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Introduction: dynamic debonding model

In this talk we present a notion of weak solution for the wave equation on a time-
dependent domain with homogeneous Dirichlet boundary value data and standard initial
conditions. We will analyse existence, regularity and energy balance. As an application
of that we will propose a notion of solution for dynamic debonding models.

What is a debonding model?

Consider a flexible, inextensible, thin film, initially attached to a planar rigid substrate.
The film is progressively peeled off by applying a tension and an opening to its edge.

The free part of the film, debonded region, is parameterized in the reference configura-
tion by a time-dependent domain where the displacement satisfies the wave equation.

The part of the film still attached to the substrate is called bonded region.

The interface between the two parts is called debonding front.

When we prescribe the evolution of the debonding front, we will have to dealt with a
wave equation on a moving domain.

When the evolution of the debonding front is unknown we will see that it is governed by
energetic criteria, called Griffith’s criterion. In that case the problem becomes coupled
and the aim is to determine the evolution of the debonding front and of the displacement.
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Literature: 1-dim debonding model

If one assumes that the model only depends on one spatial variable, i.e. 1-dim debonding
process, case (b) in figure, then a lot of results are available in literature.

We just mention, e.g., the works of G. Dal Maso, G. Lazzaroni and L. Nardini1, G. Laz-
zaroni, and L. Nardini2,3 and F. Riva, and L. Nardini4.

1G. Dal Maso, G. Lazzaroni and L. Nardini, Existence and uniqueness of dynamic evolutions for a peeling
test in dimension one, J. Differential Equations, 261 (2016), pp. 4897–4923.

2G. Lazzaroni, and L. Nardini, Analysis of a dynamic peeling test with speed-dependent toughness, SIAM
J. Appl. Math., 78 (2018), pp. 1206-1227.

3G. Lazzaroni, and L. Nardini, On the 1d wave equation in time-dependent domains and the problem of
debond initiation, ESAIM:COCV, 25 (2019), 80.

4F. Riva, and L. Nardini, Existence and uniqueness of dynamic evolutions for a one-dimensional debonding
model with damping, J. Evol. Equ., 21 (2021), pp. 63–106.
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More literature: N-dim debonding model

If one assumes that the model depends on two spatial variable, i.e. 2-dim debonding
process, case (a) and (b) in figure, but with a prescribe radial structure, the problem
was analysed and solved by G. Lazzaroni, R. Molinarolo and F. Solombrino5

With minor modification, the aforementioned results extends to the N-dim radial case.

The full generalisation, from a geometrical point of view, was considered by G. Lazzaroni,
R. Molinarolo, F. Riva and F. Solombrino6

5G. Lazzaroni, R. Molinarolo and F. Solombrino, Radial solutions for a dynamic debonding model in
dimension two, Nonlinear Anal., 219 (2022), 112822.

6G. Lazzaroni, R. Molinarolo, F. Riva and F. Solombrino, On the wave equation on moving domains:
regularity, energy balance and application to dynamic debonding, Interfaces Free Bound. (2022).
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Mathematical formulation of the problem

Fix T > 0 and let {Ωt}t∈[0,T ] be a family of domains such that:

1 for every t ∈ [0,T ], the set Ωt ⊂ RN is nonempty, open, bounded and Lipschitz;

2 for every s, t ∈ [0,T ], with s ≤ t, one has Ωs ⊂ Ωt .

Define

Ωc
t := RN \ Ωt , O :=

⋃
t∈(0,T )

{t} × Ωt , Γ :=
⋃

t∈(0,T )

{t} × ∂Ωt .

Consider the formal problem for a function u : O → R:
ü(t, x)−∆u(t, x) = f (t, x) for (t, x) ∈ O,

u(t, x) = 0 for (t, x) ∈ Γ,

u(0, x) = u0(x) for x ∈ Ω0,

u̇(0, x) = u1(x) for x ∈ Ω0.

