), \quad \forall x \in \Omega^{\sharp}
\end{array}\right.\right.
\end{array}
$$

The Dirichlet case

G. Talenti- 1976, Ann. Scuola Sup. Pisa (linear case)
G. Talenti- 1979, Ann. Mat. Pura Appl. (nonlinear case)

$$
\begin{gathered}
\left\{\begin{array} { l l l }
{ - \Delta _ { p } u _ { D } = f } & { \text { in } \Omega } \\
{ u _ { D } = 0 } & { \text { on } \partial \Omega . }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta_{p} v_{D}=f^{\sharp} & \text { in } \Omega^{\sharp} \\
v_{D}=0 & \text { on } \partial \Omega^{\sharp .} \\
u_{D}^{\sharp}(x) \leq v_{D}(x), \quad \forall x \in \Omega^{\sharp}
\end{array}\right.\right.
\end{gathered}
$$

These results hold for more general elliptic operators in divergence form!

The Dirichlet case

G. Talenti- 1976, Ann. Scuola Sup. Pisa (linear case)
G. Talenti- 1979, Ann. Mat. Pura Appl. (nonlinear case)

$$
\begin{gathered}
\left\{\begin{array} { l l l }
{ - \Delta _ { p } u _ { D } = f } & { \text { in } \Omega } \\
{ u _ { D } = 0 } & { \text { on } \partial \Omega . }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta_{p} v_{D}=f^{\sharp} & \text { in } \Omega^{\sharp} \\
v_{D}=0 & \text { on } \partial \Omega^{\sharp .} \\
u_{D}^{\sharp}(x) \leq v_{D}(x), \quad \forall x \in \Omega^{\sharp}
\end{array}\right.\right.
\end{gathered}
$$

These results hold for more general elliptic operators in divergence form!

Question

- Does $u^{\sharp} \leq v$ hold also in the Robin case?
- Does a weaker result hold?

Applications

- The ball maximizes every L^{k} norm of the solutions:

$$
u_{D}^{\sharp}(x) \leq v_{D}(x) \Longrightarrow\left\|u_{D}\right\|_{L^{k}(\Omega)}=\left\|u_{D}^{\sharp}\right\|_{L^{k}\left(\Omega^{\sharp}\right)} \leq\left\|v_{D}\right\|_{L^{k}\left(\Omega^{\sharp}\right)}
$$

Applications

- The ball maximizes every L^{k} norm of the solutions:

$$
u_{D}^{\sharp}(x) \leq v_{D}(x) \Longrightarrow\left\|u_{D}\right\|_{L^{k}(\Omega)}=\left\|u_{D}^{\sharp}\right\|_{L^{k}\left(\Omega^{\sharp}\right)} \leq\left\|v_{D}\right\|_{L^{k}\left(\Omega^{\sharp}\right)}
$$

- This gives sharp a priori estimates on the L^{k}-norm of the solution to (P)

Applications

- The ball maximizes every L^{k} norm of the solutions:

$$
u_{D}^{\sharp}(x) \leq v_{D}(x) \Longrightarrow\left\|u_{D}\right\|_{L^{k}(\Omega)}=\left\|u_{D}^{\sharp}\right\|_{L^{k}\left(\Omega^{\sharp}\right)} \leq\left\|v_{D}\right\|_{L^{k}\left(\Omega^{\sharp}\right)}
$$

- This gives sharp a priori estimates on the L^{k}-norm of the solution to (P)
- when $f \equiv 1$ we recover the Saint-Venaint inequality

$$
T(\Omega)=\int_{\Omega} u_{D} d x \leq \int_{\Omega^{\sharp}} v_{D} d x=T\left(\Omega^{\sharp}\right)
$$

Applications

Another proof of the Faber-Krahn inequality, for all p, n :
$\begin{cases}-\Delta_{p} w=\Lambda_{p}(\Omega) w^{p-1} & \text { in } \Omega \\ w=0 & \text { on } \partial \Omega,\end{cases}$

Applications

Another proof of the Faber-Krahn inequality, for all p, n :
$\left\{\begin{array}{ll}-\Delta_{p} w=\Lambda_{p}(\Omega) w^{p-1} & \text { in } \Omega \\ w=0 & \text { on } \partial \Omega,\end{array} \quad \begin{cases}-\Delta_{p} z=\Lambda_{p}(\Omega)\left(w^{\sharp}\right)^{p-1} & \text { in } \Omega^{\sharp} \\ z=0 & \text { on } \partial \Omega^{\sharp},\end{cases}\right.$

