
On the critical p−Laplace equation

Alberto Roncoroni
Politecnico di Milano

Shape Optimization, Geometric Inequalities, and Related Topics

Two days workshop for young researchers in Naples

Napoli, January 31 2023



Contents

Outline:

I The generalized Lane-Emden equation.

I Rigidity results in the semilinear case (p = 2) and in the quasilinear
case (1 < p < n).

I Critical p−Laplace equation.

I The finite energy assumption and our results.

I Final remarks: Riemannian and anisotropic settings and related
problems.

Bibliography:

I G. Catino, D. Monticelli, A. R. On the critical p−Laplace equation.
Submitted.

I A. R., Liouville-type results for the Lane-Emden equation Bruno
Pini Mathematical Analysis Seminar (in preparation).



Contents

Outline:

I The generalized Lane-Emden equation.

I Rigidity results in the semilinear case (p = 2) and in the quasilinear
case (1 < p < n).

I Critical p−Laplace equation.

I The finite energy assumption and our results.

I Final remarks: Riemannian and anisotropic settings and related
problems.

Bibliography:

I G. Catino, D. Monticelli, A. R. On the critical p−Laplace equation.
Submitted.

I A. R., Liouville-type results for the Lane-Emden equation Bruno
Pini Mathematical Analysis Seminar (in preparation).



Contents

Outline:

I The generalized Lane-Emden equation.

I Rigidity results in the semilinear case (p = 2) and in the quasilinear
case (1 < p < n).

I Critical p−Laplace equation.

I The finite energy assumption and our results.

I Final remarks: Riemannian and anisotropic settings and related
problems.

Bibliography:

I G. Catino, D. Monticelli, A. R. On the critical p−Laplace equation.
Submitted.

I A. R., Liouville-type results for the Lane-Emden equation Bruno
Pini Mathematical Analysis Seminar (in preparation).



Contents

Outline:

I The generalized Lane-Emden equation.

I Rigidity results in the semilinear case (p = 2) and in the quasilinear
case (1 < p < n).

I Critical p−Laplace equation.

I The finite energy assumption and our results.

I Final remarks: Riemannian and anisotropic settings and related
problems.

Bibliography:

I G. Catino, D. Monticelli, A. R. On the critical p−Laplace equation.
Submitted.

I A. R., Liouville-type results for the Lane-Emden equation Bruno
Pini Mathematical Analysis Seminar (in preparation).



Contents

Outline:

I The generalized Lane-Emden equation.

I Rigidity results in the semilinear case (p = 2) and in the quasilinear
case (1 < p < n).

I Critical p−Laplace equation.

I The finite energy assumption and our results.

I Final remarks: Riemannian and anisotropic settings and related
problems.

Bibliography:

I G. Catino, D. Monticelli, A. R. On the critical p−Laplace equation.
Submitted.

I A. R., Liouville-type results for the Lane-Emden equation Bruno
Pini Mathematical Analysis Seminar (in preparation).



Contents

Outline:

I The generalized Lane-Emden equation.

I Rigidity results in the semilinear case (p = 2) and in the quasilinear
case (1 < p < n).

I Critical p−Laplace equation.

I The finite energy assumption and our results.

I Final remarks: Riemannian and anisotropic settings and related
problems.

Bibliography:

I G. Catino, D. Monticelli, A. R. On the critical p−Laplace equation.
Submitted.

I A. R., Liouville-type results for the Lane-Emden equation Bruno
Pini Mathematical Analysis Seminar (in preparation).



Contents

Outline:

I The generalized Lane-Emden equation.

I Rigidity results in the semilinear case (p = 2) and in the quasilinear
case (1 < p < n).

I Critical p−Laplace equation.

I The finite energy assumption and our results.

I Final remarks: Riemannian and anisotropic settings and related
problems.

Bibliography:

I G. Catino, D. Monticelli, A. R. On the critical p−Laplace equation.
Submitted.

I A. R., Liouville-type results for the Lane-Emden equation Bruno
Pini Mathematical Analysis Seminar (in preparation).



