On the critical p-Laplace equation

Alberto Roncoroni
Politecnico di Milano

Shape Optimization, Geometric Inequalities, and Related Topics
Two days workshop for young researchers in Naples
Napoli, January 312023

Contents

Outline:

Contents

Outline:

- The generalized Lane-Emden equation.

Contents

Outline:

- The generalized Lane-Emden equation.
- Rigidity results in the semilinear case $(p=2)$ and in the quasilinear case ($1<p<n$).

Contents

Outline:

- The generalized Lane-Emden equation.
- Rigidity results in the semilinear case $(p=2)$ and in the quasilinear case ($1<p<n$).
- Critical p-Laplace equation.

Contents

Outline:

- The generalized Lane-Emden equation.
- Rigidity results in the semilinear case $(p=2)$ and in the quasilinear case ($1<p<n$).
- Critical p-Laplace equation.
- The finite energy assumption and our results.

Contents

Outline:

- The generalized Lane-Emden equation.
- Rigidity results in the semilinear case $(p=2)$ and in the quasilinear case ($1<p<n$).
- Critical p-Laplace equation.
- The finite energy assumption and our results.
- Final remarks: Riemannian and anisotropic settings and related problems.

Contents

Outline:

- The generalized Lane-Emden equation.
- Rigidity results in the semilinear case $(p=2)$ and in the quasilinear case ($1<p<n$).
- Critical p-Laplace equation.
- The finite energy assumption and our results.
- Final remarks: Riemannian and anisotropic settings and related problems.

Bibliography:

- G. Catino, D. Monticelli, A. R. On the critical p-Laplace equation. Submitted.
- A. R., Liouville-type results for the Lane-Emden equation Bruno Pini Mathematical Analysis Seminar (in preparation).

The generalized Lane-Emden equation I

The generalized Lane-Emden equation I

In this seminar we consider the following quasilinear equation:

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $q>1,1<p<n$ and Δ_{p} is the p-Laplace operator

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

The generalized Lane-Emden equation I

In this seminar we consider the following quasilinear equation:

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $q>1,1<p<n$ and Δ_{p} is the p-Laplace operator

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Equation (1) is called the generalized Lane-Emden equation.

The generalized Lane-Emden equation I

In this seminar we consider the following quasilinear equation:

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $q>1,1<p<n$ and Δ_{p} is the p-Laplace operator

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Equation (1) is called the generalized Lane-Emden equation.
We are interested in rigidity results, i.e. classification and non-existence results for (positive) solutions to (1).

The generalized Lane-Emden equation I

In this seminar we consider the following quasilinear equation:

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $q>1,1<p<n$ and Δ_{p} is the p-Laplace operator

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Equation (1) is called the generalized Lane-Emden equation.
We are interested in rigidity results, i.e. classification and non-existence results for (positive) solutions to (1).

Equation (1) (in unbounded domains) arises from physics and geometry:

The generalized Lane-Emden equation I

In this seminar we consider the following quasilinear equation:

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $q>1,1<p<n$ and Δ_{p} is the p-Laplace operator

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Equation (1) is called the generalized Lane-Emden equation.
We are interested in rigidity results, i.e. classification and non-existence results for (positive) solutions to (1).

Equation (1) (in unbounded domains) arises from physics and geometry:

- from the study of stellar structure in astrophysics ${ }^{1}$.
${ }^{1}$ S. Chandrasekhar. An Introduction to the Study of Stellar Structure,1957.

The generalized Lane-Emden equation I

In this seminar we consider the following quasilinear equation:

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $q>1,1<p<n$ and Δ_{p} is the p-Laplace operator

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Equation (1) is called the generalized Lane-Emden equation.
We are interested in rigidity results, i.e. classification and non-existence results for (positive) solutions to (1).

Equation (1) (in unbounded domains) arises from physics and geometry:

- from the study of stellar structure in astrophysics ${ }^{1}$.
- from the study of problems in conformal geometry, like prescribed scalar curvature problem ${ }^{2}$.
${ }^{1}$ S. Chandrasekhar. An Introduction to the Study of Stellar Structure,1957.
${ }^{2}$ M. Struwe. Variational Methods. Applications to Nonlinear PDEs and Hamiltonian Systems, 1990.

The generalized Lane-Emden equation II

The generalized Lane-Emden equation II

An important role is played by the exponent

$$
q=p^{*}-1, \quad \text { where } \quad p^{*}:=\frac{n p}{n-p},
$$

is the Sobolev critical exponent.

The generalized Lane-Emden equation II

An important role is played by the exponent

$$
q=p^{*}-1, \quad \text { where } \quad p^{*}:=\frac{n p}{n-p},
$$

is the Sobolev critical exponent.
Two cases:

- $q<p^{*}-1$, subcritical regime;
- $q=p^{*}-1$, critical regime.

The case: $p=2$ and $q<2^{*}-1$

The case: $p=2$ and $q<2^{*}-1$

Theorem [Gidas-Spruck (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n} \\
u \geq 0
\end{array}\right.
$$

with

$$
1 \leq q<2^{*}-1=\frac{n+2}{n-2},
$$

then $u \equiv 0$.

The case: $p=2$ and $q<2^{*}-1$

Theorem [Gidas-Spruck (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n} \\
u \geq 0
\end{array}\right.
$$

with

$$
1 \leq q<2^{*}-1=\frac{n+2}{n-2},
$$

then $u \equiv 0$.

- Proof based on a test functions argument and on integral identities.

The case: $p=2$ and $q<2^{*}-1$

Theorem [Gidas-Spruck (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n} \\
u \geq 0,
\end{array}\right.
$$

with

$$
1 \leq q<2^{*}-1=\frac{n+2}{n-2},
$$

then $u \equiv 0$.

- Proof based on a test functions argument and on integral identities.
- The same result holds in complete noncompact Riemannian manifolds (M^{n}, g) with nonnegative Ricci curvature.

The case: $p=2$ and $q=2^{*}-1$

The case: $p=2$ and $q=2^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{2}\\
u>0
\end{array}\right.
$$

The case: $p=2$ and $q=2^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{2}\\
u>0
\end{array}\right.
$$

is given by the Talentiane or Aubin-Talenti bubbles

$$
\begin{equation*}
\mathcal{U}_{\lambda, x_{0}}(x):=\left(\frac{\sqrt{n(n-2)} \lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}, \quad \text { where } \lambda>0 \text { and } x_{0} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

The case: $p=2$ and $q=2^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{2}\\
u>0,
\end{array}\right.
$$

is given by the Talentiane or Aubin-Talenti bubbles

$$
\begin{equation*}
\mathcal{U}_{\lambda, x_{0}}(x):=\left(\frac{\sqrt{n(n-2)} \lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}, \quad \text { where } \lambda>0 \text { and } x_{0} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

These functions have been constructed by Aubin (1976) and Talenti (1976) as minimizers of the Sobolev constant:

$$
S:=\inf _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{n}} u^{2^{*}} d x\right)^{2 / 2^{*}}},
$$

where

$$
\mathcal{D}^{1,2}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{2}\left(\mathbb{R}^{n}\right)\right\} .
$$

The case: $p=2$ and $q=2^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{2}\\
u>0
\end{array}\right.
$$

is given by the Talentiane or Aubin-Talenti bubbles

$$
\begin{equation*}
\mathcal{U}_{\lambda, x_{0}}(x):=\left(\frac{\sqrt{n(n-2)} \lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}, \quad \text { where } \lambda>0 \text { and } x_{0} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

These functions have been constructed by Aubin (1976) and Talenti (1976) as minimizers of the Sobolev constant:

$$
S:=\inf _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{n}} u^{2^{*}} d x\right)^{2 / 2^{*}}},
$$

where

$$
\mathcal{D}^{1,2}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{2}\left(\mathbb{R}^{n}\right)\right\} .
$$

Question: are the Talentiane (3) the only solutions to (2)?