(1)

with forcing term
f ∈ L2(O),

complemented with initial conditions

u0 ∈ H1
0 (Ω0) and u1 ∈ L2(Ω0).
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Existence of weak solutions for problem (1)

Definition 1 (Weak solutions of problem (1))

We say that u : O → R is a weak solution to problem (1) if

(i) u ∈ L2(0,T ;H1
0 (Ωt)) and u̇ ∈ L2(0,T ; L2(Ωt));

(ii) u(0) = u0 in C0([0,T ]; L2(Ω0)), u̇(0) = u1 in C0([0,T ];H−1(Ω0));

(iii) u satisfies

−
∫ T

0

⟨u̇(t), η̇(t)⟩L2(Ωt )
dt +

∫ T

0

⟨∇u(t),∇η(t)⟩L2(Ωt )
dt =

∫ T

0

⟨f (t), η(t)⟩L2(Ωt )
dt, (2)

for every η ∈ L2(0,T ;H1
0 (Ωt)) with η̇ ∈ L2(0,T ; L2(Ωt)) and η(T ) = η(0) = 0.

Theorem 1 (Existence theorem for problem (1))

There exists a weak solution u of problem (1) in the sense of Definition 1. Moreover

1 u ∈ L∞(0,T ;H1
0 (Ωt)) ∩ C0

w ([0,T ];H1
0 (ΩT ));

2 u̇ ∈ L∞(0,T ; L2(Ωt)) ∩ C0
w ([t̄,T ]; L2(Ωt̄)) for every t ∈ [0,T );

3 the energy inequality: for every t ∈ [0,T ]

1

2
∥u̇(t)∥2

L2(Ωt )
+

1

2
∥∇u(t)∥2

L2(Ωt )

≤
1

2
∥u1∥2

L2(Ω0)
+

1

2
∥∇u0∥2

L2(Ω0)
+

∫ t

0

⟨f (s), u̇(s)⟩L2(Ωs )
ds.
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Observations

Few observations on the proof of Theorem 1:

1 Our proof of Theorem 1 is based on a time-discretisation argument as done in the
parabolic setting by J. Calvo, M. Novaga, and G. Orlandi.7

2 Alternative proofs: one can proceed by minimizing movements as in U. Gianazza,
and G. Savaré8, or by a Galerkin method with penalization as in J. P. Zolésio.9

3 More regularity of the solution is required in order to obtain energy balance.

4 The proof is flexible and therefore can be adopted to other frameworks, like
anisotropic setting (Finsler laplacian) or fractional setting (Fractional laplacian): it
just required the analysis of the solution of the model problem on a time slice, i.e.
on the cylindrical domain.

7J. Calvo, M. Novaga, and G. Orlandi, Parabolic equations in time-dependent domains, J. Evol. Equ., 17
(2017), pp. 781–804.

8U. Gianazza, and G. Savaré, Abstract evolution equations on variable domains: an approach by minimizing
movements, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 23 (1996), pp. 149–178.

9J. P. Zolésio, Galerkin approximation for wave equation in moving domain, Lecture Notes in Control and
Information Sciences, Stabilization of Flexible Structures, Third Working Conference, Montpellier, France,
Springer–Verlag Berlin Heidelberg New York 153 (1989), pp. 191–225.
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First energy balance

Theorem 2 (First energy balance)

Assume that O is open with Lipschitz boundary and that

∂O = Γ ∪ ({T} × ΩT ) ∪ ({0} × Ω0).

Let u be a weak solution of problem (1) in the sense of Definition 1, satisfying the
following regularity property:

u ∈ L2(0,T ;H2(Ωt) ∩ H1
0 (Ωt)), u̇ ∈ L2(0,T ;H1(Ωt)), ü ∈ L2(0,T ; L2(Ωt)).

Then, for every t ∈ [0,T ], the following energy balance holds true:

1

2
∥u̇(t)∥2

L2(Ωt )
+

1

2
∥∇u(t)∥2

L2(Ωt )
−
∫
Γt

νt
O
2

[
1 −

(
νt
O

|νx
O|

)2]
|∇u|2 dHN

=
1

2
∥u1∥2

L2(Ω0)
+

1

2
∥∇u0|2L2(Ω0)

+

∫ t

0

⟨f (s), u̇(s)⟩L2(Ωs )
ds,

with Γt := {(s, x) ∈ Γ : s ∈ (0, t)} and νO := (νtO, νxO) is the outside unit normal of
Γ.
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Proof.

By the regularity assumption, u ∈ H2(O) and satisfies

ü(t, x)− div(∇u(t, x)) = f (t, x), for a.e. (t, x) ∈ O.