The generalized Lane-Emden equation I

In this seminar we consider the following quasilinear equation:

∆pu + |u|q−1u = 0 in Rn , (1)

where q > 1, 1 < p < n and ∆p is the p−Laplace operator

∆pu := div(|∇u|p−2∇u) .

Equation (1) is called the generalized Lane-Emden equation.

We are interested in rigidity results, i.e. classification and non-existence
results for (positive) solutions to (1).

Equation (1) (in unbounded domains) arises from physics and geometry:

I from the study of stellar structure in astrophysics1.

I from the study of problems in conformal geometry, like prescribed
scalar curvature problem2.

1S. Chandrasekhar. An Introduction to the Study of Stellar Structure,1957.
2M. Struwe.Variational Methods. Applications to Nonlinear PDEs and

Hamiltonian Systems, 1990.
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The generalized Lane-Emden equation II

An important role is played by the exponent

q = p∗ − 1 , where p∗ :=
np

n − p
,

is the Sobolev critical exponent.

Two cases:

I q < p∗ − 1, subcritical regime;

I q = p∗ − 1, critical regime.
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The case: p = 2 and q < 2∗ − 1

Theorem [Gidas-Spruck (1981)]
Let u ∈ C 2(Rn) be a solution of{

∆u + uq = 0 in Rn

u ≥ 0 ,

with

1 ≤ q < 2∗ − 1 =
n + 2

n − 2
,

then u ≡ 0.

I Proof based on a test functions argument and on integral
identities.

I The same result holds in complete noncompact Riemannian
manifolds (Mn, g) with nonnegative Ricci curvature.
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The case: p = 2 and q = 2∗ − 1

An explicit family of solutions to{
∆u + u2

∗−1 = 0 in Rn

u > 0 ,
(2)

is given by the Talentiane or Aubin-Talenti bubbles

Uλ,x0(x) :=

( √
n(n − 2)λ

1 + λ2|x − x0|2

) n−2
2

, where λ > 0 and x0 ∈ Rn . (3)

These functions have been constructed by Aubin (1976) and Talenti
(1976) as minimizers of the Sobolev constant:

S := inf
u∈D1,2(Rn)

∫
Rn |∇u|2 dx(∫
Rn u2

∗ dx
)2/2∗ ,

where
D1,2(Rn) :=

{
u ∈ L2

∗
(Rn) : ∇u ∈ L2(Rn)

}
.

Question: are the Talentiane (3) the only solutions to (2)?

Problem (2) is also related to the Yamabe problem.
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The Yamabe problem

Theorem [Yamabe (’60), Trudinger (’68), Aubin (’76), Schoen
(’84)]. Let (M, g0) be a compact Riemannian manifold of dimension
n ≥ 3. Then there exists a metric g on M which is conformal to g0 and
has constant scalar curvature.

If we write,
g = u

4
n−2 g0

for some positive function u. Then u solves

4(n − 1)

n − 2
∆g0u − Rg0u + Rgu

n+2
n−2 = 0 ,

where Rg0 , Rg denotes the scalar curvature of g0, g respectively.

When (M, g0) is the round sphere (Nirenberg problem), by
stereographic projection we get

4(n − 1)

n − 2
∆u + Rgu

n+2
n−2 = 0 in Rn ,

and hence
∆u + u

n+2
n−2 = 0 in Rn.
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The case: p = 2 and q = 2∗ − 1

Theorem [Obata (1971) and Gidas-Ni-Nirenberg (1981)]
Let u ∈ C 2(Rn) be a solution of{

∆u + u2
∗−1 = 0 in Rn

u > 0 ,
(4)

such that
u(x) = O(|x |2−n) for x large.

Then u(x) = Uλ,x0(x).

Theorem [Caffarelli-Gidas-Spruck (1989)]
Let u ∈ C 2(Rn) be a solution of (4) then u(x) = Uλ,x0(x).

I Proof based on the Kelvin transform and on the method of
moving planes (see Alexandrov (1957) and Serrin (1971)).

I From the strong maximum principle: every nonnegative solution
to (4) is strictly positive, unless u ≡ 0.