Applications

Another proof of the Faber-Krahn inequality, for all p, n :

$$
\left\{\begin{array} { l l }
{ - \Delta _ { p } w = \Lambda _ { p } (\Omega) w ^ { p - 1 } } & { \text { in } \Omega } \\
{ w = 0 } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta_{p} z=\Lambda_{p}(\Omega)\left(w^{\sharp}\right)^{p-1} & \text { in } \Omega^{\sharp} \\
z=0 & \text { on } \partial \Omega^{\sharp},
\end{array}\right.\right.
$$

$$
w^{\sharp} \leq z \Longrightarrow \int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p-1} z \leq\left(\int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p}\right)^{\frac{p-1}{p}}\left(\int_{\Omega^{\sharp}} z^{p}\right)^{\frac{1}{p}} \leq \int_{\Omega^{\sharp}} z^{p}
$$

Applications

Another proof of the Faber-Krahn inequality, for all p, n :

$$
\left\{\begin{array} { l l }
{ - \Delta _ { p } w = \Lambda _ { p } (\Omega) w ^ { p - 1 } } & { \text { in } \Omega } \\
{ w = 0 } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta_{p} z=\Lambda_{p}(\Omega)\left(w^{\sharp}\right)^{p-1} & \text { in } \Omega^{\sharp} \\
z=0 & \text { on } \partial \Omega^{\sharp},
\end{array}\right.\right.
$$

$$
\begin{gathered}
w^{\sharp} \leq z \Longrightarrow \int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p-1} z \leq\left(\int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p}\right)^{\frac{p-1}{p}}\left(\int_{\Omega^{\sharp}} z^{p}\right)^{\frac{1}{p}} \leq \int_{\Omega^{\sharp}} z^{p} \\
\Lambda_{p}(\Omega)=\frac{\int_{\Omega^{\sharp}}|\nabla z|^{p}}{\int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p-1} z} \geq \frac{\int_{\Omega^{\sharp}}|\nabla z|^{p}}{\int_{\Omega^{\sharp}} z^{p}} \geq \Lambda_{p}\left(\Omega^{\sharp}\right)
\end{gathered}
$$

Applications

Another proof of the Faber-Krahn inequality, for all p, n :
$\left\{\begin{array}{ll}-\Delta_{p} w=\Lambda_{p}(\Omega) w^{p-1} & \text { in } \Omega \\ w=0 & \text { on } \partial \Omega,\end{array} \quad \begin{cases}-\Delta_{p} z=\Lambda_{p}(\Omega)\left(w^{\sharp}\right)^{p-1} & \text { in } \Omega^{\sharp} \\ z=0 & \text { on } \partial \Omega^{\sharp},\end{cases}\right.$

$$
\begin{gathered}
w^{\sharp} \leq z \Longrightarrow \int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p-1} z \leq\left(\int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p}\right)^{\frac{p-1}{p}}\left(\int_{\Omega^{\sharp}} z^{p}\right)^{\frac{1}{p}} \leq \int_{\Omega^{\sharp}} z^{p} \\
\Lambda_{p}(\Omega)=\frac{\int_{\Omega^{\sharp}}|\nabla z|^{p}}{\int_{\Omega^{\sharp}}\left(w^{\sharp}\right)^{p-1} z} \geq \frac{\int_{\Omega^{\sharp}}|\nabla z|^{p}}{\int_{\Omega^{\sharp}} z^{p}} \geq \Lambda_{p}\left(\Omega^{\sharp}\right)
\end{gathered}
$$

Remark

It is sufficient $\|w\|_{L^{p}(\Omega)} \leq\|z\|_{L^{p}\left(\Omega^{\sharp}\right)}$ to prove the Faber-Khran

The linear case

A. Alvino-C. Nitsch-C. Trombetti, Comm. Pure Appl. Math. 2022

Let u and v the solution respectively to

$$
\left\{\begin{array} { l l }
{ - \Delta u = f } & { \text { in } \Omega , } \\
{ \frac { \partial u } { \partial \nu } + \beta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v=f^{\sharp} & \text { in } \Omega^{\sharp}, \\
\frac{\partial v}{\partial \nu}+\beta v=0 & \text { on } \partial \Omega^{\sharp},
\end{array}\right.\right.
$$