The case: $p=2$ and $q=2^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{2}\\
u>0,
\end{array}\right.
$$

is given by the Talentiane or Aubin-Talenti bubbles

$$
\begin{equation*}
\mathcal{U}_{\lambda, x_{0}}(x):=\left(\frac{\sqrt{n(n-2)} \lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}, \quad \text { where } \lambda>0 \text { and } x_{0} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

These functions have been constructed by Aubin (1976) and Talenti (1976) as minimizers of the Sobolev constant:

$$
S:=\inf _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{n}} u^{2^{*}} d x\right)^{2 / 2^{*}}},
$$

where

$$
\mathcal{D}^{1,2}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{2}\left(\mathbb{R}^{n}\right)\right\} .
$$

Question: are the Talentiane (3) the only solutions to (2)?
Problem (2) is also related to the Yamabe problem.

The Yamabe problem

The Yamabe problem

Theorem [Yamabe ('60), Trudinger ('68), Aubin ('76), Schoen ('84)]. Let (M, g_{0}) be a compact Riemannian manifold of dimension $n \geq 3$. Then there exists a metric g on M which is conformal to g_{0} and has constant scalar curvature.

The Yamabe problem

Theorem [Yamabe ('60), Trudinger ('68), Aubin ('76), Schoen ('84)]. Let (M, g_{0}) be a compact Riemannian manifold of dimension $n \geq 3$. Then there exists a metric g on M which is conformal to g_{0} and has constant scalar curvature.

If we write,

$$
g=u^{\frac{4}{n-2}} g_{0}
$$

for some positive function u. Then u solves

$$
\frac{4(n-1)}{n-2} \Delta_{g_{0}} u-R_{g_{0}} u+R_{g} u^{\frac{n+2}{n-2}}=0
$$

where $R_{g_{0}}, R_{g}$ denotes the scalar curvature of g_{0}, g respectively.

The Yamabe problem

Theorem [Yamabe ('60), Trudinger ('68), Aubin ('76), Schoen ('84)]. Let (M, g_{0}) be a compact Riemannian manifold of dimension $n \geq 3$. Then there exists a metric g on M which is conformal to g_{0} and has constant scalar curvature.

If we write,

$$
g=u^{\frac{4}{n-2}} g_{0}
$$

for some positive function u. Then u solves

$$
\frac{4(n-1)}{n-2} \Delta_{g_{0}} u-R_{g_{0}} u+R_{g} u^{\frac{n+2}{n-2}}=0,
$$

where $R_{g_{0}}, R_{g}$ denotes the scalar curvature of g_{0}, g respectively.
When (M, g_{0}) is the round sphere (Nirenberg problem), by stereographic projection we get

$$
\frac{4(n-1)}{n-2} \Delta u+R_{g} u^{\frac{n+2}{n-2}}=0 \quad \text { in } \quad \mathbb{R}^{n},
$$

and hence

$$
\Delta u+u^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbb{R}^{n}
$$

The case: $p=2$ and $q=2^{*}-1$

The case: $p=2$ and $q=2^{*}-1$
Theorem [Obata (1971) and Gidas-Ni-Nirenberg (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{4}\\
u>0,
\end{array}\right.
$$

such that

$$
u(x)=O\left(|x|^{2-n}\right) \quad \text { for } x \text { large } .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

The case: $p=2$ and $q=2^{*}-1$
Theorem [Obata (1971) and Gidas-Ni-Nirenberg (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{4}\\
u>0,
\end{array}\right.
$$

such that

$$
u(x)=O\left(|x|^{2-n}\right) \quad \text { for } x \text { large } .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Caffarelli-Gidas-Spruck (1989)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of (4) then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

The case: $p=2$ and $q=2^{*}-1$
Theorem [Obata (1971) and Gidas-Ni-Nirenberg (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{4}\\
u>0,
\end{array}\right.
$$

such that

$$
u(x)=O\left(|x|^{2-n}\right) \quad \text { for } x \text { large } .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Caffarelli-Gidas-Spruck (1989)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of (4) then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on the Kelvin transform and on the method of moving planes (see Alexandrov (1957) and Serrin (1971)).

The case: $p=2$ and $q=2^{*}-1$
Theorem [Obata (1971) and Gidas-Ni-Nirenberg (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{4}\\
u>0
\end{array}\right.
$$

such that

$$
u(x)=O\left(|x|^{2-n}\right) \quad \text { for } x \text { large. }
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Caffarelli-Gidas-Spruck (1989)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of (4) then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on the Kelvin transform and on the method of moving planes (see Alexandrov (1957) and Serrin (1971)).
- From the strong maximum principle: every nonnegative solution to (4) is strictly positive, unless $u \equiv 0$.

The case: $p=2$ and $q=2^{*}-1$
Theorem [Obata (1971) and Gidas-Ni-Nirenberg (1981)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{4}\\
u>0
\end{array}\right.
$$

such that

$$
u(x)=O\left(|x|^{2-n}\right) \quad \text { for } x \text { large } .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Caffarelli-Gidas-Spruck (1989)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of (4) then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on the Kelvin transform and on the method of moving planes (see Alexandrov (1957) and Serrin (1971)).
- From the strong maximum principle: every nonnegative solution to (4) is strictly positive, unless $u \equiv 0$.
- Chen-Li (1991) and Li (1996) shorter proof.

General p : weak solutions

General p : weak solutions

Weak solutions: a weak solution u to

$$
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n},
$$

is a function

$$
u \in W_{\text {loc }}^{1, p}\left(\mathbb{R}^{n}\right) \cap L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right),
$$

such that
$\int_{\mathbb{R}^{n}}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x-\int_{\mathbb{R}^{n}}|u|^{q-1} u \varphi d x=0, \quad$ for all $\varphi \in W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$,
where $W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$ denotes the space of compactly supported functions in $W^{1, p}\left(\mathbb{R}^{n}\right)$.

General p : weak solutions

Weak solutions: a weak solution u to

$$
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n},
$$

is a function

$$
u \in W_{\text {loc }}^{1, p}\left(\mathbb{R}^{n}\right) \cap L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)
$$

such that
$\int_{\mathbb{R}^{n}}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x-\int_{\mathbb{R}^{n}}|u|^{q-1} u \varphi d x=0, \quad$ for all $\varphi \in W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$,
where $W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$ denotes the space of compactly supported functions in $W^{1, p}\left(\mathbb{R}^{n}\right)$.

In general, solutions to quasilinear equations are not smooth.

General p : weak solutions and regularity

General p : weak solutions and regularity

Regularity theory: every weak solution to

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{5}
\end{equation*}
$$

satisfies:

$$
u \in \begin{cases}W_{l o}^{2,2}\left(\mathbb{R}^{n}\right) \cap C_{l o c}^{1, \alpha}\left(\mathbb{R}^{n}\right) & \text { for } 1<p \leq 2 \\ W_{l o c}^{2,2}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) \cap C_{l o c}^{1, \alpha}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) & \text { for } 2<p<n\end{cases}
$$

for some $\alpha \in(0,1)$ and where $\mathcal{Z}:=\left\{x \in \mathbb{R}^{n}: \nabla u(x)=0\right\}$.

General p : weak solutions and regularity

Regularity theory: every weak solution to

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{5}
\end{equation*}
$$

satisfies:

$$
u \in \begin{cases}W_{l o c}^{2,2}\left(\mathbb{R}^{n}\right) \cap C_{l o c}^{1, \alpha}\left(\mathbb{R}^{n}\right) & \text { for } 1<p \leq 2 \\ W_{l o c}^{2,2}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) \cap C_{\text {loc }}^{1, \alpha}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) & \text { for } 2<p<n\end{cases}
$$

for some $\alpha \in(0,1)$ and where $\mathcal{Z}:=\left\{x \in \mathbb{R}^{n}: \nabla u(x)=0\right\}$. Moreover,

$$
|\nabla u|^{p-2} \nabla u \in W_{l o c}^{1,2}\left(\mathbb{R}^{n}\right)
$$

and

$$
|\nabla u|^{p-2} \nabla^{2} u \in \begin{cases}L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right) & \text { for } 1<p \leq 2 \\ L_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) & \text { for } 2<p<n\end{cases}
$$

General p : weak solutions and regularity

Regularity theory: every weak solution to

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{5}
\end{equation*}
$$

satisfies:

$$
u \in \begin{cases}W_{l o}^{2,2}\left(\mathbb{R}^{n}\right) \cap C_{l o c}^{1, \alpha}\left(\mathbb{R}^{n}\right) & \text { for } 1<p \leq 2 \\ W_{l o c}^{2,2}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) \cap C_{l o c}^{1, \alpha}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) & \text { for } 2<p<n\end{cases}
$$

for some $\alpha \in(0,1)$ and where $\mathcal{Z}:=\left\{x \in \mathbb{R}^{n}: \nabla u(x)=0\right\}$. Moreover,

$$
|\nabla u|^{p-2} \nabla u \in W_{l o c}^{1,2}\left(\mathbb{R}^{n}\right)
$$

and

$$
|\nabla u|^{p-2} \nabla^{2} u \in \begin{cases}L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right) & \text { for } 1<p \leq 2 \\ L_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) & \text { for } 2<p<n\end{cases}
$$

If we consider positive solutions to (5) then $|\mathcal{Z}|=0$.