I Chen-Li (1991) and Li (1996) shorter proof.
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General p: weak solutions

Weak solutions: a weak solution u to

∆pu + |u|q−1u = 0 in Rn ,

is a function
u ∈W 1,p

loc (Rn) ∩ L∞loc(Rn) ,

such that∫
Rn

|∇u|p−2∇u · ∇ϕ dx −
∫
Rn

|u|q−1uϕ dx = 0 , for all ϕ ∈W 1,p
c (Rn) ,

where W 1,p
c (Rn) denotes the space of compactly supported functions in

W 1,p(Rn).

In general, solutions to quasilinear equations are not smooth.
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c (Rn) denotes the space of compactly supported functions in

W 1,p(Rn).

In general, solutions to quasilinear equations are not smooth.
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General p: weak solutions and regularity

Regularity theory: every weak solution to

∆pu + |u|q−1u = 0 in Rn , (5)

satisfies:

u ∈

{
W 2,2

loc (Rn) ∩ C 1,α
loc (Rn) for 1 < p ≤ 2

W 2,2
loc (Rn \ Z) ∩ C 1,α

loc (Rn \ Z) for 2 < p < n ,

for some α ∈ (0, 1) and where Z := {x ∈ Rn : ∇u(x) = 0}. Moreover,

|∇u|p−2∇u ∈W 1,2
loc (Rn) ,

and

|∇u|p−2∇2u ∈

{
L2loc(Rn) for 1 < p ≤ 2 ,

L2loc(Rn \ Z) for 2 < p < n .

If we consider positive solutions to (5) then |Z| = 0.
Campanato (1963), Stampacchia (1963), Serrin (1964), Ural’ceva (1968),
Uhlenbeck (1977), Simon (1978), Téhlin (1982), Evans (1982), Lewis (1983),
Di Benedetto (1983), Tolksdorf (1984), Manfredi (1988), Lieberman (1993),
Damascelli, Sciunzi (2004), Lou (2008), Mingione (2010), Kuusi, Mingione
(2014), Mercuri, Riey, Sciunzi (2016), Avelin, Kuusi, Mingione (2017), Cellina
(2017), Cianchi, Maz’ya (2018), Guarnotta, Mosconi (2021), Antonini, Ciraolo,
Farina (2022). . .
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Uhlenbeck (1977), Simon (1978), Téhlin (1982), Evans (1982), Lewis (1983),
Di Benedetto (1983), Tolksdorf (1984), Manfredi (1988), Lieberman (1993),
Damascelli, Sciunzi (2004), Lou (2008), Mingione (2010), Kuusi, Mingione
(2014), Mercuri, Riey, Sciunzi (2016), Avelin, Kuusi, Mingione (2017), Cellina
(2017), Cianchi, Maz’ya (2018), Guarnotta, Mosconi (2021), Antonini, Ciraolo,
Farina (2022). . .



General p: weak solutions and regularity

Regularity theory: every weak solution to

∆pu + |u|q−1u = 0 in Rn , (5)

satisfies:

u ∈

{
W 2,2

loc (Rn) ∩ C 1,α
loc (Rn) for 1 < p ≤ 2

W 2,2
loc (Rn \ Z) ∩ C 1,α

loc (Rn \ Z) for 2 < p < n ,

for some α ∈ (0, 1) and where Z := {x ∈ Rn : ∇u(x) = 0}. Moreover,

|∇u|p−2∇u ∈W 1,2
loc (Rn) ,

and

|∇u|p−2∇2u ∈

{
L2loc(Rn) for 1 < p ≤ 2 ,

L2loc(Rn \ Z) for 2 < p < n .

If we consider positive solutions to (5) then |Z| = 0.
Campanato (1963), Stampacchia (1963), Serrin (1964), Ural’ceva (1968),
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General p and q < p∗ − 1

Theorem [Serrin-Zou (2002)]
Let u be a weak solution of{

∆pu + uq = 0 in Rn

u ≥ 0 ,

with 1 < p < n and
1 ≤ q < p∗ − 1 ,

then u ≡ 0.

I Based on integral identities.

I Generalize the result by Gidas-Spruck (1981).