If $f \in L^{2}(\Omega), f>0$ then

$$
\begin{aligned}
\|u\|_{L^{k, 1}(\Omega)} & \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} & & \forall 0<k \leq \frac{n}{2 n-2} \\
\|u\|_{L^{2 k, 2}(\Omega)} & \leq\|v\|_{L^{2 k, 2}\left(\Omega^{\sharp}\right)} & & \forall 0<k \leq \frac{n}{3 n-4}
\end{aligned}
$$

The linear case

A. Alvino-C. Nitsch-C. Trombetti, Comm. Pure Appl. Math. 2022

Let u and v the solution respectively to

$$
\left\{\begin{array} { l l }
{ - \Delta u = f } & { \text { in } \Omega , } \\
{ \frac { \partial u } { \partial \nu } + \beta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v=f^{\sharp} & \text { in } \Omega^{\sharp}, \\
\frac{\partial v}{\partial \nu}+\beta v=0 & \text { on } \partial \Omega^{\sharp},
\end{array}\right.\right.
$$

If $f \in L^{2}(\Omega), f>0$ then

$$
\begin{aligned}
\|u\|_{L^{k, 1}(\Omega)} & \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} & & \forall 0<k \leq \frac{n}{2 n-2} \\
\|u\|_{L^{2 k, 2}(\Omega)} & \leq\|v\|_{L^{2 k, 2}\left(\Omega^{\sharp}\right)} & & \forall 0<k \leq \frac{n}{3 n-4}
\end{aligned}
$$

Moreover, if $f \equiv 1$

$$
\begin{aligned}
u^{\sharp}(x) & \leq v(x), & & n=2, \\
\|u\|_{L^{k}(\Omega)} & \leq\|v\|_{L^{k}(\Omega)}, & & n \geq 2, \quad k=1,2 .
\end{aligned}
$$

The nonlinear case

V. Amato-A. Gentile- A. L. M., Ann. Mat. Pura Appl. 2022

Let u and v the solution respectively to

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega, \\ \text { Robin BC } & \text { on } \partial \Omega,\end{cases}
$$

$$
\begin{cases}-\Delta_{p} v=f^{\sharp} & \text { in } \Omega^{\sharp}, \\ \text { Robin } B C & \text { on } \partial \Omega^{\sharp},\end{cases}
$$

If $f \in L^{q}(\Omega), f>0$ then

$$
\begin{aligned}
\|u\|_{L^{k, 1}(\Omega)} \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} & \forall 0<k \leq \frac{n(p-1)}{(n-1) p} \\
\|u\|_{L^{p k, p}(\Omega)} \leq\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)} & \forall 0<k \leq \frac{n(p-1)}{(n-2) p+n} .
\end{aligned}
$$

The nonlinear case

V. Amato-A. Gentile- A. L. M., Ann. Mat. Pura Appl. 2022

Let u and v the solution respectively to

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega, \\ \text { Robin BC } & \text { on } \partial \Omega,\end{cases}
$$

$$
\begin{cases}-\Delta_{p} v=f^{\sharp} & \text { in } \Omega^{\sharp}, \\ \text { Robin } B C & \text { on } \partial \Omega^{\sharp},\end{cases}
$$

If $f \in L^{q}(\Omega), f>0$ then

$$
\begin{aligned}
\|u\|_{L^{k, 1}(\Omega)} \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} & \forall 0<k \leq \frac{n(p-1)}{(n-1) p} \\
\|u\|_{L^{p k, p}(\Omega)} \leq\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)} & \forall 0<k \leq \frac{n(p-1)}{(n-2) p+n} .
\end{aligned}
$$

Moreover, if $f \equiv 1$

$$
\begin{aligned}
u^{\sharp}(x) & \leq v(x), & & 1<p \leq \frac{n}{n-1}, \\
\|u\|_{L^{k}(\Omega)} & \leq\|v\|_{L^{k}\left(\Omega^{\sharp}\right)} & & k=1, p .
\end{aligned}
$$

Definition

$$
\|u\|_{L^{p, q}}= \begin{cases}p^{\frac{1}{q}}\left(\int_{0}^{\infty} t^{q} \mu(t)^{\frac{q}{p}} \frac{d t}{t}\right)^{\frac{1}{q}} & 0<q<\infty \\ \sup _{t>0}\left(t^{p} \mu(t)\right) & q=\infty\end{cases}
$$

where $\mu(t)=|\{u>t\}|$, is the distibution function of u.