General p : weak solutions and regularity

Regularity theory: every weak solution to

$$
\begin{equation*}
\Delta_{p} u+|u|^{q-1} u=0 \quad \text { in } \mathbb{R}^{n}, \tag{5}
\end{equation*}
$$

satisfies:

$$
u \in \begin{cases}W_{\text {loc }}^{2,2}\left(\mathbb{R}^{n}\right) \cap C_{\text {loc }}^{1, \alpha}\left(\mathbb{R}^{n}\right) & \text { for } 1<p \leq 2 \\ W_{\text {loc }}^{2,2}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) \cap C_{\text {loc }}^{1, \alpha}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) & \text { for } 2<p<n\end{cases}
$$

for some $\alpha \in(0,1)$ and where $\mathcal{Z}:=\left\{x \in \mathbb{R}^{n}: \nabla u(x)=0\right\}$. Moreover,

$$
|\nabla u|^{p-2} \nabla u \in W_{l o c}^{1,2}\left(\mathbb{R}^{n}\right)
$$

and

$$
|\nabla u|^{p-2} \nabla^{2} u \in \begin{cases}L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right) & \text { for } 1<p \leq 2 \\ L_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash \mathcal{Z}\right) & \text { for } 2<p<n\end{cases}
$$

If we consider positive solutions to (5) then $|\mathcal{Z}|=0$.
Campanato (1963), Stampacchia (1963), Serrin (1964), Ural'ceva (1968),
Uhlenbeck (1977), Simon (1978), Téhlin (1982), Evans (1982), Lewis (1983), Di Benedetto (1983), Tolksdorf (1984), Manfredi (1988), Lieberman (1993), Damascelli, Sciunzi (2004), Lou (2008), Mingione (2010), Kuusi, Mingione (2014), Mercuri, Riey, Sciunzi (2016), Avelin, Kuusi, Mingione (2017), Cellina (2017), Cianchi, Maz'ya (2018), Guarnotta, Mosconi (2021), Antonini, Ciraolo, Farina (2022). . .

General p and $q<p^{*}-1$

General p and $q<p^{*}-1$

Theorem [Serrin-Zou (2002)]
Let u be a weak solution of

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{q}=0 \quad \text { in } \mathbb{R}^{n} \\
u \geq 0
\end{array}\right.
$$

with $1<p<n$ and

$$
1 \leq q<p^{*}-1
$$

then $u \equiv 0$.

General p and $q<p^{*}-1$

Theorem [Serrin-Zou (2002)]
Let u be a weak solution of

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{q}=0 \quad \text { in } \mathbb{R}^{n} \\
u \geq 0,
\end{array}\right.
$$

with $1<p<n$ and

$$
1 \leq q<p^{*}-1
$$

then $u \equiv 0$.

- Based on integral identities.

General p and $q<p^{*}-1$

Theorem [Serrin-Zou (2002)]
Let u be a weak solution of

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{q}=0 \quad \text { in } \mathbb{R}^{n} \\
u \geq 0,
\end{array}\right.
$$

with $1<p<n$ and

$$
1 \leq q<p^{*}-1
$$

then $u \equiv 0$.

- Based on integral identities.
- Generalize the result by Gidas-Spruck (1981).

General p and $q<p^{*}-1$

Theorem [Serrin-Zou (2002)]
Let u be a weak solution of

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{q}=0 \quad \text { in } \mathbb{R}^{n} \\
u \geq 0,
\end{array}\right.
$$

with $1<p<n$ and

$$
1 \leq q<p^{*}-1
$$

then $u \equiv 0$.

- Based on integral identities.
- Generalize the result by Gidas-Spruck (1981).
- What about Riemannian manifolds?

General p and $q=p^{*}-1$

General p and $q=p^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{6}\\
u>0,
\end{array}\right.
$$

is given by the Talentiane or Aubin-Talenti bubbles

$$
\begin{equation*}
\mathcal{U}_{\lambda, x_{0}}(x):=\left(\frac{n^{\frac{1}{p}}\left(\frac{n-p}{p-1}\right)^{\frac{p-1}{p}} \lambda}{1+\lambda^{\frac{p}{p-1}}\left|x-x_{0}\right|^{\frac{p}{p-1}}}\right)^{\frac{n-p}{p}} \quad, \quad \text { where } \lambda>0 \text { and } x_{0} \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

General p and $q=p^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{6}\\
u>0,
\end{array}\right.
$$

is given by the Talentiane or Aubin-Talenti bubbles

$$
\begin{equation*}
\mathcal{U}_{\lambda, x_{0}}(x):=\left(\frac{n^{\frac{1}{p}}\left(\frac{n-p}{p-1}\right)^{\frac{p-1}{\rho}} \lambda}{1+\lambda^{\frac{p}{p-1}}\left|x-x_{0}\right|^{\frac{p}{p-1}}}\right)^{\frac{n-p}{p}} \quad, \quad \text { where } \lambda>0 \text { and } x_{0} \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

These functions have been constructed by Aubin (1976) and Talenti (1976) as minimizers of the Sobolev constant:

$$
S:=\inf _{u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x}{\left(\int_{\mathbb{R}^{n}} \mu^{p^{*}} d x\right)^{p / p^{*}}},
$$

where

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\}
$$

General p and $q=p^{*}-1$
An explicit family of solutions to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{6}\\
u>0
\end{array}\right.
$$

is given by the Talentiane or Aubin-Talenti bubbles

$$
\begin{equation*}
\mathcal{U}_{\lambda, x_{0}}(x):=\left(\frac{n^{\frac{1}{p}}\left(\frac{n-p}{p-1}\right)^{\frac{p-1}{\rho}} \lambda}{1+\lambda^{\frac{p}{p-1}}\left|x-x_{0}\right|^{\frac{p}{p-1}}}\right)^{\frac{n-p}{p}} \quad, \quad \text { where } \lambda>0 \text { and } x_{0} \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

These functions have been constructed by Aubin (1976) and Talenti (1976) as minimizers of the Sobolev constant:

$$
S:=\inf _{u \in \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x}{\left(\int_{\mathbb{R}^{n}} u p^{p^{*}} d x\right)^{p / p^{*}}},
$$

where

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\}
$$

Question: are the Talentiane (7) the only solutions to (6)?

General p and $q=p^{*}-1$

General p and $q=p^{*}-1$
Theorem [Damascelli-Merchán-Montoro-Sciunzi (2014)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{8}\\
u>0,
\end{array}\right.
$$

with

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \quad \text { and } \quad \frac{2 n}{n+2}<p<2 .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

General p and $q=p^{*}-1$
Theorem [Damascelli-Merchán-Montoro-Sciunzi (2014)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{8}\\
u>0,
\end{array}\right.
$$

with

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \quad \text { and } \quad \frac{2 n}{n+2}<p<2 .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Vétois (2016) and Sciunzi (2016)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to (8) with $1<p<n$. Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

General p and $q=p^{*}-1$
Theorem [Damascelli-Merchán-Montoro-Sciunzi (2014)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{8}\\
u>0,
\end{array}\right.
$$

with

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \quad \text { and } \quad \frac{2 n}{n+2}<p<2 .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Vétois (2016) and Sciunzi (2016)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to (8) with $1<p<n$. Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Based on asymptotic bounds on u and $|\nabla u|$ and the method of moving planes.

