Sharp stability of higher order Dirichlet eigenvalues

Mickaël Nahon

Max Planck Institute for Mathematics in the Sciences
Joint work with Dorin Bucur, Jimmy Lamboley, Raphaël Prunier
December 12, 2022

Plan

(1) Presentation of the results

(2) Proof of the linear bound

(3) Some applications and open questions

Presentation of the results

Notations

$n \geq 2$ is fixed, B is the unit ball of $\mathbb{R}^{n}, \mathcal{A}=\left\{\Omega \subset \mathbb{R}^{n}\right.$ open s.t. $\left.|\Omega|=|B|\right\}$.

$$
\lambda_{k}(\Omega)=\inf \left\{\sup _{v \in V} \frac{\int_{\Omega}|\nabla v|^{2}}{\int_{\Omega} v^{2}}, V \subset H_{0}^{1}(\Omega): \operatorname{dim}(V)=k\right\}
$$

We write $\left(u_{k}\right)_{k \in \mathbb{N}^{*}}$ the L^{2}-normalized eigenfunctions: they verify

$$
\begin{cases}-\Delta u_{k}=\lambda_{k}(\Omega) u_{k} & (\Omega) \\ u_{k}=0 & (\partial \Omega)\end{cases}
$$

Faber-Krahn inequality:

$$
\lambda_{1}(\Omega) \geq \lambda_{1}(B)
$$

with equality if and only if $\Omega=B$.

Structure of $\left(\lambda_{k}(B)\right)$

When $n=2$:

- $j_{m, p}$: p-th positive zero of the m-th Bessel function J_{m}.
- $\left\{\lambda_{k}(B), k \in \mathbb{N}^{*}\right\}=\left\{j_{m, p}^{2}, m \in \mathbb{N}, p \in \mathbb{N}^{*}\right\}$
- $u_{m, p}\left(r e^{i \theta}\right)=\left\{\begin{array}{ll}J_{0}\left(j_{0, p} r\right) & \text { if } m=0 \\ J_{m}\left(j_{m, p} r\right) \cos (m \theta+\phi) & \text { if } m \geq 1\end{array}\right.$.

Structure of $\left(\lambda_{k}(B)\right)$

When $n=2$:

- $j_{m, p}$: p-th positive zero of the m-th Bessel function J_{m}.
- $\left\{\lambda_{k}(B), k \in \mathbb{N}^{*}\right\}=\left\{j_{m, p}^{2}, m \in \mathbb{N}, p \in \mathbb{N}^{*}\right\}$
- $u_{m, p}\left(r e^{i \theta}\right)=\left\{\begin{array}{ll}J_{0}\left(j_{0, p} r\right) & \text { if } m=0 \\ J_{m}\left(j_{m, p} r\right) \cos (m \theta+\phi) & \text { if } m \geq 1\end{array}\right.$.

In general:

- $\left\{\lambda_{k}(B), k \in \mathbb{N}^{*}\right\}=\left\{j_{m+\frac{n-2}{2}, p}^{2}, m \in \mathbb{N}, p \in \mathbb{N}^{*}\right\}$
- $\mathbb{H}_{m}\left[X_{1}, \ldots, X_{n}\right]$: homogeneous harmonic polynomials of degree m.
- $u_{m, p}(x)=\frac{J_{m+\frac{n-2}{2}}\left(j_{m+\frac{n-2}{2}, p^{\prime}}\right)}{|x|^{\frac{n-2}{2}}} P\left(\frac{x}{|x|}\right), P \in \mathbb{H}_{m}\left[X_{1}, \ldots, X_{n}\right]$.

Torsional rigidity

$$
T(\Omega)=\sup _{v \in H_{0}^{1}(\Omega)} \int_{\Omega}\left(2 v-|\nabla v|^{2}\right)
$$

We write w the associated torsion function that verifies

$$
\begin{cases}-\Delta w=1 & (\Omega) \\ w=0 & (\partial \Omega)\end{cases}
$$

We also have

$$
T(\Omega)^{-1}=\inf _{v \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla v|^{2}}{\left(\int_{\Omega} v\right)^{2}}
$$

Saint-Venant inequality:

$$
T(\Omega) \leq T(B)
$$

with equality if and only if $\Omega=B$.