Remark

If $p=q$, we recover the classical L^{p} norm, as a consequence of the Cavalieri principle:

$$
\int_{\Omega}|u|^{p}=p \int_{0}^{+\infty} t^{p-1} \mu(t)
$$

Applications

- The ball maximizes the $L^{k, 1}$ and $L^{p k, p}$ norm of the solutions for certain values of k;

Applications

- The ball maximizes the $L^{k, 1}$ and $L^{p k, p}$ norm of the solutions for certain values of k;
- The ball maximizes the L^{1} and L^{p} norm of the solution if $p \geq n$:

$$
\begin{gathered}
\|u\|_{L^{k, 1}(\Omega)} \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} \quad \forall 0<k \leq \frac{n(p-1)}{(n-1) p} \geq 1 \\
\|u\|_{L^{p k, p}(\Omega)} \leq\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)} \quad \forall 0<k \leq \frac{n(p-1)}{(n-2) p+n} \geq 1 .
\end{gathered}
$$

Applications

- The ball maximizes the $L^{k, 1}$ and $L^{p k, p}$ norm of the solutions for certain values of k;
- The ball maximizes the L^{1} and L^{p} norm of the solution if $p \geq n$:

$$
\begin{gathered}
\|u\|_{L^{k, 1}(\Omega)} \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} \quad \forall 0<k \leq \frac{n(p-1)}{(n-1) p} \geq 1 \\
\|u\|_{L^{p k, p}(\Omega)} \leq\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)} \quad \forall 0<k \leq \frac{n(p-1)}{(n-2) p+n} \geq 1 .
\end{gathered}
$$

- The ball maximizes the p-Torsion in any dimension;

Applications

- The ball maximizes the $L^{k, 1}$ and $L^{p k, p}$ norm of the solutions for certain values of k;
- The ball maximizes the L^{1} and L^{p} norm of the solution if $p \geq n$:

$$
\begin{gathered}
\|u\|_{L^{k, 1}(\Omega)} \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} \quad \forall 0<k \leq \frac{n(p-1)}{(n-1) p} \geq 1 \\
\|u\|_{L^{p k, p}(\Omega)} \leq\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)} \quad \forall 0<k \leq \frac{n(p-1)}{(n-2) p+n} \geq 1 .
\end{gathered}
$$

- The ball maximizes the p-Torsion in any dimension;
- The alternative proof of the Faber-Krahn inequality holds if $p \geq n$.

Characterize the equality case

Can we obtain some information if the equality holds in one of the previous estimates?

Characterize the equality case

Can we obtain some information if the equality holds in one of the previous estimates?

In the Dirichlet case
A. Alvino-P. L. Lions-G. Trombetti (Proc. Roy. Soc. Edinburgh Sect. A, 1986)
Let u_{D} and v_{D} be the solutions respectively to

$$
\left\{\begin{array} { l l }
{ - \Delta u _ { D } = f } & { \text { in } \Omega , } \\
{ u _ { D } = 0 } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta v_{D}=f^{\sharp} & \text { in } \Omega^{\sharp}, \\
v_{D}=0 & \text { on } \partial \Omega^{\sharp},
\end{array}\right.\right.
$$

If $u_{D}^{\sharp}(x)=v_{D}(x)$ for almost every $x \in \Omega^{\sharp}$, then

$$
\Omega=\Omega^{\sharp}+x_{0}, \quad u_{D}(\cdot)=u_{D}^{\sharp}\left(\cdot+x_{0}\right), \quad f(\cdot)=f^{\sharp}\left(\cdot+x_{0}\right)
$$

In the Robin Case

- Linear case: A. L. M., G. Paoli, to appear on J. Geom. Anal. we study the case $n=2, f=1$, for which a pointwise comparison holds;
- Nonlinear case: A. L. M., G. Paoli, preprint we treat the general p-Laplace case.