General p and $q=p^{*}-1$
Theorem [Damascelli-Merchán-Montoro-Sciunzi (2014)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{8}\\
u>0,
\end{array}\right.
$$

with

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \quad \text { and } \quad \frac{2 n}{n+2}<p<2
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Vétois (2016) and Sciunzi (2016)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to (8) with $1<p<n$. Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Based on asymptotic bounds on u and $|\nabla u|$ and the method of moving planes.
- The Strong Maximum Principle holds for nonnegative solutions of (8) (see Vazquez (1984)).

General p and $q=p^{*}-1$
Theorem [Damascelli-Merchán-Montoro-Sciunzi (2014)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{8}\\
u>0
\end{array}\right.
$$

with

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \quad \text { and } \quad \frac{2 n}{n+2}<p<2
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Vétois (2016) and Sciunzi (2016)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to (8) with $1<p<n$. Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Based on asymptotic bounds on u and $|\nabla u|$ and the method of moving planes.
- The Strong Maximum Principle holds for nonnegative solutions of (8) (see Vazquez (1984)).
- Ciraolo-Figalli-R. (2021) alternative proof.

The hypothesis $u>0$ is fundamental

The hypothesis $u>0$ is fundamental

- For $p=2$: it is possible to construct "many" sign-changing solutions to

$$
\Delta u+u|u|^{2^{*}-2}=0 \quad \text { in } \mathbb{R}^{n},
$$

which are not radial!
Ding (1986), del Pino, Musso, Pacard, Pistoia (2011-2013), Musso, Wei (2015), Medina, Musso, Wei (2019), Medina, Musso (2021).

The hypothesis $u>0$ is fundamental

- For $p=2$: it is possible to construct "many" sign-changing solutions to

$$
\Delta u+u|u|^{2^{*}-2}=0 \quad \text { in } \mathbb{R}^{n},
$$

which are not radial!
Ding (1986), del Pino, Musso, Pacard, Pistoia (2011-2013), Musso, Wei (2015), Medina, Musso, Wei (2019), Medina, Musso (2021).

- For $1<p<n$, with $n \geq 4$, it is possible to construct "many" sign-changing solutions to

$$
\Delta_{p} u+u|u|^{p^{*}-2}=0 \quad \text { in } \mathbb{R}^{n},
$$

which are not radial!
Clapp-Rios (2018).

A big difference between $p=2$ and $p \neq 2$

A big difference between $p=2$ and $p \neq 2$
Theorem [Caffarelli-Gidas-Spruck (1989)]
Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0,
\end{array}\right.
$$

then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Vétois (2016) and Sciunzi (2016)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

with

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \quad \text { and } \quad 1<p<n
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

A big difference between $p=2$ and $p \neq 2$

Theorem [Caffarelli-Gidas-Spruck (1989)]

Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Theorem [Vétois (2016) and Sciunzi (2016)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

with

$$
\mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \quad \text { and } \quad 1<p<n
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Question: is it possible to remove (or weaken) the assumption

$$
u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right) ?
$$

A big difference between $p=2$ and $p \neq 2$: the finite energy assumption
It is well-known that the energy associated to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0,
\end{array}\right.
$$

is

$$
\mathcal{E}(u):=\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{n}} u^{p^{*}} d x .
$$

A big difference between $p=2$ and $p \neq 2$: the finite energy assumption
It is well-known that the energy associated to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0,
\end{array}\right.
$$

is

$$
\mathcal{E}(u):=\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{n}} u^{p^{*}} d x .
$$

This functional is also interesting from the point of view of the calculus of variations. Since the embedding $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{n}\right)$ is not compact, the classical tools of the calculus of variations (e.g. the Mountain Pass Lemma or the direct method) do not apply!

A big difference between $p=2$ and $p \neq 2$: the finite energy assumption
It is well-known that the energy associated to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

is

$$
\mathcal{E}(u):=\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{n}} u^{p^{*}} d x
$$

This functional is also interesting from the point of view of the calculus of variations. Since the embedding $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{n}\right)$ is not compact, the classical tools of the calculus of variations (e.g. the Mountain Pass Lemma or the direct method) do not apply!

It is clear that

$$
u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right) \quad \Rightarrow \quad \mathcal{E}(u)<\infty
$$

A big difference between $p=2$ and $p \neq 2$: the finite energy assumption
It is well-known that the energy associated to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

is

$$
\mathcal{E}(u):=\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{n}} u^{p^{*}} d x
$$

This functional is also interesting from the point of view of the calculus of variations. Since the embedding $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{n}\right)$ is not compact, the classical tools of the calculus of variations (e.g. the Mountain Pass Lemma or the direct method) do not apply!

It is clear that

$$
u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right) \quad \Rightarrow \quad \mathcal{E}(u)<\infty
$$

The hypothesis $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ is called the finite energy assumption.

Desired theorem and state of the art

Desired theorem and state of the art

Desired theorem/Conjecture

Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0,
\end{array}\right.
$$

with

$$
1<p<n .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

Desired theorem and state of the art

Desired theorem/Conjecture

Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

with

$$
1<p<n .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- True if

$$
n=2 \text { and } 1<p<2 \text { or } n=3 \text { and } \frac{3}{2}<p<2
$$

Catino, Monticelli, R. (2022).

Desired theorem and state of the art

Desired theorem/Conjecture

Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

with

$$
1<p<n .
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- True if

$$
n=2 \text { and } 1<p<2 \text { or } n=3 \text { and } \frac{3}{2}<p<2
$$

Catino, Monticelli, R. (2022).

- True if

$$
n \geq 2 \text { and } \frac{n+1}{3}<p<n
$$

Ou (2022).

Our (first) result

Our (first) result
Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0,
\end{array}\right.
$$

with

$$
n=2 \text { and } 1<p<2 \text { or } n=3 \text { and } \frac{3}{2}<p<2 \text {. }
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

Our (first) result

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0,
\end{array}\right.
$$

with

$$
n=2 \text { and } 1<p<2 \text { or } n=3 \text { and } \frac{3}{2}<p<2 \text {. }
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on integral identities and inspired by Gidas, Spruck (1981), Serrin, Zou (2002), Ciraolo, Figalli, R. (2021), Catino, Monticelli (2022).

Our (first) result

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\
u>0
\end{array}\right.
$$

with

$$
n=2 \text { and } 1<p<2 \text { or } n=3 \text { and } \frac{3}{2}<p<2 \text {. }
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on integral identities and inspired by Gidas, Spruck (1981), Serrin, Zou (2002), Ciraolo, Figalli, R. (2021), Catino, Monticelli (2022).
- For general n and p additional assumptions on the energy:

$$
\mathcal{E}_{\mathbb{R}^{n}}(u):=\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{n}} u^{p^{*}} d x
$$

or on the behaviour at infinity of the solution:

$$
u(x) \leq C|x|^{\alpha}, \quad \text { as }|x| \rightarrow \infty
$$

are much weaker than $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$.

Idea of the proof

Idea of the proof

- Arguing as Serrin-Zou (2002) we obtain:
$\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}|\dot{\mathrm{~V}}|^{2} \phi d x \leq-\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}\langle v \cdot \dot{\mathrm{~V}}, \nabla \phi\rangle d x, \quad$ for all $0 \leq \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,
where
$\mathrm{V}:=\left\{\begin{array}{ll}\nabla \mathrm{v} & \text { in } \mathcal{Z}^{c} \\ 0 & \text { in } \mathcal{Z}\end{array}\right.$ with $\quad \mathrm{v}:=u^{-\frac{n(p-1)}{n-p}}|\nabla u|^{p-2} \nabla u \quad$ and $\quad \dot{\mathrm{V}}:=\mathrm{V}-\frac{\operatorname{tr} \mathrm{V}}{n} \mathrm{Id}_{n}$.