Initial question

Suppose $\lambda_{1}(\Omega)$ is close to $\lambda_{1}(B)$, can we say $\lambda_{k}(\Omega)$ is close to $\lambda_{k}(B)$?

Initial question

Suppose $\lambda_{1}(\Omega)$ is close to $\lambda_{1}(B)$, can we say $\lambda_{k}(\Omega)$ is close to $\lambda_{k}(B)$? Let $\Omega=B_{t \zeta}:=(I+t \zeta)(B)$ for some small $\zeta \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, then:

Initial question

We have directional derivatives:

$$
\lambda_{k}^{\prime}(B) \cdot \zeta:=\left.\frac{d}{d t}\right|_{t=0^{+}} \lambda_{k}\left(B_{t \zeta}\right)
$$

considered for any $\zeta \in \mathcal{C}^{\infty}$ with $\int_{\partial B} \zeta \cdot \nu_{B}=0$.

- If $\lambda_{k}(B)$ is simple, then u_{k} is radial and

$$
\lambda_{k}^{\prime}(B) \cdot \zeta=-\int_{\partial B}\left(\zeta \cdot \nu_{B}\right)\left|\nabla u_{k}\right|^{2}=0
$$

- If $\lambda_{k}(B)$ is multiple, $\lambda_{k}^{\prime}(B) \neq 0$.

Initial question

We have directional derivatives:

$$
\lambda_{k}^{\prime}(B) \cdot \zeta:=\left.\frac{d}{d t}\right|_{t=0^{+}} \lambda_{k}\left(B_{t \zeta}\right)
$$

considered for any $\zeta \in \mathcal{C}^{\infty}$ with $\int_{\partial B} \zeta \cdot \nu_{B}=0$.

- If $\lambda_{k}(B)$ is simple, then u_{k} is radial and

$$
\lambda_{k}^{\prime}(B) \cdot \zeta=-\int_{\partial B}\left(\zeta \cdot \nu_{B}\right)\left|\nabla u_{k}\right|^{2}=0
$$

- If $\lambda_{k}(B)$ is multiple, $\lambda_{k}^{\prime}(B) \neq 0$.

Initial question

We have directional derivatives:

$$
\lambda_{k}^{\prime}(B) \cdot \zeta:=\left.\frac{d}{d t}\right|_{t=0^{+}} \lambda_{k}\left(B_{t \zeta}\right)
$$

considered for any $\zeta \in \mathcal{C}^{\infty}$ with $\int_{\partial B} \zeta \cdot \nu_{B}=0$.

- If $\lambda_{k}(B)$ is simple, then u_{k} is radial and

$$
\lambda_{k}^{\prime}(B) \cdot \zeta=-\int_{\partial B}\left(\zeta \cdot \nu_{B}\right)\left|\nabla u_{k}\right|^{2}=0
$$

- If $\lambda_{k}(B)$ is multiple, $\lambda_{k}^{\prime}(B) \neq 0$.
- If ζ is normal to $\partial B,\left|B_{\zeta}\right|=|B|, \operatorname{bar}\left(B_{\zeta}\right)=0,\|\zeta\|_{\mathcal{C}^{3}(\partial B)} \ll 1$, then

$$
\lambda_{1}\left(B_{\zeta}\right)-\lambda_{1}(B) \geq c_{n}\left\|\zeta \cdot \nu_{B}\right\|_{H^{1 / 2}(\partial B)}^{2}
$$

(Brasco, De Philippis, Velichkov-2015)

Expectations

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \leq \begin{cases}C_{n, k}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right) & \text { if } \lambda_{k}(B) \text { is simple } \\ C_{n, k}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{2}} & \text { if } \lambda_{k}(B) \text { is degenerate }\end{cases}
$$

Some known results

- (Bertrand, Colbois - 2005) When $\lambda_{1}(\Omega)$ is close to $\lambda_{1}(B)$:

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{80 n}}
$$

Some known results

- (Bertrand, Colbois - 2005) When $\lambda_{1}(\Omega)$ is close to $\lambda_{1}(B)$:

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{80 n}}
$$

- (Mazzoleni, Pratelli - 2019)
$n=2$:
$-\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{4}-o(1)} \lesssim \lambda_{k}(\Omega)-\lambda_{k}(B) \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{8}-o(1)}$
$n=3$:
$-\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{6}-o(1)} \lesssim \lambda_{k}(\Omega)-\lambda_{k}(B) \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{12}-o(1)}$