Multiplying by a function φ ∈ L2(0,T ;H1(Ωt)) ∩ H1(0,T ; L2(Ωt)), integrating by
parts in O, for all t ∈ [0,T ] we obtain:

⟨u̇(t), φ(t)⟩L2(Ωt )
− ⟨u1, φ(0)⟩L2(Ω0)

−
∫ t

0

⟨u̇(s), φ̇(s)⟩L2(Ωs )
ds +

∫ t

0

⟨∇u(s),∇φ(s)⟩L2(Ωs )
ds

=

∫ t

0

⟨f (s), φ(s)⟩L2(Ωs )
ds −

∫
Γt

(
u̇ ν

t
O − ∇u · νx

O
)
φ dHN

.

Choosing as test function φ = u̇, we obtain

∥u̇(t)∥2
L2(Ωt )

− ∥u1∥2
L2(Ω0)

−
∫ t

0

⟨u̇(s), ü(s)⟩L2(Ωs )
ds +

∫ t

0

⟨∇u(s),∇u̇(s)⟩L2(Ωs )
ds

=

∫ t

0

⟨f (s), u̇(s)⟩L2(Ωs )
ds −

∫
Γt

(u̇)2νt
O dHN +

∫
Γt

(
∇u · νx

O
)
u̇ dHN

.

Again integration by parts yields to∫ t

0

⟨u̇(s), ü(s)⟩L2(Ωs )
ds =

1

2
∥u̇(t)∥2

L2(Ωt )
−

1

2
∥u1∥2

L2(Ω0)
+

1

2

∫
Γt

(u̇)2νt
O dHN

,∫ t

0

⟨∇u(s),∇u̇(s)⟩L2(Ωs )
ds =

1

2
∥∇u(t)∥2

L2(Ωt )
−

1

2
∥∇u0∥2

L2(Ω0)
+

1

2

∫
Γt

|∇u|2νt
O dHN

.
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Since u ≡ 0 on Γ, then

u̇ νxO = νtO∇u, HN -a.e. on Γ,

which in particular implies the relations

u̇(∇u · νxO) = νtO|∇u|2, HN -a.e. on Γ,

(u̇)2|νxO|2 = (νtO)2|∇u|2, HN -a.e. on Γ.

We conclude that

1

2
∥u̇(t)∥2

L2(Ωt )
−

1

2
∥u1∥2

L2(Ω0)
+

1

2
∥∇u(t)∥2

L2(Ωt )
−

1

2
∥∇u0∥2

L2(Ω0)

=

∫ t

0

⟨f (s), u̇(s)⟩L2(Ωs )
ds +

∫
Γt

νt
O
2

[
1 −

(
νt
O

|νx
O|

)2]
|∇u|2 dHN

,

thus the statement is proved.

Remark 3

If the monotonicity condition on the domains is in force one has νtO ≤ 0; moreover
if the growth of the domains is subsonic, i.e. |νtO| ≤ |νxO| (and the set O is usually
called time-like). In applications to debonding models, the integral over Γt can be thus
interpreted as energy dissipated in the debonding process.
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Change of variables from Ωt into Ω0

We now recast problem (1) into a hyperbolic problem in a fixed domain. To this end
we adapt a method based on diffeomorphism. Essentially, we build up suitable change
of variable in order to map, for every t ∈ [0,T ], the time dependent domain Ωt into
the fixed domain Ω0.

We thus assume the existence of two functions

Φ: [0,T ]× Ω0 → RN , Ψ: O → Ω0,

satisfying
Φ(t,Ω0) = Ωt and Ψ(t,Ωt) = Ω0 for all t ∈ [0,T ], (5a)

Φ(t,Ψ(t, x)) = x , for all (t, x) ∈ O, (5b)

Ψ(t,Φ(t, y)) = y , for all (t, y) ∈ [0,T ]× Ω0, (5c)

Φ(0, y) = y , for all y ∈ Ω0. (5d)

We also assume that they fulfil the following assumptions:

(H1) Φ,Ψ are of class C1,1 on their domains of definition;

(H2) |Φ̇(t, y)| < 1 for every (t, y) ∈ [0,T ]× Ω0.

Last condition ensures that the growth speed of the sets Ωt is always strictly less than
the speed of the travelling waves of problem (1); it is crucial in order to guarantee
that the transformed problem is still hyperbolic.
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The auxiliary function v

Given a weak solution u of problem (1), we now consider the auxiliary function

v(t, y) := u(t,Φ(t, y)), for all (t, x) ∈ [0,T ]× Ω0.

