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Neumann eigenvalues

Let Ω ⊂ Rd be a connected and bounded domain sucht that the

embedding H1(Ω) → L2(Ω) is compact (ex. Lipschitz domains), we

consider Neumann eigenvalues{
−∆u = µu in Ω

∂νu = 0 on ∂Ω,

that we denote by

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ · · · → +∞.



Neumann eigenvalues

Let Ω ⊂ Rd be such that H1(Ω) → L2(Ω) is compact, we consider

Neumann eigenvalues {
−∆u = µu Ω

∂νu = 0 ∂Ω,

that we denote by

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ · · · → +∞.

These eigenvalues can also be characterized by

µk(Ω) = inf
Ek

sup
0̸=u∈Ek

∫
Ω |∇u|2dx∫
Ω u2dx

,

where the in�mum is taken over all k-dimensional subspaces of the

Sobolev space H1(Ω) which are L2-orthogonal to constants on Ω.



Bounds under Diameter constraint

Let D(Ω) be the diameter of the set Ω. We are interested in �nd

optimal upper bounds for the quantity:

D(Ω)2µk(Ω)

This problem was already studied:

S. Y. Cheng (1975), gives general upper bounds involving the

diameter for smooth and complete Riemannian manifolds. The

given bound is sharp for µ1 in dimension d = 2

R. Banuelos and K. Burdzy (1999) proved (via di�erent

method) sharp and explicit upper bound for µ1 in the plane.

They also characterize the maximizing sequence.

P. Kröger (1999) prove sharp upper bounds for convex

domains in all dimensions.

L. Brasco, C. Nitsch and C. Trombetti (2016) proved sharp

upper bounds for the �rst eigenvalue of the p-laplacian.
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We present sharp upper bounds for an "optimal" class of domains.

Definition

let h be a non negative bounded function, then we say that h is

optimal β−concave if β > 0 is the largest number for which hβ is

concave

Definition

Let Ω ⊂ Rd be a domain, the pro�le function g associated to Ω
is the function de�ned in the following way:

g(x1) = Hd−1({x ′ ∈ Rd−1 | (x1, x ′) ∈ Ω, x1 ∈ [0,D(Ω)]}).
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Main Theorem

Theorem

Let Ω ⊂ Rd be a domain, let g be the pro�le function associated to

Ω. If the function g is a optimal 1

α -concave function with α ≥ 1,

then the following bounds hold:

let α < 2 then: D(Ω)2µk(Ω) ≤ (2jα−1

2
,1 + (k − 1)π)2

let α = 2 then: D(Ω)2µk(Ω) ≤ ((k + 1)π)2

let α > 2 then:

if k is odd then D(Ω)2µk(Ω) ≤ 4j2α−1

2
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2

if k is even then D(Ω)2µk(Ω) ≤ (jα−1

2
, k
2

+ jα−1

2
, k+2

2

)2

where jν,m is the m−th zero of the Bessel function Jν . Moreover all

the inequality above are optimal in the sense that they are

saturated by sequence of collapsing domains.



Convex case

The convex case is a particular case indeed if Ω ⊂ Rd is a convex

set then, by an easy application of Brunn-Minkowski inequality, the

pro�le function g is 1

d−1
−concave.

We give an alternative proof of

Kröger inequalities:

Corollary

Let Ω ⊂ Rd be a convex domain, then the following bounds hold:

let d = 2 then D(Ω)2µk(Ω) ≤ (2j0,1 + (k − 1)π)2
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Some examples in R2

If Ω ⊂ R2 is convex, then the pro�le function is concave. But there

are plenty of domains associated to a given pro�le functions. Given

a concave function h there are domains Ω with pro�le function h
but they are not convex:

Figure: A plane domain D1 with pro�le function x(1− x)

So we have µk(D1) ≤ (2j0,1 + (k − 1)π)2



Some examples in R2

The set given by:

D2 = {(x , y) ∈ R2| 0 < x < 1, 0 < y < x2}

has a pro�le function that is optimal 1

2
−concave but is not convex.

In this case µk(D2) ≤ ((k + 1)π)2.



The class of domains is "optimal"

We have that in the class of domains Ω ⊂ Rd we have sharp upper

bounds.