Idea of the proof

- Arguing as Serrin-Zou (2002) we obtain:
$\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}|\stackrel{\circ}{ }|^{2} \phi d x \leq-\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}\langle v \cdot \stackrel{\circ}{V}, \nabla \phi\rangle d x, \quad$ for all $0 \leq \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, where
$\mathrm{V}:=\left\{\begin{array}{ll}\nabla \mathrm{v} & \text { in } \mathcal{Z}^{c} \\ 0 & \text { in } \mathcal{Z}\end{array}\right.$ with $\quad \mathrm{v}:=u^{-\frac{n(p-1)}{n-p}}|\nabla u|^{p-2} \nabla u \quad$ and $\quad \dot{\mathrm{V}}:=\mathrm{V}-\frac{\operatorname{tr} \mathrm{V}}{n} \mathrm{Id}_{n}$.
- Using Cauchy-Schwarz and Young's inequalities and the definition of v :

$$
\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}|\stackrel{\vee}{ }|^{2} \eta^{2} d x \leq C \int_{\mathbb{R}^{n}} u^{\frac{(2-p) n-p}{n-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x
$$

Idea of the proof

- Arguing as Serrin-Zou (2002) we obtain:
$\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}|\stackrel{\circ}{ }|^{2} \phi d x \leq-\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}\langle v \cdot \stackrel{\circ}{V}, \nabla \phi\rangle d x, \quad$ for all $0 \leq \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,
where
$\mathrm{V}:=\left\{\begin{array}{ll}\nabla \mathrm{v} & \text { in } \mathcal{Z}^{c} \\ 0 & \text { in } \mathcal{Z}\end{array}\right.$ with $\quad \mathrm{v}:=u^{-\frac{n(p-1)}{n-p}}|\nabla u|^{p-2} \nabla u \quad$ and $\quad \dot{\mathrm{V}}:=\mathrm{V}-\frac{\operatorname{tr} \mathrm{V}}{n} \mathrm{Id}_{n}$.
- Using Cauchy-Schwarz and Young's inequalities and the definition of v :

$$
\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}|\stackrel{\circ}{V}|^{2} \eta^{2} d x \leq C \int_{\mathbb{R}^{n}} u^{\frac{(2-p) n-p}{n-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x
$$

while, from Holder's inequality

$$
\begin{array}{r}
\int_{\mathbb{R}^{n}} u^{\frac{(n-1) p}{n-p}}|\stackrel{\vee}{V}|^{2} \eta^{2} d x \leq C\left(\int_{\text {supp }|\nabla \eta|} u^{\frac{(n-1) p}{n-p}}|\stackrel{\circ}{V}|^{2} \eta^{2} d x\right)^{\frac{1}{2}} \times \\
\left(\int_{\mathbb{R}^{n}} u^{\frac{(2-p) n-p}{n-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x\right)^{\frac{1}{2}}, \quad \text { for all } 0 \leq \eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) .
\end{array}
$$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$
$\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\stackrel{\vee}{ }|^{2} \eta^{2} d x \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\stackrel{\circ}{ }|^{2} \eta^{2} d x & \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x \\
& \leq \frac{C}{R^{2}} \int_{B_{2 R} \backslash B_{R}} u\left(u^{-\frac{p}{2-p}}|\nabla u|^{p}\right)^{\frac{2(p-1)}{p}} d x
\end{aligned}
$$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\stackrel{\vee}{ }|^{2} \eta^{2} d x & \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x \\
& \leq \frac{C}{R^{2}} \int_{B_{2 R} \backslash B_{R}} u\left(u^{\left.-\frac{p}{2-p}|\nabla u|^{p}\right)^{\frac{2(p-1)}{p}} d x}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x\right)^{\frac{2(p-1)}{\rho}}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right)^{\frac{2-p}{p}}\right.
\end{aligned}
$$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\vee|^{2} \eta^{2} d x & \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x \\
& \leq \frac{C}{R^{2}} \int_{B_{2 R} \backslash B_{R}} u\left(u^{\left.-\frac{p}{2-p}|\nabla u|^{p}\right)^{\frac{2(p-1)}{p}} d x}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x\right)^{\frac{2(\rho-1)}{p}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right)^{\frac{2-p}{p}}}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x+\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right)}\right.
\end{aligned}
$$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\vee|^{2} \eta^{2} d x & \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x \\
& \leq \frac{C}{R^{2}} \int_{B_{2 R} \backslash B_{R}} u\left(u^{\left.-\frac{p}{2-p}|\nabla u|^{p}\right)^{\frac{2(p-1)}{p}} d x}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x\right)^{\frac{2(p-1)}{p}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right)^{\frac{2-p}{p}}}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x+\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right) \leq C},\right.
\end{aligned}
$$

thanks to a weak energy estimate on balls.

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\vee|^{2} \eta^{2} d x & \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x \\
& \leq \frac{C}{R^{2}} \int_{B_{2 R} \backslash B_{R}} u\left(u^{\left.-\frac{p}{2-p}|\nabla u|^{p}\right)^{\frac{2(p-1)}{p}} d x}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x\right)^{\frac{2(p-1)}{p}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right)^{\frac{2-p}{p}}}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x+\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right) \leq C},\right.
\end{aligned}
$$

thanks to a weak energy estimate on balls.

- Hence

$$
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\dot{V}|^{2} d x=0
$$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\vee|^{2} \eta^{2} d x & \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x \\
& \leq \frac{C}{R^{2}} \int_{B_{2 R} \backslash B_{R}} u\left(u^{\left.-\frac{p}{2-p}|\nabla u|^{p}\right)^{\frac{2(p-1)}{p}} d x}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x\right)^{\frac{2(p-1)}{p}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right)^{\frac{2-p}{p}}}\right. \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x+\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right) \leq C},\right.
\end{aligned}
$$

thanks to a weak energy estimate on balls.

- Hence

$$
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}\left|\bigvee^{2}\right|^{2} d x=0 \Rightarrow \dot{\vee}=0
$$

Idea of the proof for $n=2$ and $1<p<2$

- Take η such that $\eta \equiv 1$ in $B_{R}, \eta \equiv 0$ in $B_{2 R}^{c}, 0 \leq \eta \leq 1$ and

$$
|\nabla \eta|^{2} \leq \frac{C}{R^{2}} \quad \text { in } B_{2 R} \backslash B_{R}
$$

- If $n=2$ and $1<p<2$

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\stackrel{\vee}{V}|^{2} \eta^{2} d x & \leq C \int_{\mathbb{R}^{2}} u^{\frac{4-3 p}{2-p}}|\nabla u|^{2(p-1)}|\nabla \eta|^{2} d x \\
& \leq \frac{C}{R^{2}} \int_{B_{2 R} \backslash B_{R}} u\left(u^{-\frac{p}{2-p}}|\nabla u|^{p}\right)^{\frac{2(p-1)}{p}} d x \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{-\frac{p}{2-p}}|\nabla u|^{p} d x\right)^{\frac{2(\rho-1)}{p}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right)^{\frac{2-p}{p}} \\
& \leq \frac{C}{R^{2}}\left(\int_{B_{2 R} \backslash B_{R}} u^{\left.-\frac{p}{2-p}|\nabla u|^{p} d x+\int_{B_{2 R} \backslash B_{R}} u^{\frac{p}{2-p}} d x\right) \leq C},\right.
\end{aligned}
$$

thanks to a weak energy estimate on balls.