Some known results

- (Bertrand, Colbois - 2005) When $\lambda_{1}(\Omega)$ is close to $\lambda_{1}(B)$:

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{80 n}}
$$

- (Mazzoleni, Pratelli - 2019)
$n=2$:
$-\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{4}-o(1)} \lesssim \lambda_{k}(\Omega)-\lambda_{k}(B) \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{8}-o(1)}$
$n=3:$
$-\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{6}-o(1)} \lesssim \lambda_{k}(\Omega)-\lambda_{k}(B) \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{12}-o(1)}$
- (Brasco, De Phillipis, Velichkov - 2015)

$$
\inf _{x \in \mathbb{R}^{n}}|\Omega \Delta(B+x)| \lesssim \sqrt{\lambda_{1}(\Omega)-\lambda_{1}(B)}
$$

Sharp bound for degenerate eigenvalues

Theorem

There exists $C_{n}>0$ such that for any $\Omega \in \mathcal{A}$,

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \leq C_{n} k^{2+\frac{4}{n}} \lambda_{1}(\Omega)^{\frac{1}{2}} \sqrt{\lambda_{1}(\Omega)-\lambda_{1}(B)}
$$

Kohler-Jobin inequality: $\Omega(\in \mathcal{A}) \mapsto T(\Omega)^{\frac{2}{n+2}} \lambda_{1}(\Omega)$ is minimal on the ball. As a consequence,

$$
T(\Omega)^{-1}-T(B)^{-1} \leq C_{n}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)
$$

In the theorem we actually prove:

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \leq C_{n} k^{2+\frac{4}{n}} \lambda_{1}(\Omega)^{\frac{1}{2}} \sqrt{T(\Omega)^{-1}-T(B)^{-1}}
$$

then apply Kohler-Jobin.

Sharp bound for simple eigenvalues

Theorem

Let k be such that $\lambda_{k}(B)$ is simple, there exists $C_{n, k}>0$ such that for any $\Omega \in \mathcal{A}$,

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \leq C_{n, k}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)
$$

We define the spectral gap

$$
g(k)=\operatorname{dist}\left(\lambda_{k}(B),\left\{\lambda_{i}(B), i \in \mathbb{N}^{*}\right\} \backslash\left\{\lambda_{k}(B)\right\}\right)
$$

We can take

$$
C_{n, k}=C_{n} \frac{k^{4+\frac{8}{n}}}{g(k)}
$$

In dimension 2 the valid choices of k are

$$
k=(1), 6,15,30,51,74,105,140,175,222,269,326,383,446,517,588, \ldots
$$

Sharp bound for simple eigenvalues

Theorem

Let k be such that $\lambda_{k}(B)$ is simple, there exists $C_{n, k}>0$ such that for any $\Omega \in \mathcal{A}$,

$$
\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \leq C_{n, k}\left(T(\Omega)^{-1}-T(B)^{-1}\right)
$$

We define the spectral gap

$$
g(k)=\operatorname{dist}\left(\lambda_{k}(B),\left\{\lambda_{i}(B), i \in \mathbb{N}^{*}\right\} \backslash\left\{\lambda_{k}(B)\right\}\right)
$$

We can take

$$
C_{n, k}=C_{n} \frac{k^{4+\frac{8}{n}}}{g(k)}
$$

In dimension 2 the valid choices of k are

$$
k=(1), 6,15,30,51,74,105,140,175,222,269,326,383,446,517,588, \ldots
$$

Sharp bound for a group of eigenvalues

Theorem

For every $k \leq I$, such that

$$
\lambda_{k-1}(B)<\lambda_{k}(B)=\lambda_{l}(B)<\lambda_{I+1}(B),
$$

then there exists $C_{n, k}>0$ such that for any open set $\Omega \in \mathcal{A}$,

$$
\left|\sum_{i=k}^{\prime}\left[\lambda_{i}(\Omega)-\lambda_{i}(B)\right]\right| \leq C_{n, k}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)
$$

We can take $C_{n, k}=C_{n} \frac{\kappa^{6+\frac{8}{n}}}{g(k)}$. Example in $2 d$:

$$
\left|\frac{\lambda_{2}(\Omega)+\lambda_{3}(\Omega)}{2}-\lambda_{2}(B)\right| \leq C\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)
$$

so $\left\{\begin{array}{l}\lambda_{2}(\Omega)-\lambda_{2}(B) \\ \lambda_{3}(B)-\lambda_{3}(\Omega)\end{array} \quad \leq C\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)\right.$.