But we can construct domains with �xed diameter with arbitrary

large Neumann eigenvalues. Indeed let M be a positive number,

then there exists a number α such that M < 4jα−1

2
,1. From the

main theorem we can conclude that there exists a domain Ω ⊂ Rd

with pro�le function that is 1

α−concave such that:

M < D(Ω)2µ1(Ω).
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Relaxed Strum-Liouville eigenvalues

Definition (Relaxed Sturm-Liouville eigenvalues)

Let h ∈ L∞(0, 1) be a non negative function, then we de�ne the

following quantity

µk(h) = inf
Ek

sup
0̸=u∈Ek

∫
1

0
(u′)2hdx∫
1

0
u2hdx

,

where the in�mum is taken over all k-dimensional subspaces of the

Sobolev space H1([0, 1]) which are L2-orthogonal to h on [0, 1].

We called it relaxed eigenvalues because, in general, we cannot

assume the existence of egienfunctions.
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Links Between µk(Ω) and µk(h)

Using 1−dimensional test functions it is easy to see that, if Ω is a

domain with pro�le function h, then

D(Ω)2µk(Ω) ≤ µk(h).

Theorem

Let h ∈ L∞(0, 1) be a non negative function (not identically zero),

let Ωϵ,h be a domain with pro�le function equal to ϵd−1h then

lim
ϵ→0

D(Ωϵ,h)
2µk(Ωϵ,h) = µk(h).



A general way of proving optimal upper bounds in a given class of

domains S in Rd is to solve the following maximization problem:

sup{D(Ω)2µk(Ω),Ω ∈ S}

understanding the behavior of the maximizing sequence.

From the above observation this is equivalent to solve the following

maximization problem:

sup{µk(h), h ∈ B}

where B is a given space of functions.

In order to prove our theorem we need to study the following

maximization problem:

max{µk(h
α), h : [0, 1] → R+, h concave}

with α ≥ 1
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In order to simplify the notation we introduce the following space of

functions

L := {h : [0, 1] → [0, 1], h concave ,max h = 1}.

Theorem

Let α ≥ 1 then there exists a solution hα,k of the following problem

sup{µk(h
α), h ∈ L},

Moreover we have an explicit expression for µk(h
α
α,k) and for the

functions hα,k

It is not di�cult to prove that a maximizer h exists, a di�cult part

is to prove that there exists an eigenfunction associated to µk(h).



the case α = 1

in the case α = 1 we don't have problems about the existence of

eigenfunctions, ∀ h ∈ L there exists an eigenfunction associated to

µk(h).

Theorem

For any k ≥ 1, the maximizer h∗k satis�es

max{µk(h), h concave } = µk(h
∗
k) = (2j0,1 + (k − 1)π)2 and h∗k

has the following shape in general:

(0, 0) (1, 0)
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Sketch of the proof

We recall that h∗k is the maximizer for the Sturm-Liouville problem

among concave functions. We will denote it by h in the following

and u the eigenfunction.

The �rst (and main) step is to prove that suppt(h′′) is a
discrete set with at most k + 1 points.

Then, re�ning our analysis, we prove that suppt(h′′) has only
1 or 2 points inside.

Finally, using the explicit form of the eigenfunction we are able

to conclude.

For that purpose, we write the optimality conditions using Lagrange

multipliers in particular, for the concavity constraint.



Optimality conditions

The derivative of the eigenvalue is given by

< dµk(h), v >=

∫
1

0

[u′
2 − µku

2]vdx

Due to the constraints h′′ ≤ 0 and h(0) ≥ 0, h(1) ≥ 0 we infer the

existence of

a function ξ ∈ H1(0, 1), ξ ≥ 0, ξ = 0 on the support S of the

measure h′′

two non-negative numbers λ0, λ1 with λ0 = 0 (resp λ1 = 0) if

h(0) > 0 (resp h(1) > 0)

such that, for any v ∈ H1(0, 1):

< dµk(h), v >=

∫
1

0

[u′
2−µku

2]vdx = − < ξ′′, v > +λ0v(0)+λ1v(1).
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Analysis of he optimality condition

Let us introduce the function f := u′2 − µku
2. From the optimality

condition, we infer −ξ′′ = f (in the sense of distributions) on the

interval (0, 1). We deduce that ξ is actually a C 1 function.