Equivalently,
u(t, x) = v(t,Ψ(t, x)) for all (t, x) ∈ O.

This change of variables yields to the following problem with fixed domain:
v̈ − div(B∇v) + a · ∇v − 2b · ∇v̇ = g , in (0,T )× Ω0,

v = 0, in (0,T )× ∂Ω0,

v(0) = v0, in Ω0,

v̇(0) = v1, in Ω0,

(7)

where the coefficients are given by

B(t, y) := DΨ(t,Φ(t, y))DΨ(t,Φ(t, y))T − Ψ̇(t,Φ(t, y)) ⊗ Ψ̇(t,Φ(t, y)),

a(t, y) := −{B(t, y)∇ detDΦ(t, y) + ∂t [b(t, y) detDΦ(t, y)]} detDΨ(t,Φ(t, y)),

b(t, y) := −Ψ̇(t,Φ(t, y)),

g(t, y) := f (t,Φ(t, y)).

and the initial data are given by

v0 := u0 ∈ H1
0 (Ω0), v1 := u1 + Φ̇(0, ·) · ∇u ∈ L2(Ω0).
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Scheme of the Galerkin method on fixed domain

Let {wk}k∈N ⊆ H2(Ω0) ∩ H1
0 (Ω0) be the set of eigenfunctions of −∆ in H1

0 (Ω0)
normalized in L2(Ω0). It is a standard fact that they form an orthogonal basis of
H1
0 (Ω0) and an orthonormal basis of L2(Ω0). Furthermore, for every k ∈ N

⟨ϕ,wk ⟩L2(Ω0)
=

⟨∇ϕ,∇wk ⟩L2(Ω0)

∥∇wk∥2L2(Ω0)

, for all ϕ ∈ H1
0 (Ω0). (8)

For every m ∈ N, we seek functions dm
k ∈ H2(0,T ) such that the function defined by

vm(t) :=
m∑

k=1

dm
k (t)wk ∈ H2(0,T ;H2(Ω0) ∩ H1

0 (Ω0)) (9)

satisfies for every k = 1, . . . ,m and for almost every t ∈ [0,T ] the finite-dimensional
version of problem (7), namely

⟨v̈m(t),wk ⟩H1
0 (Ω0)

+ ⟨B(t)∇vm(t),∇wk ⟩L2(Ω0)
+ ⟨a(t) · ∇vm(t),wk ⟩L2(Ω0)

−2⟨b(t) · ∇v̇m(t),wk ⟩L2(Ω0)
= ⟨g(t),wk ⟩L2(Ω0)

,
(10)

with initial conditions

dm
k (0) = ⟨v0,wk ⟩L2(Ω0)

, (11a)

ḋm
k (0) = ⟨v1,wk ⟩L2(Ω0)

. (11b)
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Higher regularity

Assume that
Ω0 is convex or of class C2. (12)

and the initial data are

v0 ∈ H2(Ω0) ∩ H1
0 (Ω0), and v1 ∈ H1

0 (Ω0). (13)

Under these assumptions, we have

vm ∈ H3(0,T ;H2(Ω0) ∩ H1
0 (Ω0)).

We are now in a position to deduce higher uniform estimates for the functions vm.

Proposition 4 (Higher a priori estimates)

There exists a constant D > 0 (independent of m ∈ N) such that

sup
0≤t≤T

(
∥v̈m(t)∥2L2(Ω0)

+ ∥v̇m(t)∥2
H1
0 (Ω0)

+ ∥vm(t)∥2H2(Ω0)

)
≤ D.

Theorem 5 (Higher regularity of strong weak solution of problem (7))

There exists a unique strong-weak solution v of problem (7) which satisfies:

v ∈ L∞(0,T ;H2(Ω0) ∩ H1
0 (Ω0)),

v̇ ∈ L∞(0,T ;H1
0 (Ω0)),

v̈ ∈ L∞(0,T ; L2(Ω0)).

