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n > 2 is fixed, B is the unit ball of R", A = {Q C R" open s.t. || = |B|}.

M (Q) = inf {sup Jo ‘;'2, V C H}(Q) : dim(V) = k}
veVv fQV

We write (ug)ken+ the L?-normalized eigenfunctions: they verify

—Aug = 2M(Que ()
uc=0 (09Q)

Faber-Krahn inequality:

A(82) > M(B)

with equality if and only if Q2 = B.
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Structure of (Ax(B))

When n = 2:
® jmp: p-th positive zero of the m-th Bessel function J,.

o {M(B),keN*} ={j2 ,, meN,pe N}

o u (reie) _ Jo(jo7pr) if m= 0
mp Im(Um,pr)cos(mf + ¢) if m> 1
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Structure of (Ax(B))

When n = 2:
® jmp: p-th positive zero of the m-th Bessel function J,.
o {M(B),keN*} ={j2 ,, meN,pe N}

Jo(jo7pr) if m = 0

0y _ _
° ump(re”) {Jm(jmypr) cos(md+¢) ifm>1

In general:

o {M(B),ke N} = {_] S meN,pe N}

e Hp[Xi,...,Xs]: homogeneous harmonic polynomials of degree m.
Jm+”ﬁ*f2 <jm+,:r2,px>
® Ump(x) = o P(2), PEHAX,. ... X]
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Torsional rigidity

= Su vV — V2
T(Q) = p)/ﬂ(z V)

veH (2

We write w the associated torsion function that verifies

-Aw=1 (Q)
w=0 (092)

We also have

Saint-Venant inequality:

T(Q) < T(B)
with equality if and only if Q = B.
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Initial question

Suppose A1(R) is close to A\1(B), can we say A\¢(2) is close to A(B) ?
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Initial question

Suppose A1(R) is close to A\1(B), can we say A\¢(2) is close to A(B) ?
Let Q = By := (I + t()(B) for some small ¢ € C°(R",R"), then:

\)\i(o-)

~
.

9
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Initial question

We have directional derivatives:

N(B)- = 4

= = (B
o k(Btc)

t=0+

considered for any ( € C* with [, (- vp =0.
o If A\¢(B) is simple, then wy is radial and

N (B) - ¢ = —/BB(c-uB)wukF ~0

o If Ax(B) is multiple, X (B) # 0.
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Initial question

We have directional derivatives:

N(B)- = 4

= = (B
o k(Brc)

t=0+

considered for any ( € C* with [, (- vp =0.
o If A\¢(B) is simple, then wy is radial and

N (B) - ¢ = —/BB(c-uB)wukF ~0

o If Ax(B) is multiple, X (B) # 0.
e If (is normal to 9B, |B;| = |B|, bar(B;) =0, |[(l|¢c3(98) < 1, then

)\1(84) - AI(B) Z CI‘IHC : VB||%—/1/2(83)

(Brasco, De Philippis, Velichkov - 2015)
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Expectations

/
/@‘
50)
)

A

A

|IA(R2) — M\(B)| < {C”vk()‘l(ﬂ) —A1(B))  if \(B) is simple

Cok(M1(2) — )\1(8))% if \x(B) is degenerate
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Some known results

e (Bertrand, Colbois - 2005) When A1(Q) is close to A\1(B):
IM(Q) = A(B)] S (Aa(€) — Ai(B))aos.
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Some known results

e (Bertrand, Colbois - 2005) When A1(Q) is close to A\1(B):
IM(Q) = A(B)] S (Aa(€) — Ai(B))aos.

e (Mazzoleni, Pratelli - 2019)

n=2:
—(A(Q) = A1(B))i°W < A (Q) — A(B) < (M(Q) — Au(B))s oM
n=3:

(M) = M(B))s D < M\ (Q) — Me(B) S (M(Q) — M (B))1z°D)
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Some known results

e (Bertrand, Colbois - 2005) When A1(Q) is close to A\1(B):
IM(Q) = A(B)] S (Aa(€) — Ai(B))aos.

e (Mazzoleni, Pratelli - 2019)

n=2:
—(A(Q) = A1(B))i°W < A (Q) — A(B) < (M(Q) — Au(B))s oM
n=3:

~(M(9) = M(B))5 2D £ A(Q)  Me(B) < (Ma(Q) — Aa(B)E )
@ (Brasco, De Phillipis, Velichkov - 2015)

inf [QA(B + x)| < VA1(Q) — M(B).

xeRn"
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Sharp bound for degenerate eigenvalues

There exists C, > 0 such that for any Q € A,

IA(R) = M(B)] < Cak®H i (9)2/A1(Q) — Mi(B)

Kohler-Jobin inequality: Q(e A) — T(Q)ﬁ)\l(ﬂ) is minimal on the ball.
As a consequence,

T(Q)™ = T(B)™ < Ca(M1(Q) = Mi(B)).