Let us consider an open interval I = (α, β) contained in the

complement of the support S , such that α and β are in S .
We have −ξ′′ = f on I , ξ(α) = ξ(β) = 0.

Moreover, since ξ ≥ 0 and is C 1, we must have ξ′(α) = ξ′(β) = 0.

We deduce ∫ β

α
f (x)dx =

∫ β

α
xf (x)dx = 0

and also that f must vanish at least twice on (α, β).
If we are able to control the zeros of the function f we

conclude
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Sketch of the proof (3)

On the other hand, we look at f := u′2 − µku
2 on the nodal

intervals of u. By a precise analysis, using the ODE

u′′ +
h′

h
u′ + µku = 0

we are able to prove that f vanishes exactly twice on each

internal nodal interval. (and exactly once on each boundary

interval).

Since u has exactly k + 1 nodal intervals, it follows that f has

k + 2 zeros and so there are at most k + 1 intervals in the

complement of the support. Therefore the support of h′′ is discrete
and has at most k + 2 points (including the extremities).

In other words h is a polygonal line composed of at most k + 1

segment.
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Last step in the proof

Let us denote by 0 = x0 < x1 < x2 . . . < xm+1 = 1, m ≤ k the

points in S , extremities of the segments de�ning h.

We prove four other qualitative results (using optimality and the

ODE), namely:

1. We have h(0) = h(1) = 0.

2. For any i , 0 ≤ i ≤ m + 1, u(xi )u
′(xi ) = 0.



Last step in the proof (2)

3. On an increasing segment [xi , xi+1], (resp.
decreasing), u′(xi ) = 0 (resp. u′(xi+1) = 0).

4. At any point xi , such that 1 ≤ i ≤ m we have

u(xi ) = 0 (therefore, the intervals [xi , xi+1] coincide
with the nodal intervals)

We deduce from 3. and 4. that there are only two or three

segments in the optimal h.

Moreover, the nodes x1 or x1, x2 are related to zeros of the Bessel

function J0 since the eigenfunction is expressed in terms of J0 on

the �rst and the last interval. A simple analysis, using properties of

the zeros of Bessel functions and counting the number of nodal

intervals, gives the �nal result.
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We proved that for every Ω ⊂ Rd with concave pro�le function (a

particular case is Ω ⊂ R2 convex)

D(Ω)2µk(Ω) ≤ µk(hk) = (2j0,1 + (k − 1)π)2,

Moreover let Ωϵ,hk
be a domain with pro�le function given by

ϵd−1hk then

D(Ωϵ,hk
)2µk(Ωϵ,hk

) → (2j0,1 + (k − 1)π)2.
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The case α > 1

Let h ∈ L it is not clear if there exists an eigenfuntion

corresponding to the relaxed eigenvalue µk(h
α). Let g(h; x , y) be

the Green Kernel associated to the Strum-Liouville ODE, then

g(h; x , y) ∈ L2(0, 1)× L2(0, 1)

, but in general

g(hα; x , y) /∈ L2(0, 1)× L2(0, 1).

The techniques we develop forthe case α = 1 are not directly

available.



The case α > 1

We introduce a new maximization problem:

sup{µk(h
α), h ∈ L, h ≥ ϵ},

we denote hϵ the maximizer for this problem:

for all h ∈ L, h ≥ ϵ we have that there exists an eigenfunction

associated to the eigenvalue µk(h
α), so we can prove

qualitative properties of the maximizer hϵ.

We prove that hϵ is a maximizing sequence

hϵ
∗
⇀ h we give a precise formula for h and µk(h

α
).
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Let Ω ⊂ Rd be a domain with pro�le function 1

α−concave then

D(Ω)2µk(Ω) ≤ µk(h
α
α,k)

Moreover let Ωϵ,h
α
α,k

be a domain with pro�le function given by

ϵd−1h
α
α,k then

D(Ωϵ,h
α
α,k

)2µk(Ωϵ,h
α
α,k

) → µk(h
α
α,k).

This conclude th proof of the main theorem
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Thank you for your attention!