(14)
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Proposition 6

Let Φ,Ψ be as in (5) and satisfy (H1). Then O be open with Lipschitz boundary with
∂O = Γ ∪ ({T} × ΩT ) ∪ ({0} × Ω0). Furthermore

νO(t, x) = (νtO(t, x), νxO(t, x)) =
(−ω(t, x), νΩt (x))√

1 + ω(t, x)2
, (15)

for all t ∈ [0,T ] and HN−1-a.e. x ∈ ∂Ωt , where we introduce the scalar normal
velocity

ω(t, x) := Φ̇(t,Ψ(t, x)) · νΩt (x), for all t ∈ [0,T ] and HN−1-a.e. x ∈ ∂Ωt . (16)

Moreover the following identity holds true for every h ∈ L1(Γ):∫
Γ
h νO dHN =

∫ T

0

∫
∂Ωt

h(t, x)

(
−ω(t, x)
νΩt (x)

)
dHN−1(x) dt. (17)

Remark 7

We point out that actually the scalar normal velocity ω does not depend on the choice
of the diffeomorphisms Φ and Ψ, but it is intrinsically related to the set O (and so to
the family {Ωt}t∈[0,T ]). Indeed by (15) we have

ω(t, x) = −
νtO(t, x)

|νxO(t, x)|
, for all t ∈ [0,T ] and HN−1-a.e. x ∈ ∂Ωt . (18)
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Higher regularity result for problem (1)

Combining the results on fixed domain and exploiting the previous corollary we can
now state the following theorem, which rigorously extends Theorem 2:

Theorem 8 (Higher regularity and energy balance theorem)

Let the forcing term f be in H1(O) and assume the initial data satisfy

u0 ∈ H2(Ω0) ∩ H1
0 (Ω0), and u1 + Φ̇(0, ·) · ∇u0 ∈ H1

0 (Ω0). (19)

Then there exists a unique weak solution u of problem (1) in the sense of Definition 1,
which satisfies

u ∈ L∞(0,T ;H2(Ωt) ∩ H1
0 (Ωt)),

u̇ ∈ L∞(0,T ;H1(Ωt)),

ü ∈ L∞(0,T ; L2(Ωt)).

Moreover for every t ∈ [0,T ] the following energy balance holds true:

1

2
∥u̇(t)∥2

L2(Ωt )
+

1

2
∥∇u(t)∥2

L2(Ωt )
+

∫ t

0

∫
∂Ωs

ω(s, x)

2
(1−ω(s, x)2)

(
∂u

∂νΩs

(s, x)

)2

dHN−1(x) ds

=
1

2
∥u1∥2

L2(Ω0)
+

1

2
∥∇u0∥2

L2(Ω0)
+

∫ t

0

⟨f (s), u̇(s)⟩L2(Ωs )
ds,

(20)

where ω is the scalar normal velocity.
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Application to dynamic debonding

Differently from previously, now also the evolution of the sets t 7→ Ωt is unknown, and
it has to be recovered by means of energetic considerations which involve the solution
u of problem (1) in an implicit and complex way.

We propose a rigorous definition of the dynamic energy release rate in a general
framework, i.e. without any ansatz on the shape of the domains. This allows to state
the energetic principle governing the evolution, called Griffith criterion.

We assume that the energy needed to debond a portion of film parametrized on a
(measurable) set E ⊆ RN is given by ∫

E
κ(x) dx ,

where κ ∈ C0(RN) is a positive function, representing the toughness of the glue
between the film and the substrate. Notice that for every t ∈ [0,T ] there holds∫

Ωt

κ(x) dx =

∫
Ω0

κ(x) dx +

∫ t

0

∫
∂Ωs

ω(s, x)κ(x) dHN−1(x)ds.

In particular we have

|Ωt | = |Ω0|+
∫ t

0

∫
∂Ωs

ω(s, x)dHN−1(x) ds.
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Dynamic energy release rate

Let u be the weak solution found in Theorem 8 for a given nondecreasing family Ωt .

The dynamic energy release rate is the opposite of the (infinitesimal) energy variation
due to the change in time of the domain.

Recalling the energy balance (20), we thus consider the internal energy (kinetic and
potential) subtracted with the work of external forces:

E(t) :=
1

2
∥u̇(t)∥2

L2(Ωt )
+

1

2
∥∇u(t)∥2

L2(Ωt )
−

∫ t

0
⟨f (s), u̇(s)⟩L2(Ωs )

ds. (22)

We now provide the definition of dynamic energy release rate.