In the theorem we actually prove:

Q) — M(B)] < Cok®*0a(Q)3/ T(Q) 1 — T(B)
then apply Kohler-Jobin.

December 12, 2022 11/29
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Sharp bound for simple eigenvalues

Let k be such that \i(B) is simple, there exists C, > 0 such that for any
Qe A,

[Ak(2) = A(B)] < Cok(A1(R) — A1(B))

We define the spectral gap
g(k) = dist(Ak(B), {Ai(B),i € N} \ {\(B)})

We can take
K45

g(k)’

In dimension 2 the valid choices of k are

Cn,k =G,

k = (1),6,15,30, 51, 74, 105, 140, 175, 222, 269, 326, 383, 446, 517, 588, ...

Mickaél Nahon (Max Planck Institute) December 12, 2022 12 /29



Sharp bound for simple eigenvalues

Let k be such that \((B) is simple, there exists Cp, > 0 such that for any
Qe A,

k() = M(B)| < Coi (T(Q) ™ = T(B) )

We define the spectral gap
g(k) = dist(Ac(B),{Ai(B),i € N} \ {\«(B)})

We can take
K+

g(k)’

In dimension 2 the valid choices of k are

an:Cn

)

k = (1),6,15,30,51,74,105, 140, 175, 222, 269, 326, 383, 446, 517, 588, ...
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Sharp bound for a group of eigenvalues

For every k < I, such that
/\k—l(B) < )\k(B) = )\/(B) < )\/+1(B),

then there exists Cp, x > 0 such that for any open set Q € A,

I

> [w@) - ()

i=k

< Cok (M(Q) — Ai(B))

8
We can take C, = C,,’i(;k’)’. Example in 2d:

A2(£2) + A3(Q)
2

A2(Q2) — \2(B)
0 {)\3(8) s(Q) < C(M(Q2) — Ai(B)).

_ )\2(3)‘ < C(M(Q) — M(B))
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Sharp bound for a group of eigenvalues

For every k < I, such that
/\k—l(B) < )\k(B) = )\/(B) < )\/+1(B),
then there exists Cp, x > 0 such that for any open set Q € A,

3 [ro-se)

< G (T = T(B) ™)

=k
We can take C, = C, ’;(—k) Example in 2d:

A2(£2) + A3(Q)
2

A2(Q2) — \2(B)
0 {)\3(8) s(Q) < C(M(Q2) — Ai(B)).

_ )\2(3)‘ < C(M(Q) — M(B))
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Proof of the linear bound
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An equivalent formulation

Let k < I be such that A_1(B) < Ac(B) = \(B) < Ai41(B), then

/

3 [A,-(ﬂ) - A,-<B)]

i=k

VQ € A, < Cu(T@Q-T(B)™)

SVQe A T(Q

There exists §,, xk > 0 such that for any |5| < 0y,

/

1
QEAHané;A,-(Q)

is minimized by the ball.
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Plan of proof

When § is small enough, then:

1) There exists a minimizer Q among quasi-open sets.
2) Qs open and sup |Vwg| < C,.

3) Q= ¢(B) where ||¢ — Id||¢s < 1.

4) T714 52;2,( A is minimal on the ball in a small C3 neighbourhood
of the ball.

Conclusion: there exists a minimizer €2, and € is the ball.
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First existence result

If 8 is small enough, then Q € A~ oy +6 i_, Ai(Q) has a minimizer
Q. Moreover, wq is Lipschitz and

Bi—o5_0(1) C 2 C Biio; (1)

When § < 0, it must be small enough to avoid this kind of phenomena

AU=AU [5%) —Aurpu=Au (2)
u=o (9;;;) { /Mg:_f: o (a9
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Overdetermined equation on (w, g, ...,

Suppose everything is completely smooth, then a shape derivative would

give the following equation on (w, ug, ..., u):
—Aw =1, —Au; = \jy; (Q)
w=u=0 (09)

(@w)? +0T(Q? ik (Do) = Q@ (09)

where 0, is the inward normal derivative and Q := O(]9]).
Serrin's theorem: if 9, wq = % then Q = B.