The results

V. Amato-A. Gentile-A. L. M., Ann. Mat. Pura Appl. 2022

Let u and v the solution respectively to

$$
\left\{\begin{array} { l l }
{ - \Delta _ { p } u = f } & { \text { in } \Omega , } \\
{ \text { Robin } B C } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta_{p} v=f^{\sharp} & \text { in } \Omega^{\sharp}, \\
\text { Robin BC } & \text { on } \partial \Omega^{\sharp},
\end{array}\right.\right.
$$

If $f \in L^{q}(\Omega), f \geq 0$ then

$$
\begin{aligned}
\|u\|_{L^{k, 1}(\Omega)} \leq\|v\|_{L^{k, 1}\left(\Omega^{\sharp}\right)} & \forall 0<k \leq \frac{n(p-1)}{(n-1) p} \\
\|u\|_{L^{p k, p}(\Omega)} \leq\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)} & \forall 0<k \leq \frac{n(p-1)}{(n-2) p+n} .
\end{aligned}
$$

Moreover, if $f \equiv 1$

$$
\begin{array}{rlr}
u^{\sharp}(x) \leq v(x), & 1<p \leq \frac{n}{n-1}, \\
\|u\|_{L^{k}(\Omega)} \leq\|v\|_{L^{k}\left(\Omega^{\sharp}\right)} & k=1, p .
\end{array}
$$

The results

A. L. M.-G. Paoli, preprint

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open and Lipschitz set and let Ω^{\sharp} be the ball centered at the origin with the same measure as Ω. Let u be the solution to (P) and let v be a solution to $\left(\mathrm{P}^{*}\right)$. If

$$
\left.\left.\|u\|_{L^{p k, p}(\Omega)}=\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)}, \quad \text { for some } k \in\right] 0, \frac{n(p-1)}{(n-2) p+n}\right]
$$

then, there exists $x_{0} \in \mathbb{R}^{n}$ such that

$$
\Omega=\Omega^{\sharp}+x_{0}, \quad u\left(\cdot+x_{0}\right)=v(\cdot), \quad f\left(\cdot+x_{0}\right)=f^{\sharp}(\cdot) .
$$

The results

A. L. M.-G. Paoli, preprint

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open and Lipschitz set and let Ω^{\sharp} be the ball centered at the origin with the same measure as Ω. Let u be the solution to (P) and let v be a solution to (P^{*}). If

$$
\left.\left.\|u\|_{L^{p k, p}(\Omega)}=\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)}, \quad \text { for some } k \in\right] 0, \frac{n(p-1)}{(n-2) p+n}\right]
$$

then, there exists $x_{0} \in \mathbb{R}^{n}$ such that

$$
\Omega=\Omega^{\sharp}+x_{0}, \quad u\left(\cdot+x_{0}\right)=v(\cdot), \quad f\left(\cdot+x_{0}\right)=f^{\sharp}(\cdot) .
$$

sketch of the proof for $n=2, p=2, f \equiv 1$

Some Notation

$$
\begin{aligned}
U_{t} & =\{x \in \Omega: u(x)>t\} \\
\partial U_{t}^{i n t} & =\partial U_{t} \cap \Omega \\
\partial U_{t}^{e x t} & =\partial U_{t} \cap \partial \Omega
\end{aligned}
$$

- $\mu(t)=|\{x \in \Omega: u(x)>t\}|$,
- $\phi(t)=\mid\left\{x \in \Omega^{\sharp}: v(x)>t \mid\right\}, \quad V_{t}=\left\{x \in \Omega^{\sharp}: v(x)>t\right\}$.

Some properties

- Let us denote by $u_{m}=\min _{\Omega} u$ and $v_{m}=\min _{\Omega^{\sharp}} v$ that are achieved on the boundary. Since $\beta>0$, we have that $u_{m}, v_{m}>0$.

Some properties

- Let us denote by $u_{m}=\min _{\Omega} u$ and $v_{m}=\min _{\Omega^{\sharp}} v$ that are achieved on the boundary. Since $\beta>0$, we have that $u_{m}, v_{m}>0$.
- v is radial and decreasing V_{t} is a ball concentric to Ω^{\sharp} and strictly contained in it

Some properties

- Let us denote by $u_{m}=\min _{\Omega} u$ and $v_{m}=\min _{\Omega^{\sharp}} v$ that are achieved on the boundary. Since $\beta>0$, we have that $u_{m}, v_{m}>0$.
- v is radial and decreasing V_{t} is a ball concentric to Ω^{\sharp} and strictly contained in it
- It holds that $v_{m} \geq u_{m}$. Indeed:

$$
\begin{aligned}
v_{m} \mathrm{P}\left(\Omega^{\sharp}\right) & =\int_{\partial \Omega^{\sharp}} v(x) d \mathcal{H}^{1}=\frac{1}{\beta} \int_{\Omega^{\sharp}} d x=\frac{1}{\beta} \int_{\Omega} d x \\
& =\int_{\partial \Omega} u(x) d \mathcal{H}^{1} \geq u_{m} \mathrm{P}(\Omega) \geq u_{m} \mathrm{P}\left(\Omega^{\sharp}\right) .
\end{aligned}
$$