Definition 2 (Dynamic energy release rate)

For t ∈ [0,T ], we define the dynamic energy release rate of the debonding model as

G(t) := lim
h→0+

−
E(t + h)− E(t)

|Ωt+h \ Ωt |
,

whenever such limit exists.
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Due to the energy balance (20), we infer that the dynamic energy release rate can be
computed as follows:

G(t) = −
Ė(t)

d
dt
|Ω(·)|(t)

=

∫
∂Ωt

ω(t, x)

2
(1− ω(t, x)2)

(
∂u

∂νΩt

(t, x)

)2

dHN−1(x)∫
∂Ωt

ω(t, x)dHN−1(x)

,

if ∫
∂Ωt

ω(t, x)dHN−1(x) > 0.

Definition 3

Given t ∈ [0,T ] and x ∈ ∂Ωt for which α := ω(t, x) > 0, the dynamic energy release
rate density at the point (t, x) with speed α ∈ (0, 1) is defined by

Gα(t, x) := lim
r→0+

∫
∂Ωt∩Br (x)

ω(t)

2
(1 − ω(t)2)

(
∂u

∂νΩt

(t)

)2

dHN−1

∫
∂Ωt∩Br (x)

ω(t) dHN−1
=

1

2
(1−α

2)

(
∂u

∂νΩt

(t, x)

)2

(23)

If α = 0, the dynamic energy release rate density is extended by continuity, setting:

G0(t, x) :=
1

2

(
∂u

∂νΩt

(t, x)

)2

.
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Remark 9

We notice that the dynamic energy release rate density can be written in an equivalent
way by using the relation

u̇(t, x) + ω(t, x)
∂u

∂νΩt

(t, x) = 0, for a.e. t ∈ [0,T ] and HN−1-a.e. x ∈ ∂Ωt ,

which follows since u ≡ 0 on Γ. Indeed, from the above equality we deduce

Gω(t,x)(t, x) =
1

2
(1 − ω(t, x)2)

(
∂u

∂νΩt

(t, x)

)2

=
1

2

1 − ω(t, x)

1 + ω(t, x)

[
(1 + ω(t, x))

∂u

∂νΩt

(t, x)

]2
=

1

2

1 − ω(t, x)

1 + ω(t, x)

[
∂u

∂νΩt

(t, x) − u̇(t, x)

]2
.

(24)

Given a positive toughness κ ∈ C0(RN), we now postulate that during the evolution
process the following energy balance is satisfied:

E(t) +
∫
Ωt\Ω0

κ(x)dx = E(0), for every t ∈ [0,T ]. (25)

We observe that the energy is conserved if one requires

ω(t, x)κ(x) = ω(t, x)Gω(t,x)(t, x), for a.e. t ∈ [0,T ] and for HN−1-a.e. x ∈ ∂Ωt .

However, the above condition is not sufficient to determine a proper evolution of the
sets Ωt , indeed ω ≡ 0 (i.e. Ωt ≡ Ω0) is always an admissible choice.
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A stronger requirement is the following local maximum dissipation principle, which
essentially says that Ωt grows whenever it is possible, while preserving the energy
balance:

ω(t, x) = max{α ∈ [0, 1) : ακ(x) = αGα(t, x)}, (26)

for a.e. t ∈ [0,T ] and for HN−1-a.e. x ∈ ∂Ωt . Then we have:

Proposition 10

The following three conditions are equivalent:

the local maximum dissipation principle (26) holds true;

the local dynamic Griffith criterion holds true, namely
0 ≤ ω(t, x) < 1,

Gω(t,x)(t, x) ≤ κ(x),

ω(t, x)
[
Gω(t,x)(t, x) − κ(x)

]
= 0,

for a.e. t ∈ [0,T ] and for HN−1-a.e. x ∈ ∂Ωt ;

(27)

for a.e. t ∈ [0,T ] and for HN−1-a.e. x ∈ ∂Ωt the scalar normal velocity ω is
given by

ω(t, x) = max


[

∂u
∂νΩt

(t, x) − u̇(t, x)

]2
− 2κ(x)[

∂u
∂νΩt

(t, x) − u̇(t, x)

]2
+ 2κ(x)

, 0

 . (28a)
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Formulation of the coupled problem

We are now in the position to provide a proper formulation of a dynamic debonding
model. We point out that the resulting system features a strong coupling: indeed,
the evolution of the domain of the wave equation is governed by (28a), which in turn
depends on the solution u to the wave equation itself.