Here we have d,wq = = + O(|9]).
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Flat solution

Let e € S"1, € > 0, a function w € HY(B,,R,) is ¢, e-flat in B, if
e 0 € 0{w > 0}.

o a(x-e+a)y <w(x)<a(x-e+ b)y where >0, b—a<er.
o |Aw| < a€?in B,Nn{w > 0}.

W)

b

xa

t
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Partial Harnack inequality

Let © be a minimizer, if (wq £ ¢c\/|6|ujq)i=«...; are €, e-flat in B, where
r,e < 1, then (wq & c\/|0|ujQ)i=«...; are (2(1 — v)e, e)-flat in By,.
2

W@

x+b

arta

t

(-v)£
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Improvement of flatness

Let © be a minimizer, if (wq £ ¢c\/|6|uiq)i=«...s are €, e-flat in B, where
r,e < 1, then (wq & ¢c\/[0|uj.q)i=«...; are ((1 — v)e, €')-flat in B%r for
some e € S L.
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Improvement of flatness (I1)

We can iterate this result: if (wq & c\/|d|ujq)i=«...1 are €, e-flat in By,
then they are ((1 — v)Pe, eP)-flat in B,y—p, for some sequence (eP),.

Let Q be a minimizer, if (wq £ cy/|d|ujq)i=k.../ are €, e-flat in B, where
r,e < 1, then 92N B%, is a C1Y graph. Here v := log, ﬁ
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Statement of the regularity result

For any minimizer Q of T"1 4+ 6>, \j in A, up to a translation of Q we
have

Q= ¢(B) where H¢ - /d”C3(B) = Ogﬁo(].).

e First step: By_o1) C Q2 C Biio(1)-

@ Then, Q = ¢(B) where ||¢ — 1||c1,» = o(1) by improvement of
flatness.

e Finally, ||¢ — 1||cs = o(1) by hodograph transform.
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Conclusion

Suppose 9Q = {(1 + h(x))x, x € OB} where ||h[lc3(ppy < 1, |Q| = |B],
bar(2) = 0, then

T = T(B)™ 2 callhll3/2(08
/

> |n@) - ()

i=k

< Cn,k H h”i]l/2(85)

Consequence: let Q be as in the lemma, then

T(Q)7! +Ak(Q) = T(B) ™" + 6M(B) + (cn — G, klfﬂ) 1Al 2

> T(B)™ + 6\k(B) when || <

n,k

)
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Some applications and open questions
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Application: reverse Kohler-Jobin

Kohler-Jobin inequality: Q(e A) — T(Q)%H)\l(ﬂ) is minimal on the ball.

We get an opposite inequality : there exists 6 > 0 small enough such that
Qe A T(Q)™L - 6X1(Q) is minimal on the ball.

There exists c,, C, > 0 such that for any Q) € A:

cn <

T(Q)! - T(B)!
M) = (B) = o)

A\

Corollary

There exists p, > 1 such that for any p > pp,

Qe A T(QPM(Q)

is maximal on the ball.

A\
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What about more general functions ?

Is this still true for

Zo(t) =) e ™) (o(s) = M(Q)°

k>1 k>1

We remind that

IA(R) = M(B)] < Cok® 101 (Q)2 /A1(Q) — M (B) for any k

! 8

> [Ai(Q) = A,-(B)] o
i=k

< Ch—— (M(2) — \1(B)) for a cluster [k, /]
where

T g(k)

g(k) = dist(Ac(B), {Ai(B), i € N} \ {\(B)})

Issue: we know no reasonable lower bound on g(k) !

December 12, 2022
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Open question about (Ax(B))ken-

Is there some C, a > 0 such that g(k) > Ck=2 7
o If we replace B with [0, 1] x [0, L], this is true when L is algebraic. It

is false when '
L=> 10"

i>1
@ The eigenvalues are given by Ug+g_1,k)peN,keN* where j, « is the
k-th zero of the u-th Bessel function J,.

Bourget’s hypothesis (proved by Siegel): if u,v € N/2, p— v € N¥,
then for any k,/ € N*:

ju,k #jll,/

Our (?7) hypothesis: 3C,a > 0 s.t. [jux — jui| > C];i
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Thank you for your attention !
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