Sharp bound for a group of eigenvalues

Theorem

For every $k \leq I$, such that

$$
\lambda_{k-1}(B)<\lambda_{k}(B)=\lambda_{l}(B)<\lambda_{I+1}(B),
$$

then there exists $C_{n, k}>0$ such that for any open set $\Omega \in \mathcal{A}$,

$$
\left|\sum_{i=k}^{l}\left[\lambda_{i}(\Omega)-\lambda_{i}(B)\right]\right| \leq C_{n, k}\left(T(\Omega)^{-1}-T(B)^{-1}\right)
$$

We can take $C_{n, k}=C_{n} \frac{\kappa^{6+\frac{8}{n}}}{g(k)}$. Example in $2 d$:

$$
\left|\frac{\lambda_{2}(\Omega)+\lambda_{3}(\Omega)}{2}-\lambda_{2}(B)\right| \leq C\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)
$$

so $\left\{\begin{array}{l}\lambda_{2}(\Omega)-\lambda_{2}(B) \\ \lambda_{3}(B)-\lambda_{3}(\Omega)\end{array} \leq C\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)\right.$.

Proof of the linear bound

An equivalent formulation

Let $k \leq I$ be such that $\lambda_{k-1}(B)<\lambda_{k}(B)=\lambda_{l}(B)<\lambda_{l+1}(B)$, then

$$
\begin{aligned}
& \forall \Omega \in \mathcal{A},\left|\sum_{i=k}^{\prime}\left[\lambda_{i}(\Omega)-\lambda_{i}(B)\right]\right| \leq C_{n, k}\left(T(\Omega)^{-1}-T(B)^{-1}\right) \\
\Leftrightarrow & \forall \Omega \in \mathcal{A}, T(\Omega)^{-1} \pm \frac{1}{C_{n, k}} \sum_{i=k}^{\prime} \lambda_{i}(\Omega) \geq T(B)^{-1} \pm \frac{1}{C_{n, k}} \sum_{i=k}^{\prime} \lambda_{i}(B)
\end{aligned}
$$

Theorem

There exists $\delta_{n, k}>0$ such that for any $|\delta| \leq \delta_{n, k}$,

$$
\Omega \in \mathcal{A} \mapsto \frac{1}{T(\Omega)}+\delta \sum_{i=k}^{\prime} \lambda_{i}(\Omega)
$$

is minimized by the ball.

Plan of proof

When δ is small enough, then:

1) There exists a minimizer Ω among quasi-open sets.
2) Ω is open and $\sup \left|\nabla w_{\Omega}\right| \leq C_{n}$.
3) $\Omega=\phi(B)$ where $\|\phi-\mathrm{Id}\|_{\mathcal{C}^{3}} \ll 1$.
4) $T^{-1}+\delta \sum_{i=k}^{l} \lambda_{i}$ is minimal on the ball in a small \mathcal{C}^{3} neighbourhood of the ball.

Conclusion: there exists a minimizer Ω, and Ω is the ball.

First existence result

Lemma

If δ is small enough, then $\Omega \in \mathcal{A} \mapsto \frac{1}{T(\Omega)}+\delta \sum_{i=k}^{\prime} \lambda_{i}(\Omega)$ has a minimizer Ω. Moreover, w_{Ω} is Lipschitz and

$$
B_{1-o_{\delta \rightarrow 0}(1)} \subset \Omega \subset B_{1+o_{\delta \rightarrow 0}(1)}
$$

When $\delta<0$, it must be small enough to avoid this kind of phenomena

Overdetermined equation on (w, u_{k}, \ldots, u_{l})

Suppose everything is completely smooth, then a shape derivative would give the following equation on $\left(w, u_{k}, \ldots, u_{l}\right)$:

$$
\left\{\begin{array}{l}
-\Delta w=1,-\Delta u_{i}=\lambda_{i} u_{i} \\
w=u_{i}=0 \\
\left(\partial_{\nu} w\right)^{2}+\delta T(\Omega)^{2} \sum_{i=k}^{\prime}\left(\partial_{\nu} u_{i}\right)^{2}=Q
\end{array}\right.
$$

where ∂_{ν} is the inward normal derivative and $Q:=\frac{1}{n^{2}}+\mathcal{O}(|\delta|)$.
Serrin's theorem: if $\partial_{\nu} w_{\Omega}=\frac{1}{n}$, then $\Omega=B$.
Here we have $\partial_{\nu} w_{\Omega}=\frac{1}{n}+\mathcal{O}(|\delta|)$.