Given the following data:

Ω0 ⊆ RN satisfying of class C2 (or convex),

κ ∈ C0(RN) satisfying κ(x) > 0 for all x ∈ RN ,

f ∈ H1(0,T ; L2loc(R
N)) ∩ L2(0,T ;H1

loc(R
N)),

u0 ∈ H2(Ω0) ∩ H1
0 (Ω0) and u1 ∈ H1(Ω0) satisfying

either u1(x) = 0 and

(
∂u0

∂νΩ0

(x)

)2

≤ 2κ(x),

or u1(x) ̸= 0,

(
∂u0

∂νΩ0

(x)

)2

− u1(x)
2 = 2κ(x) and

∂u0
∂νΩ0

(x)

u1(x)
< −1,

for HN−1-a.e. x ∈ ∂Ω0,
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Coupled problem (1)&(26)

Definition 4 (Weak solution of the coupled problem)

We say that an evolution [0,T ] ∋ t 7→ (u(t),Ωt) is a weak solution of the coupled
problem (1)&(26) if the following conditions are satisfied:

1 there exists a map Φ: [0,T ]× Ω0 → RN with “space-inverse” Ψ(t, ·) satisfying
(5), (H′

1) and (H2), for which

Ωt = Φ(t,Ω0), for every t ∈ [0,T ];

2 u is the weak solution to problem (1) with forcing term f and initial data u0, u1;

3 the local maximum dissipation principle (26) is satisfied, or equivalently the scalar
normal velocity ω(t, x) = Φ̇(t,Ψ(t, x)) · νΩt (x) fulfils (28a) for a.e. t ∈ [0,T ]
and for HN−1-a.e. x ∈ ∂Ωt .

We conclude by showing how Definition 4 covers the particular cases of the
1-dimensional and radial models already analysed in literature.

In fact, in those cases the notion of solution to the coupled problem is given in a
slightly different form, and the existence is obtained by exploiting d’Alembert’s
formula. We prove that, if the initial data are well-prepared, the solution found in the
above mentioned works fulfils Definition 4, at least for short times.
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Theorem 11 (1-dim coupled problem)

Let ℓ0 > 0 and let κ ∈ C1,1
loc([ℓ0,+∞)) satisfy κ(x) > 0 for all x ∈ [ℓ0,+∞). Assume

that f ∈ C0,1([0,T ]× [0,+∞)), u0 ∈ C2,1([0, ℓ0]) and u1 ∈ C1,1([0, ℓ0]) satisfy

u0(0) = 0, u0(ℓ0) = 0 and u1(0) = 0,

u1(ℓ0) ̸= 0, u′0(ℓ0)
2 − u1(ℓ0)

2 = 2κ(ℓ0),
u′0(ℓ0)

u1(ℓ0)
< −1.

Then, there exist T∗ ∈ (0,T ] and a unique weak solution t 7→ (u(t), (0, ℓ(t))) to the
coupled problem (1)&(26) in [0,T∗] in the sense of Definition 4.

Theorem 12 (2-dim radial coupled problem)

Let R > ρ0 > 0 and let κ ∈ C1,1
rad(BR(0)) satisfy κ(x) > 0 for all x ∈ BR(0). Setting

Ω0 := {x ∈ R2 : R − ρ0 < |x | < R}, assume that f ∈ C0,1([0,T ];C0,1
rad(BR(0))),

u0 ∈ C2,1
rad(Ω0) and u1 ∈ C1,1

rad(Ω0) satisfy

u0(x) = 0 if |x| = R or |x| = R − ρ0,

u1(x) = 0 if |x| = R,

u1(x) ̸= 0,

(
∂u0

∂νΩ0

(x)

)2

− u1(x)
2 = 2κ(x) and

∂u0
∂νΩ0

(x)

u1(x)
< −1 if |x | = R − ρ0.

Then, there exist T∗ ∈ (0,T ] and a unique weak solution t 7→ (u(t),Ωt) to the
coupled problem (1)&(26) in [0,T∗] in the sense of Definition 4, where

Ωt := {x ∈ R2 : R − ρ(t) < |x | < R}, for a suitable ρ ∈ C 2,1([0,T∗]).
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Thanks for your attention!
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