M.-Paoli, preprint

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open and Lipschitz set and let Ω^{\sharp} be the ball centered at the origin with the same measure as Ω. Let u be the solution to (P) and let v be a solution to $\left(\mathrm{P}^{*}\right)$. If

$$
\left.\left.\|u\|_{L^{p k, p}(\Omega)}=\|v\|_{L^{p k, p}\left(\Omega^{\sharp}\right)}, \quad \text { for some } k \in\right] 0, \frac{n(p-1)}{(n-2) p+n}\right]
$$

then, there exists $x_{0} \in \mathbb{R}^{n}$ such that

$$
\Omega=\Omega^{\sharp}+x_{0}, \quad u\left(\cdot+x_{0}\right)=v(\cdot), \quad f\left(\cdot+x_{0}\right)=f^{\sharp}(\cdot) .
$$

Talenti comparison for Robin: case $n=2$ and $f \equiv 1$

$$
\begin{equation*}
\|u(x)\|_{L^{2 k, 2}(\Omega)} \leq\|v(x)\|_{L^{2 k, 2}\left(\Omega^{\sharp}\right)} . \tag{1}
\end{equation*}
$$

Lemma: Talenti comparison [ANT]

Recalling $\mu(t)=|\{u>t\}|, \quad \phi(t)=|\{v>t\}|$, it holds

$$
\begin{equation*}
4 \pi \leq\left(-\mu^{\prime}(t)+\frac{1}{\beta} \int_{\partial U_{t}^{e x t}} \frac{1}{u} d \mathcal{H}^{1}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \pi=\left(-\phi^{\prime}(t)+\frac{1}{\beta} \int_{\partial V_{t} \cap \partial \Omega^{\sharp}} \frac{1}{v} d \mathcal{H}^{1}\right) . \tag{3}
\end{equation*}
$$

- From (2) and (3) one can prove (1).
- These (in)equalities are the key to the rigidity result.

Lemma: idea of the proof

The key points in proving this inequality (2) are:

- the isoperimetric inequality applied on the super level set of u and v resp. U_{t} and V_{t};
- the Hölder inequality applied on the function g

$$
g(x)= \begin{cases}|\nabla u| & \text { if } x \in \partial U_{t}^{\text {int }} \\ \beta u & \text { if } x \in \partial U_{t}^{e x t}\end{cases}
$$

that satisfies

$$
\int_{\partial\{u>t\}} g(x) d \mathcal{H}^{1}=\int_{\{u>t\}} d x=\mu(t)
$$

Sketch of the proof of the Rigidity result

- From the hypothesis

$$
\|u(x)\|_{L^{2 k, 2}(\Omega)}=\|v(x)\|_{L^{2 k, 2}\left(\Omega^{\sharp}\right)} .
$$

one can prove the equality in the Talenti comparison, i.e.

$$
4 \pi=\left(-\mu^{\prime}(t)+\frac{1}{\beta} \int_{\partial U_{t}^{e x t}} \frac{1}{u} d \mathcal{H}^{1}\right)
$$

for almost every $t \in\left[0, u_{M}\right]$, where $u_{M}=\max _{\Omega} u$.

Sketch of the proof of the Rigidity result

Step 1: We prove that every super level set is a ball.

- Equality in the Talenti comparison implies that

$$
2 \sqrt{\pi} \mu(t)^{\frac{1}{2}}=P\left(U_{t}\right), \quad \text { for a. e. } t
$$

that means that a.e level set is a ball.

Sketch of the proof of the Rigidity result

Step 1: We prove that every super level set is a ball.

- Equality in the Talenti comparison implies that

$$
2 \sqrt{\pi} \mu(t)^{\frac{1}{2}}=P\left(U_{t}\right), \quad \text { for a. e. } t
$$

that means that a.e level set is a ball.

- For all $t \in\left[u_{m}, u_{M}\right)$, there exists $\left\{t_{k}\right\}$ s.t.
(1) $t_{k} \rightarrow t$;
(2) $t_{k}>t_{k+1}$;
(3) $\left\{u>t_{k}\right\}$ is a ball for all k.

Then, since $\{u>t\}=\cup_{k}\left\{u>t_{k}\right\}$, we have that $\{u>t\}$ is a ball for all t.
In particular, Ω is a ball!

Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.

Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.
In order to do that, we show that $u-u_{m}$ solves

$$
\begin{cases}-\Delta\left(u-u_{m}\right)=1 & \text { in } \Omega \\ u-u_{m}=0 & \text { on } \partial \Omega\end{cases}
$$

Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.
In order to do that, we show that $u-u_{m}$ solves

$$
\begin{cases}-\Delta\left(u-u_{m}\right)=1 & \text { in } \Omega \\ u-u_{m}=0 & \text { on } \partial \Omega\end{cases}
$$

and if one compares $w=u-u_{m}$ with the solution to

$$
\begin{cases}-\Delta z=1 & \text { in } \Omega^{\sharp}, \\ z=0 & \text { on } \partial \Omega^{\sharp},\end{cases}
$$

Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.
In order to do that, we show that $u-u_{m}$ solves

$$
\begin{cases}-\Delta\left(u-u_{m}\right)=1 & \text { in } \Omega \\ u-u_{m}=0 & \text { on } \partial \Omega\end{cases}
$$

and if one compares $w=u-u_{m}$ with the solution to

$$
\begin{cases}-\Delta z=1 & \text { in } \Omega^{\sharp}, \\ z=0 & \text { on } \partial \Omega^{\sharp},\end{cases}
$$

it holds

$$
w^{\sharp}(x)=z(x), \quad \text { in } \Omega^{\sharp} .
$$

Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.
In order to do that, we show that $u-u_{m}$ solves

$$
\begin{cases}-\Delta_{p}\left(u-u_{m}\right)=f & \text { in } \Omega \\ u-u_{m}=0 & \text { on } \partial \Omega\end{cases}
$$

and if one compares $w=u-u_{m}$ with the solution to

$$
\begin{cases}-\Delta_{p} z=f^{\sharp} & \text { in } \Omega^{\sharp}, \\ z=0 & \text { on } \partial \Omega,\end{cases}
$$

it holds

$$
w^{\sharp}(x)=z(x), \quad \text { in } \Omega^{\sharp} .
$$

Sketch of the proof of the Rigidity result

Step 2: We prove that the level sets are concentric balls.
In order to do that, we show that $u-u_{m}$ solves

$$
\begin{cases}-\Delta_{p}\left(u-u_{m}\right)=f & \text { in } \Omega \\ u-u_{m}=0 & \text { on } \partial \Omega\end{cases}
$$

and if one compares $w=u-u_{m}$ with the solution to

$$
\begin{cases}-\Delta_{p} z=f^{\sharp} & \text { in } \Omega^{\sharp}, \\ z=0 & \text { on } \partial \Omega,\end{cases}
$$

it holds

$$
w^{\sharp}(x)=z(x), \quad \text { in } \Omega^{\sharp} .
$$

If one can prove a rigidity result for the Dirichlet p-Laplacian, we achieve Step 2.

Dirichlet p-Laplacian

A. L. M., G. Paoli- Preprint

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. Let $f \in L^{p^{\prime}}(\Omega)$ be a positive function and let w and z be weak solutions respectively to

$$
\left\{\begin{array} { l l }
{ - \Delta _ { p } w = f } & { \text { in } \Omega } \\
{ w = 0 } & { \text { on } \partial \Omega , }
\end{array} \left\{\begin{array}{ll}
-\Delta_{p} z=f^{\sharp} & \text { in } \Omega^{\sharp} \\
z=0 & \text { on } \partial \Omega^{\sharp .} .
\end{array}\right.\right.
$$

If $w^{\sharp}(x)=z(x)$, for all $x \in \Omega^{\sharp}$, then there exists $x_{0} \in \mathbb{R}^{n}$ such that

$$
\Omega=\Omega^{\sharp}+x_{0}, \quad w\left(\cdot+x_{0}\right)=z(\cdot), \quad f\left(\cdot+x_{0}\right)=f^{\sharp}(\cdot) .
$$

Dirichlet p-Laplacian

A. L. M., G. Paoli- Preprint

Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and Lipschitz set. Let $f \in L^{p^{\prime}}(\Omega)$ be a positive function and let w and z be weak solutions respectively to

$$
\left\{\begin{array} { l l }
{ - \Delta _ { p } w = f } & { \text { in } \Omega } \\
{ w = 0 } & { \text { on } \partial \Omega , }
\end{array} \left\{\begin{array}{ll}
-\Delta_{p} z=f^{\sharp} & \text { in } \Omega^{\sharp} \\
z=0 & \text { on } \partial \Omega^{\sharp .} .
\end{array}\right.\right.
$$

If $w^{\sharp}(x)=z(x)$, for all $x \in \Omega^{\sharp}$, then there exists $x_{0} \in \mathbb{R}^{n}$ such that

$$
\Omega=\Omega^{\sharp}+x_{0}, \quad w\left(\cdot+x_{0}\right)=z(\cdot), \quad f\left(\cdot+x_{0}\right)=f^{\sharp}(\cdot) .
$$

This result seems new in the literature!