Flat solution

Let $e \in \mathbb{S}^{n-1}, \epsilon>0$, a function $w \in H^{1}\left(B_{r}, \mathbb{R}_{+}\right)$is ϵ, e-flat in B_{r} if

- $0 \in \partial\{w>0\}$.
- $\alpha(x \cdot e+a)_{+} \leq w(x) \leq \alpha(x \cdot e+b)_{+}$where $\alpha>0, b-a \leq \epsilon r$.
- $|\Delta w| \leq \alpha \epsilon^{2}$ in $B_{r} \cap\{w>0\}$.

Partial Harnack inequality

Let Ω be a minimizer, if $\left(w_{\Omega} \pm c \sqrt{|\delta|} u_{i, \Omega}\right)_{i=k . \ldots, l}$ are ϵ, e-flat in B_{r}, where $r, \epsilon \ll 1$, then $\left(w_{\Omega} \pm c \sqrt{|\delta|} u_{i, \Omega}\right)_{i=k . \ldots, l}$ are $(2(1-\nu) \epsilon, e)$-flat in $B_{\frac{1}{2}} r$.

Improvement of flatness

Let Ω be a minimizer, if $\left(w_{\Omega} \pm c \sqrt{|\delta|} u_{i, \Omega}\right)_{i=k \ldots, I}$ are ϵ, e-flat in B_{r}, where $r, \epsilon \ll 1$, then $\left(w_{\Omega} \pm c \sqrt{|\delta|} u_{i, \Omega}\right)_{i=k \ldots, I}$ are $\left((1-\nu) \epsilon, e^{\prime}\right)$-flat in $B_{\frac{1}{2} r}$ for some $e^{\prime} \in \mathbb{S}^{n-1}$.

Improvement of flatness (II)

We can iterate this result: if $\left(w_{\Omega} \pm c \sqrt{|\delta|} u_{i, \Omega}\right)_{i=k \ldots, \ldots,}$ are ϵ, e-flat in B_{r}, then they are $\left((1-\nu)^{p} \epsilon, e^{p}\right)$-flat in $B_{2-p_{r}}$ for some sequence $\left(e^{p}\right)_{p}$.

Let Ω be a minimizer, if $\left(w_{\Omega} \pm c \sqrt{|\delta|} u_{i, \Omega}\right)_{i=k \ldots, \ldots,}$ are ϵ, e-flat in B_{r}, where $r, \epsilon \ll 1$, then $\partial \Omega \cap B_{\frac{1}{2} r}$ is a $\mathcal{C}^{1, \gamma}$ graph. Here $\gamma:=\log _{2} \frac{1}{1-\nu}$.

Statement of the regularity result

Lemma

For any minimizer Ω of $T^{-1}+\delta \sum_{i} \lambda_{i}$ in \mathcal{A}, up to a translation of Ω we have

$$
\Omega=\phi(B) \text { where }\|\phi-I d\|_{\mathcal{C}^{3}(B)}=o_{\delta \rightarrow 0}(1) .
$$

- First step: $B_{1-o(1)} \subset \Omega \subset B_{1+o(1)}$.
- Then, $\Omega=\phi(B)$ where $\|\phi-1\|_{\mathcal{C}^{1, \gamma}}=o(1)$ by improvement of flatness.
- Finally, $\|\phi-1\|_{\mathcal{C}^{3}}=o(1)$ by hodograph transform.