- Hence

$$
\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}}|\stackrel{\circ}{\bigvee}|^{2} d x=0 \Rightarrow \stackrel{\circ}{V}=0 \quad \Rightarrow \quad u^{-\frac{p}{n-p}}(x)=C_{1}+C_{2}\left|x-x_{0}\right|^{\frac{p}{p-1}}
$$

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate Take $u^{-\frac{p}{2-p}} \eta^{\prime}, \eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ in the weak formulation:

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate
Take $u^{-\frac{p}{2-p}} \eta^{\prime}, \eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ in the weak formulation:

$$
\begin{aligned}
-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x=\frac{2(p-1)}{2-p} & \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x \\
& -\left.\left|\int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}+1}\right| \nabla u\right|^{p-2}(\nabla u, \nabla \eta) \eta^{\prime-1} d x .
\end{aligned}
$$

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate
Take $u^{-\frac{p}{2-p}} \eta^{\prime}, \eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ in the weak formulation:

$$
\begin{aligned}
&-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x=\frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}|\nabla u|^{p} \eta^{\prime} d x} \\
&-\quad-\quad \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}+1}|\nabla u|^{p-2}(\nabla u, \nabla \eta) \eta^{\prime-1} d x .
\end{aligned}
$$

From Cauchy-Schwarz and Young's inequalities we get

$$
\begin{aligned}
-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x & \geq \frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x \\
& -\varepsilon \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x-C_{\varepsilon} \int_{\mathbb{R}^{2}} u^{\frac{p(1-p)}{2-p}}|\nabla \eta|^{p} \eta^{\prime-p} d x .
\end{aligned}
$$

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate
Take $u^{-\frac{p}{2-p}} \eta^{\prime}, \eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ in the weak formulation:

$$
\begin{aligned}
&-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x=\frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}|\nabla u|^{p} \eta^{\prime} d x} \\
&-\left.\quad\left|\int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}+1}\right| \nabla u\right|^{p-2}(\nabla u, \nabla \eta) \eta^{\prime-1} d x .
\end{aligned}
$$

From Cauchy-Schwarz and Young's inequalities we get

$$
\begin{aligned}
-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x & \geq \frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x \\
& -\varepsilon \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x-C_{\varepsilon} \int_{\mathbb{R}^{2}} u^{\frac{p(1-p)}{2-p}}|\nabla \eta|^{p} \eta^{\prime-p} d x .
\end{aligned}
$$

It is classical that

$$
\Delta_{p} u \leq 0 \text { in } \mathbb{R}^{n} \backslash K \quad \Rightarrow \quad u(x) \geq C|x|^{-\frac{n-p}{p-1}} \text { for }|x| \geq \rho ;
$$

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate
Take $u^{-\frac{p}{2-p}} \eta^{\prime}, \eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ in the weak formulation:

$$
\begin{aligned}
&-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x=\frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}|\nabla u|^{p} \eta^{\prime} d x} \\
&-\left.\quad\left|\int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}+1}\right| \nabla u\right|^{p-2}(\nabla u, \nabla \eta) \eta^{\prime-1} d x .
\end{aligned}
$$

From Cauchy-Schwarz and Young's inequalities we get

$$
\begin{aligned}
-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x & \geq \frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x \\
& -\varepsilon \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x-C_{\varepsilon} \int_{\mathbb{R}^{2}} u^{\frac{p(1-p)}{2-p}}|\nabla \eta|^{p} \eta^{\prime-p} d x .
\end{aligned}
$$

It is classical that

$$
\Delta_{p} u \leq 0 \text { in } \mathbb{R}^{n} \backslash K \quad \Rightarrow \quad u(x) \geq C|x|^{-\frac{n-p}{p-1}} \text { for }|x| \geq \rho ;
$$

hence, choosing suitable cut-off functions, we obtain for $R>1$

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate
Take $u^{-\frac{p}{2-p}} \eta^{\prime}, \eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ in the weak formulation:

$$
\begin{aligned}
-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x=\frac{2(p-1)}{2-p} & \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x \\
& -\left.\left|\int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}+1}\right| \nabla u\right|^{p-2}(\nabla u, \nabla \eta) \eta^{\prime-1} d x .
\end{aligned}
$$

From Cauchy-Schwarz and Young's inequalities we get

$$
\begin{aligned}
-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x & \geq \frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x \\
& -\varepsilon \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x-C_{\varepsilon} \int_{\mathbb{R}^{2}} u^{\frac{p(1-p)}{2-p}}|\nabla \eta|^{p} \eta^{\prime-p} d x .
\end{aligned}
$$

It is classical that

$$
\Delta_{p} u \leq 0 \text { in } \mathbb{R}^{n} \backslash K \quad \Rightarrow \quad u(x) \geq C|x|^{-\frac{n-p}{p-1}} \text { for }|x| \geq \rho ;
$$

hence, choosing suitable cut-off functions, we obtain for $R>1$

$$
-\int_{B_{R}} u^{\frac{p}{2-p}} d x \geq\left(\frac{2(p-1)}{2-p}-\varepsilon\right) \int_{B_{R}} u^{-\frac{p}{2-p}}|\nabla u|^{p} d x-C_{\varepsilon} R^{2} .
$$

Idea of the proof for $n=2$ and $1<p<2$: Weak energy estimate
Take $u^{-\frac{p}{2-p}} \eta^{\prime}, \eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ in the weak formulation:

$$
\begin{aligned}
&-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x=\frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}|\nabla u|^{p} \eta^{\prime} d x} \\
&-\left.\quad\left|\int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}+1}\right| \nabla u\right|^{p-2}(\nabla u, \nabla \eta) \eta^{\prime-1} d x .
\end{aligned}
$$

From Cauchy-Schwarz and Young's inequalities we get

$$
\begin{aligned}
-\int_{\mathbb{R}^{2}} u^{\frac{p}{2-p}} \eta^{\prime} d x & \geq \frac{2(p-1)}{2-p} \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x \\
& -\varepsilon \int_{\mathbb{R}^{2}} u^{-\frac{p}{2-p}}|\nabla u|^{p} \eta^{\prime} d x-C_{\varepsilon} \int_{\mathbb{R}^{2}} u^{\frac{p(1-p)}{2-p}}|\nabla \eta|^{p} \eta^{\prime-p} d x .
\end{aligned}
$$

It is classical that

$$
\Delta_{p} u \leq 0 \text { in } \mathbb{R}^{n} \backslash K \quad \Rightarrow \quad u(x) \geq C|x|^{-\frac{n-p}{p-1}} \text { for }|x| \geq \rho ;
$$

hence, choosing suitable cut-off functions, we obtain for $R>1$

$$
-\int_{B_{R}} u^{\frac{p}{2-p}} d x \geq\left(\frac{2(p-1)}{2-p}-\varepsilon\right) \int_{B_{R}} u^{-\frac{p}{2-p}}|\nabla u|^{p} d x-C_{\varepsilon} R^{2} .
$$

Choose ε small enough and reorder terms.

Our general results

Our general results

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{9}\\
u>0,
\end{array}\right.
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$, if one of the following holds:

- $\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=O\left(R^{\theta}\right)$, for some suitable $\theta=\theta(n, p)>0$,
- $u(x) \leq C|x|^{\alpha}$, as $|x| \rightarrow \infty$ for some suitable $\alpha=\alpha(n, p)$.

Our general results

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{9}\\
u>0,
\end{array}\right.
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$, if one of the following holds:

- $\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=O\left(R^{\theta}\right)$, for some suitable $\theta=\theta(n, p)>0$,
- $u(x) \leq C|x|^{\alpha}, a s|x| \rightarrow \infty$ for some suitable $\alpha=\alpha(n, p)$.

Where

$$
\mathcal{E}_{B_{2 R} \backslash B_{R}}(u):=\frac{1}{p} \int_{B_{2 R} \backslash B_{R}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{B_{2 R} \backslash B_{R}} u^{p^{*}} d x .
$$

Our general results

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{9}\\
u>0
\end{array}\right.
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$, if one of the following holds:

- $\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=O\left(R^{\theta}\right)$, for some suitable $\theta=\theta(n, p)>0$,
$\rightarrow u(x) \leq C|x|^{\alpha}, a s|x| \rightarrow \infty$ for some suitable $\alpha=\alpha(n, p)$.
Where

$$
\mathcal{E}_{B_{2 R} \backslash B_{R}}(u):=\frac{1}{p} \int_{B_{2 R} \backslash B_{R}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{B_{2 R} \backslash B_{R}} u^{p^{*}} d x .
$$

Remark [Vétois (2016)]

$$
u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right) \Rightarrow\left\{\begin{array}{l}
u \text { bounded } \\
u(x) \leq \frac{c}{1+|x|^{\frac{n-p}{p-1}}} \\
|\nabla u(x)| \leq \frac{C}{1+|x|^{\frac{n-1}{p-1}}}
\end{array}\right.
$$

Our general results

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{9}\\
u>0
\end{array}\right.
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$, if one of the following holds:

- $\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=O\left(R^{\theta}\right)$, for some suitable $\theta=\theta(n, p)>0$,
$\rightarrow u(x) \leq C|x|^{\alpha}$, as $|x| \rightarrow \infty$ for some suitable $\alpha=\alpha(n, p)$.
Where

$$
\mathcal{E}_{B_{2 R} \backslash B_{R}}(u):=\frac{1}{p} \int_{B_{2 R} \backslash B_{R}}|\nabla u|^{p} d x-\frac{1}{p^{*}} \int_{B_{2 R} \backslash B_{R}} u^{p^{*}} d x .
$$

Remark (weaker assumptions) From Young's and Holder's inequalities
$\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=O\left(R^{\theta}\right) \quad \Leftrightarrow \quad \mathcal{E}_{B_{2 R} \backslash B_{R}}^{p o t}(u)=O\left(R^{\theta}\right) \quad \Leftrightarrow \quad \mathcal{E}_{B_{2 R} \backslash B_{R}}^{k i n}(u)=O\left(R^{\theta}\right)$
where

$$
\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=\mathcal{E}_{B_{2 R} \backslash B_{R}}^{k i n}(u)+\mathcal{E}_{B_{2 R} \backslash B_{R}}^{p o t}(u) .
$$

Our general results

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{9}\\
u>0,
\end{array}\right.
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$, if one of the following holds:

- $\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=O\left(R^{\theta}\right)$, for some suitable $\theta=\theta(n, p)>0$,
- $u(x) \leq C|x|^{\alpha}, a s|x| \rightarrow \infty$ for some suitable $\alpha=\alpha(n, p)$.

Corollary Let u be a bounded weak solution to (9) with

$$
n \leq 6 \quad \text { or } n \geq 7 \text { and } p>\frac{n}{3} \text {. }
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

Our general results

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to

$$
\left\{\begin{array}{l}
\Delta_{p} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \tag{9}\\
u>0
\end{array}\right.
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$, if one of the following holds:

- $\mathcal{E}_{B_{2 R} \backslash B_{R}}(u)=O\left(R^{\theta}\right)$, for some suitable $\theta=\theta(n, p)>0$,
- $u(x) \leq C|x|^{\alpha}, a s|x| \rightarrow \infty$ for some suitable $\alpha=\alpha(n, p)$.

Corollary Let u be a bounded weak solution to (9) with

$$
n \leq 6 \quad \text { or } \quad n \geq 7 \text { and } p>\frac{n}{3}
$$

Then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.
Corollary Let u be a weak solution to (9) such that

$$
u(x) \leq C|x|^{-\frac{n-p}{p}},
$$

then $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

Final remarks: Riemannian case

Final remarks: Riemannian case
Theorem [Catino, Monticelli (2022)].
Let $\left(M^{n}, g\right)$, be a complete noncompact Riemannian manifold with Ric ≥ 0 and let $u \in C^{2}(M)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } M \\
u>0,
\end{array}\right.
$$

such that $u \in \mathcal{D}^{1,2}(M)$, then $\left(M^{n}, g\right)$ is isometric to the Euclidean space and $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

Final remarks: Riemannian case

Theorem [Catino, Monticelli (2022)].
Let $\left(M^{n}, g\right)$, be a complete noncompact Riemannian manifold with Ric ≥ 0 and let $u \in C^{2}(M)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } M \\
u>0,
\end{array}\right.
$$

such that $u \in \mathcal{D}^{1,2}(M)$, then $\left(M^{n}, g\right)$ is isometric to the Euclidean space and $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on the Bochner formula and on integral estimates on the traceless Hessian of a suitable power of the solution:

$$
\dot{\nabla}^{2} f:=\nabla^{2} f-\frac{\Delta f}{n} g .
$$

Final remarks: Riemannian case

Theorem [Catino, Monticelli (2022)].
Let $\left(M^{n}, g\right)$, be a complete noncompact Riemannian manifold with Ric ≥ 0 and let $u \in C^{2}(M)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } M \\
u>0,
\end{array}\right.
$$

such that $u \in \mathcal{D}^{1,2}(M)$, then $\left(M^{n}, g\right)$ is isometric to the Euclidean space and $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on the Bochner formula and on integral estimates on the traceless Hessian of a suitable power of the solution:

$$
\dot{\nabla}^{2} f:=\nabla^{2} f-\frac{\Delta f}{n} g .
$$

- Previous result by Fogagnolo, Malchiodi, Mazzieri (2022).

Final remarks: Riemannian case

Theorem [Catino, Monticelli (2022)].
Let $\left(M^{n}, g\right)$, be a complete noncompact Riemannian manifold with Ric ≥ 0 and let $u \in C^{2}(M)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } M \\
u>0,
\end{array}\right.
$$

such that $u \in \mathcal{D}^{1,2}(M)$, then $\left(M^{n}, g\right)$ is isometric to the Euclidean space and $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on the Bochner formula and on integral estimates on the traceless Hessian of a suitable power of the solution:

$$
\dot{\nabla}^{2} f:=\nabla^{2} f-\frac{\Delta f}{n} g .
$$

- Previous result by Fogagnolo, Malchiodi, Mazzieri (2022).
- In Catino, Monticelli, R. (2022) generalized to the quasilinear case:
- if $1<p<2$ with Ric ≥ 0;
- if $2<p<n$ with $\operatorname{Sec} \geq 0$.

Final remarks: Riemannian case

Theorem [Catino, Monticelli (2022)].
Let $\left(M^{n}, g\right)$, be a complete noncompact Riemannian manifold with Ric ≥ 0 and let $u \in C^{2}(M)$ be a solution of

$$
\left\{\begin{array}{l}
\Delta u+u^{2^{*}-1}=0 \quad \text { in } M \\
u>0
\end{array}\right.
$$

such that $u \in \mathcal{D}^{1,2}(M)$, then $\left(M^{n}, g\right)$ is isometric to the Euclidean space and $u(x)=\mathcal{U}_{\lambda, x_{0}}(x)$.

- Proof based on the Bochner formula and on integral estimates on the traceless Hessian of a suitable power of the solution:

$$
\stackrel{\circ}{\nabla}^{2} f:=\nabla^{2} f-\frac{\Delta f}{n} g
$$

- Previous result by Fogagnolo, Malchiodi, Mazzieri (2022).
- In Catino, Monticelli, R. (2022) generalized to the quasilinear case:
- if $1<p<2$ with Ric ≥ 0;
- if $2<p<n$ with $\operatorname{Sec} \geq 0$.
- On Cartan-Hadamard manifolds by Muratori, Soave (2022).

Final remarks: anisotropic setting

Final remarks: anisotropic setting
Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an anisotropic norm, i.e. H is convex, H is positive 1 -homogeneous and H is positive such that H is uniformly convex and $H^{2} \in C^{2}\left(\mathbb{R}^{n} \backslash\{\mathcal{O}\}\right) \cap C^{1,1}\left(\mathbb{R}^{n}\right)$.

Final remarks: anisotropic setting
Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an anisotropic norm, i.e. H is convex, H is positive 1 -homogeneous and H is positive such that H is uniformly convex and $H^{2} \in C^{2}\left(\mathbb{R}^{n} \backslash\{\mathcal{O}\}\right) \cap C^{1,1}\left(\mathbb{R}^{n}\right)$.
The minimizers of the anisotropic Sobolev constant:
$\inf _{u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}} H(\nabla u)^{p} d x}{\left(\int_{\mathbb{R}^{n}} u^{\rho^{*}} d x\right)^{p / p^{*}}}, \quad$ are $\quad \mathcal{U}_{\lambda, x_{0}}^{H}(x)=\left(\frac{n^{\frac{1}{p}}\left(\frac{n-p}{p-1}\right)^{\frac{p-1}{\rho}} \lambda}{1+\lambda^{\frac{p}{\rho-1}} H_{0}\left(x_{0}-x\right)^{\frac{p}{\rho-1}}}\right)^{\frac{n-p}{\rho}}$
has been computed by Cordero-Erasquin, Nazaret, Villani (2004).