Main differences with ALT

- Solutions to p-Laplace equation are not, in general, continuous or $C^{1, \alpha}(\bar{\Omega})$;

Main differences with ALT

- Solutions to p-Laplace equation are not, in general, continuous or $C^{1, \alpha}(\bar{\Omega})$;
- The proof of the rigidity results by A-L-T strongly relies on the fact that they are dealing with a linear operator and the high regularity of the solutions that can be lost for a generic p.

Main differences with ALT

- Solutions to p-Laplace equation are not, in general, continuous or $C^{1, \alpha}(\bar{\Omega})$;
- The proof of the rigidity results by A-L-T strongly relies on the fact that they are dealing with a linear operator and the high regularity of the solutions that can be lost for a generic p.
- To overcome this regularity issue, we show that w satisfies the Brothers-Ziemer result:

Brothers, Ziemer, J. Reine Angew. Math.
Let $w \in W_{0}^{1, p}(\Omega)$, let

$$
w_{M}:= \begin{cases}\|w\|_{\infty} & \text { if } w \in L^{\infty}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

If

$$
\int_{\Omega}|\nabla w|^{p}=\int_{\Omega}\left|\nabla w^{\sharp}\right|^{p},
$$

and

$$
\left|\left\{\left|\nabla w^{\sharp}\right|=0\right\} \cap\left\{0<w^{\sharp}<w_{M}\right\}\right|=0
$$

then, $w=w^{\sharp}$ up to a translation.

Brothers, Ziemer, J. Reine Angew. Math.
Let $w \in W_{0}^{1, p}(\Omega)$, let

$$
w_{M}:= \begin{cases}\|w\|_{\infty} & \text { if } w \in L^{\infty}(\Omega) \\ +\infty & \text { otherwise } .\end{cases}
$$

If

$$
\int_{\Omega}|\nabla w|^{p}=\int_{\Omega}\left|\nabla w^{\sharp}\right|^{p},
$$

and

$$
\left|\left\{\left|\nabla w^{\sharp}\right|=0\right\} \cap\left\{0<w^{\sharp}<w_{M}\right\}\right|=0
$$

then, $w=w^{\sharp}$ up to a translation.
So $w=u-u_{m}$ is radial and decreasing, and $u=w+u_{m}$ too!

Open Problems

- Generalize the rigidity results in the anisotropic setting or to the mixed boundary condition setting, for which Talenti-type results are proved in
(1) R. Sannipoli, Nonlinear Anal. (2022),
(2) A. Alvino, C. Chiacchio, C. Nitsch, C. Trombetti, J. Math Pures Appl., (2021).
- Is it true that the ball maximizes every L^{k} norm of the Torsion function (with Robin boundary conditions) in any dimension? A first evidence is contained in "R. Sannipoli Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl." where it is proved that the ball is a critical shape for every L^{k} norm.

Some references

- G. Talenti, Ann. Scuola. Norm. Sup. Pisa, (1976)
- G. Talenti, Ann. Mat. Pura Appl., (1979)
- A. Alvino, P.L. Lions, G. Trombetti, Proc. Roy. Soc. Edinburgh Sect, (1986)
- J. E. Brothers, W.P. Ziemer, J. Reine Angew. Math. (1988)
- A. Alvino, C. Nitsch, C. Trombetti, Comm. Pure Appl. Math., (2022)
- A. Alvino, C. Chiacchio, C. Nitsch, C. Trombetti, J. Math Pures Appl., (2021)
- F. Chiacchio, N. Gavitone, C. Nitsch, C. Trombetti, Poten. Analysis, (2022)
- R. Sannipoli, Nonlinear Anal., (2022)
- V. Amato, A. Gentile, A.L. Masiello, Ann. Mat. Pura Appl., (2022)
- R. Sannipoli Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (2022)

Thank you for your attention!