I What about Riemannian manifolds?
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General p and q = p∗ − 1

An explicit family of solutions to{
∆pu + up

∗−1 = 0 in Rn

u > 0 ,
(6)

is given by the Talentiane or Aubin-Talenti bubbles

Uλ,x0(x) :=

 n
1
p

(
n−p
p−1

) p−1
p

λ

1 + λ
p

p−1 |x − x0|
p

p−1


n−p
p

, where λ > 0 and x0 ∈ Rn .

(7)
These functions have been constructed by Aubin (1976) and Talenti
(1976) as minimizers of the Sobolev constant:

S := inf
u∈D1,p(Rn)

∫
Rn |∇u|p dx(∫

Rn up
∗ dx

)p/p∗ ,

where
D1,p(Rn) :=

{
u ∈ Lp

∗
(Rn) : ∇u ∈ Lp(Rn)

}
.

Question: are the Talentiane (7) the only solutions to (6)?
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General p and q = p∗ − 1

Theorem [Damascelli-Merchán-Montoro-Sciunzi (2014)]
Let u ∈ D1,p(Rn) be a weak solution to{

∆pu + up
∗−1 = 0 in Rn

u > 0 ,
(8)

with

D1,p(Rn) :=
{
u ∈ Lp

∗
(Rn) : ∇u ∈ Lp(Rn)

}
and

2n

n + 2
< p < 2 .

Then u(x) = Uλ,x0(x).

Theorem [Vétois (2016) and Sciunzi (2016)]
Let u ∈ D1,p(Rn) be a weak solution to (8) with 1 < p < n. Then
u(x) = Uλ,x0(x).

I Based on asymptotic bounds on u and |∇u| and the method of
moving planes.

I The Strong Maximum Principle holds for nonnegative solutions of
(8) (see Vazquez (1984)).

I Ciraolo-Figalli-R. (2021) alternative proof.
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The hypothesis u > 0 is fundamental

I For p = 2: it is possible to construct “many” sign-changing
solutions to

∆u + u|u|2
∗−2 = 0 in Rn ,

which are not radial!

Ding (1986), del Pino, Musso, Pacard, Pistoia (2011-2013), Musso,
Wei (2015), Medina, Musso, Wei (2019), Medina, Musso (2021).

I For 1 < p < n, with n ≥ 4, it is possible to construct “many”
sign-changing solutions to

∆pu + u|u|p
∗−2 = 0 in Rn ,

which are not radial!

Clapp-Rios (2018).
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A big difference between p = 2 and p 6= 2

Theorem [Caffarelli-Gidas-Spruck (1989)]
Let u ∈ C 2(Rn) be a solution of{

∆u + u2
∗−1 = 0 in Rn

u > 0 ,

then u(x) = Uλ,x0(x).

Theorem [Vétois (2016) and Sciunzi (2016)]
Let u ∈ D1,p(Rn) be a weak solution to{

∆pu + up
∗−1 = 0 in Rn

u > 0 ,

with

D1,p(Rn) :=
{
u ∈ Lp

∗
(Rn) : ∇u ∈ Lp(Rn)

}
and 1 < p < n .

Then u(x) = Uλ,x0(x).

Question: is it possible to remove (or weaken) the assumption
u ∈ D1,p(Rn)?
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A big difference between p = 2 and p 6= 2: the finite energy assumption

It is well-known that the energy associated to{
∆pu + up

∗−1 = 0 in Rn

u > 0 ,

is

E(u) :=
1

p

∫
Rn

|∇u|p dx − 1

p∗

∫
Rn

up
∗
dx .

This functional is also interesting from the point of view of the calculus
of variations. Since the embedding W 1,p(Rn) ↪→ Lp

∗
(Rn) is not

compact, the classical tools of the calculus of variations (e.g. the
Mountain Pass Lemma or the direct method) do not apply!

It is clear that
u ∈ D1,p(Rn) ⇒ E(u) <∞ .

The hypothesis u ∈ D1,p(Rn) is called the finite energy assumption.
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of variations. Since the embedding W 1,p(Rn) ↪→ Lp

∗
(Rn) is not

compact, the classical tools of the calculus of variations (e.g. the
Mountain Pass Lemma or the direct method) do not apply!