Conclusion

Lemma

Suppose $\partial \Omega=\{(1+h(x)) x, x \in \partial B\}$ where $\|h\|_{C^{3}(\partial B)} \ll 1,|\Omega|=|B|$, $\operatorname{bar}(\Omega)=0$, then

$$
\begin{aligned}
& T(\Omega)^{-1}-T(B)^{-1} \geq c_{n}\|h\|_{H^{1 / 2}(\partial B)}^{2} \\
&\left|\sum_{i=k}^{\prime}\left[\lambda_{i}(\Omega)-\lambda_{i}(B)\right]\right| \leq C_{n, k}\|h\|_{H^{1 / 2}(\partial B)}^{2}
\end{aligned}
$$

Consequence: let Ω be as in the lemma, then

$$
\begin{aligned}
T(\Omega)^{-1}+\delta \lambda_{k}(\Omega) & \geq T(B)^{-1}+\delta \lambda_{k}(B)+\left(c_{n}-C_{n, k}|\delta|\right)\|h\|_{H^{1 / 2}(\partial B)}^{2} \\
& \geq T(B)^{-1}+\delta \lambda_{k}(B) \text { when }|\delta| \leq \frac{c_{n}}{C_{n, k}}
\end{aligned}
$$

Some applications and open questions

Application: reverse Kohler-Jobin

Kohler-Jobin inequality: $\Omega(\in \mathcal{A}) \mapsto T(\Omega)^{\frac{2}{n+2}} \lambda_{1}(\Omega)$ is minimal on the ball. We get an opposite inequality : there exists $\delta>0$ small enough such that $\Omega \in \mathcal{A} \mapsto T(\Omega)^{-1}-\delta \lambda_{1}(\Omega)$ is minimal on the ball.

Corollary

There exists $c_{n}, C_{n}>0$ such that for any $\Omega \in \mathcal{A}$:

$$
c_{n} \leq \frac{T(\Omega)^{-1}-T(B)^{-1}}{\lambda_{1}(\Omega)-\lambda_{1}(B)}\left(\leq C_{n}\right)
$$

Corollary

There exists $p_{n}>1$ such that for any $p>p_{n}$,

$$
\Omega \in \mathcal{A} \mapsto T(\Omega)^{p} \lambda_{1}(\Omega)
$$

is maximal on the ball.

What about more general functions?

Is this still true for

$$
Z_{\Omega}(t)=\sum_{k \geq 1} e^{-t \lambda_{k}(\Omega)}, \zeta_{\Omega}(s)=\sum_{k \geq 1} \lambda_{k}(\Omega)^{-s} ?
$$

We remind that

$$
\begin{aligned}
&\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \leq C_{n} k^{2+\frac{4}{n}} \lambda_{1}(\Omega)^{\frac{1}{2}} \sqrt{\lambda_{1}(\Omega)-\lambda_{1}(B)} \text { for any } k \\
&\left|\sum_{i=k}^{\prime}\left[\lambda_{i}(\Omega)-\lambda_{i}(B)\right]\right| \leq C_{n} \frac{k^{6+\frac{8}{n}}}{g(k)}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right) \text { for a cluster }[k, l]
\end{aligned}
$$

where

$$
g(k)=\operatorname{dist}\left(\lambda_{k}(B),\left\{\lambda_{i}(B), i \in \mathbb{N}^{*}\right\} \backslash\left\{\lambda_{k}(B)\right\}\right)
$$

Issue: we know no reasonable lower bound on $g(k)$!

Open question about $\left(\lambda_{k}(B)\right)_{k \in \mathbb{N}^{*}}$

Is there some $C, a>0$ such that $g(k)>C k^{-a}$?

- If we replace B with $[0,1] \times[0, L]$, this is true when L is algebraic. It is false when

$$
L=\sum_{i \geq 1} 10^{-i!}
$$

- The eigenvalues are given by $\left(j_{p+\frac{n}{2}-1, k}^{2}\right)_{p \in \mathbb{N}, k \in \mathbb{N}^{*}}$ where $j_{\mu, k}$ is the k-th zero of the μ-th Bessel function J_{μ}.

Bourget's hypothesis (proved by Siegel): if $\mu, \nu \in \mathbb{N} / 2, \mu-\nu \in \mathbb{N}^{*}$, then for any $k, l \in \mathbb{N}^{*}$:

$$
j_{\mu, k} \neq j_{\nu, l}
$$

Our (?) hypothesis: $\exists C, a>0$ s.t. $\left|j_{\mu, k}-j_{\nu, l}\right|>C j_{\mu, k}^{-a}$.

Thank you for your attention!