Final remarks: anisotropic setting
Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an anisotropic norm, i.e. H is convex, H is positive 1 -homogeneous and H is positive such that H is uniformly convex and $H^{2} \in C^{2}\left(\mathbb{R}^{n} \backslash\{\mathcal{O}\}\right) \cap C^{1,1}\left(\mathbb{R}^{n}\right)$.
The minimizers of the anisotropic Sobolev constant:
$\inf _{u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}} H(\nabla u)^{p} d x}{\left(\int_{\mathbb{R}^{n}} u^{p^{*}} d x\right)^{p / p^{*}}}, \quad$ are $\quad \mathcal{U}_{\lambda, x_{0}}^{H}(x)=\left(\frac{n^{\frac{1}{p}}\left(\frac{n-p}{p-1}\right)^{\frac{p-1}{p}} \lambda}{1+\lambda^{\frac{p}{p-1}} H_{0}\left(x_{0}-x\right)^{\frac{p}{\rho-1}}}\right)^{\frac{n-p}{p}}$
has been computed by Cordero-Erasquin, Nazaret, Villani (2004).
Theorem [Ciraolo, Figalli, R. (2021)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution of
$\left\{\begin{array}{l}\Delta_{p}^{H} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\ u>0,\end{array}\right.$ where $\Delta_{p}^{H} u:=\operatorname{div}\left(H(\nabla u)^{p-1} \nabla H(\nabla u)\right)$.
Then $u(x)=\mathcal{U}_{\lambda, x_{0}}^{H}(x)$.

Final remarks: anisotropic setting
Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an anisotropic norm, i.e. H is convex, H is positive 1 -homogeneous and H is positive such that H is uniformly convex and $H^{2} \in C^{2}\left(\mathbb{R}^{n} \backslash\{\mathcal{O}\}\right) \cap C^{1,1}\left(\mathbb{R}^{n}\right)$.
The minimizers of the anisotropic Sobolev constant:
$\inf _{u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)} \frac{\int_{\mathbb{R}^{n}} H(\nabla u)^{p} d x}{\left(\int_{\mathbb{R}^{n}} u^{p^{*}} d x\right)^{p / p^{*}}}, \quad$ are $\quad \mathcal{U}_{\lambda, x_{0}}^{H}(x)=\left(\frac{n^{\frac{1}{p}}\left(\frac{n-p}{p-1}\right)^{\frac{p-1}{p}} \lambda}{1+\lambda^{\frac{p}{p-1}} H_{0}\left(x_{0}-x\right)^{\frac{p}{\rho-1}}}\right)^{\frac{n-p}{p}}$
has been computed by Cordero-Erasquin, Nazaret, Villani (2004).
Theorem [Ciraolo, Figalli, R. (2021)]
Let $u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$ be a weak solution of
$\left\{\begin{array}{l}\Delta_{p}^{H} u+u^{p^{*}-1}=0 \quad \text { in } \mathbb{R}^{n} \\ u>0,\end{array}\right.$ where $\Delta_{p}^{H} u:=\operatorname{div}\left(H(\nabla u)^{p-1} \nabla H(\nabla u)\right)$.
Then $u(x)=\mathcal{U}_{\lambda, x_{0}}^{H}(x)$.

- Same picture in convex cones of \mathbb{R}^{n} (see Lions, Pacella, Tricarico (1988), Ciraolo, Figalli, R. (2021)).

Final remarks: related problems I

Final remarks: related problems I
The natural extension of the Lane-Emden equation

$$
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n},
$$

is the following Lane-Emden system

$$
\begin{cases}\Delta u+v^{p}=0 & \text { in } \mathbb{R}^{n} \tag{10}\\ \Delta v+u^{q}=0 & \text { in } \mathbb{R}^{n} .\end{cases}
$$

Final remarks: related problems I
The natural extension of the Lane-Emden equation

$$
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n},
$$

is the following Lane-Emden system

$$
\begin{cases}\Delta u+v^{p}=0 & \text { in } \mathbb{R}^{n} \tag{10}\\ \Delta v+u^{q}=0 & \text { in } \mathbb{R}^{n} .\end{cases}
$$

Conjecture: if the pair (p, q) is subcritical, i.e.

$$
\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2}{n} .
$$

Then system (10) has no positive classical solutions.

Final remarks: related problems I
The natural extension of the Lane-Emden equation

$$
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n},
$$

is the following Lane-Emden system

$$
\begin{cases}\Delta u+v^{p}=0 & \text { in } \mathbb{R}^{n} \tag{10}\\ \Delta v+u^{q}=0 & \text { in } \mathbb{R}^{n} .\end{cases}
$$

Conjecture: if the pair (p, q) is subcritical, i.e.

$$
\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2}{n} .
$$

Then system (10) has no positive classical solutions.

- True in the radial setting: Serrin-Zou (1994-1996),Mitidieri (1996);

Final remarks: related problems I
The natural extension of the Lane-Emden equation

$$
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n},
$$

is the following Lane-Emden system

$$
\begin{cases}\Delta u+v^{p}=0 & \text { in } \mathbb{R}^{n} \tag{10}\\ \Delta v+u^{q}=0 & \text { in } \mathbb{R}^{n} .\end{cases}
$$

Conjecture: if the pair (p, q) is subcritical, i.e.

$$
\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2}{n} .
$$

Then system (10) has no positive classical solutions.

- True in the radial setting: Serrin-Zou (1994-1996),Mitidieri (1996);
- True if $n=2$: Serrin-Zou (1994), Souto (1995), Mitidieri (1996);

Final remarks: related problems I
The natural extension of the Lane-Emden equation

$$
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n},
$$

is the following Lane-Emden system

$$
\begin{cases}\Delta u+v^{p}=0 & \text { in } \mathbb{R}^{n} \tag{10}\\ \Delta v+u^{q}=0 & \text { in } \mathbb{R}^{n} .\end{cases}
$$

Conjecture: if the pair (p, q) is subcritical, i.e.

$$
\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2}{n} .
$$

Then system (10) has no positive classical solutions.

- True in the radial setting: Serrin-Zou (1994-1996),Mitidieri (1996);
- True if $n=2$: Serrin-Zou (1994), Souto (1995), Mitidieri (1996);
- True if $n=3$: Polácik-Quittner-Souplet (2007);

Final remarks: related problems I

The natural extension of the Lane-Emden equation

$$
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n},
$$

is the following Lane-Emden system

$$
\begin{cases}\Delta u+v^{p}=0 & \text { in } \mathbb{R}^{n} \tag{10}\\ \Delta v+u^{q}=0 & \text { in } \mathbb{R}^{n} .\end{cases}
$$

Conjecture: if the pair (p, q) is subcritical, i.e.

$$
\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2}{n} .
$$

Then system (10) has no positive classical solutions.

- True in the radial setting: Serrin-Zou (1994-1996),Mitidieri (1996);
- True if $n=2$: Serrin-Zou (1994), Souto (1995), Mitidieri (1996);
- True if $n=3$: Polácik-Quittner-Souplet (2007);
- True if $n=4$: Souplet (2009), Li-Zhang (2019);

Final remarks: related problems I
The natural extension of the Lane-Emden equation

$$
\Delta u+u^{q}=0 \quad \text { in } \mathbb{R}^{n},
$$

is the following Lane-Emden system

$$
\begin{cases}\Delta u+v^{p}=0 & \text { in } \mathbb{R}^{n} \tag{10}\\ \Delta v+u^{q}=0 & \text { in } \mathbb{R}^{n}\end{cases}
$$

Conjecture: if the pair (p, q) is subcritical, i.e.

$$
\frac{1}{p+1}+\frac{1}{q+1}>1-\frac{2}{n} .
$$

Then system (10) has no positive classical solutions.

- True in the radial setting: Serrin-Zou (1994-1996),Mitidieri (1996);
- True if $n=2$: Serrin-Zou (1994), Souto (1995), Mitidieri (1996);
- True if $n=3$: Polácik-Quittner-Souplet (2007);
- True if $n=4$: Souplet (2009), Li-Zhang (2019);
- Partial results if $n \geq 5$: de Figueiredo,-Felmer (1994), Lin (1998), Busca-Manásevich (2002), Reichel-Zou (2000), Souplet (2009), Li-Zhang (2019).

GRAZIE DELL'ATTENZIONE!