It is clear that
u ∈ D1,p(Rn) ⇒ E(u) <∞ .

The hypothesis u ∈ D1,p(Rn) is called the finite energy assumption.
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Then u(x) = Uλ,x0(x).

I True if

n = 2 and 1 < p < 2 or n = 3 and
3

2
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I True if

n ≥ 2 and
n + 1

3
< p < n ,

Ou (2022).
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Our (first) result

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to{

∆pu + up
∗−1 = 0 in Rn

u > 0 ,

with

n = 2 and 1 < p < 2 or n = 3 and
3

2
< p < 2 .

Then u(x) = Uλ,x0(x).

I Proof based on integral identities and inspired by Gidas, Spruck
(1981), Serrin, Zou (2002), Ciraolo, Figalli, R. (2021), Catino,
Monticelli (2022).

I For general n and p additional assumptions on the energy:

ERn(u) :=
1

p

∫
Rn

|∇u|p dx − 1

p∗

∫
Rn

up
∗
dx

or on the behaviour at infinity of the solution:

u(x) ≤ C |x |α , as |x | → ∞,

are much weaker than u ∈ D1,p(Rn).
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Idea of the proof

• Arguing as Serrin-Zou (2002) we obtain:∫
Rn

u
(n−1)p
n−p |V̊|2φ dx ≤ −

∫
Rn

u
(n−1)p
n−p 〈v ·V̊,∇φ〉 dx , for all 0 ≤ φ ∈ C∞c (Rn) ,

where

V :=

{
∇v in Zc

0 in Z
with v := u−

n(p−1)
n−p |∇u|p−2∇u and V̊ := V− tr V

n
Idn .

• Using Cauchy-Schwarz and Young’s inequalities and the definition of v:∫
Rn

u
(n−1)p
n−p |V̊|2η2 dx ≤ C

∫
Rn

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2 dx ,

while, from Holder’s inequality∫
Rn

u
(n−1)p
n−p |V̊|2η2 dx ≤ C

(∫
supp|∇η|

u
(n−1)p
n−p |V̊|2η2 dx

) 1
2

×

(∫
Rn

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2 dx
) 1

2

, for all 0 ≤ η ∈ C∞c (Rn) .
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Idea of the proof for n = 2 and 1 < p < 2

• Take η such that η ≡ 1 in BR , η ≡ 0 in Bc
2R , 0 ≤ η ≤ 1 and

|∇η|2 ≤ C

R2
in B2R \ BR .

• If n = 2 and 1 < p < 2∫
R2

u
p

2−p |V̊|2η2 dx ≤ C

∫
R2

u
4−3p
2−p |∇u|2(p−1)|∇η|2 dx

≤ C

R2

∫
B2R\BR

u
(
u−

p
2−p |∇u|p

) 2(p−1)
p

dx

≤ C

R2

(∫
B2R\BR

u−
p

2−p |∇u|p dx

) 2(p−1)
p
(∫

B2R\BR

u
p

2−p dx

) 2−p
p

≤ C

R2

(∫
B2R\BR

u−
p

2−p |∇u|p dx +

∫
B2R\BR

u
p

2−p dx

)
≤ C ,

thanks to a weak energy estimate on balls.
• Hence∫
R2

u
p

2−p |V̊|2 dx = 0 ⇒ V̊ = 0 ⇒ u−
p

n−p (x) = C1+C2|x−x0|
p

p−1 .
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Idea of the proof for n = 2 and 1 < p < 2: Weak energy estimate

Take u−
p

2−p ηl , η ∈ C∞0 (R2) in the weak formulation:

−
∫
R2

u
p

2−p ηl dx =
2(p − 1)

2− p

∫
R2

u−
p

2−p |∇u|pηl dx

− l

∫
R2

u−
p

2−p+1|∇u|p−2(∇u,∇η)ηl−1 dx .

From Cauchy-Schwarz and Young’s inequalities we get

−
∫
R2

u
p

2−p ηl dx ≥ 2(p − 1)

2− p

∫
R2

u−
p

2−p |∇u|pηl dx

− ε
∫
R2

u−
p

2−p |∇u|pηl dx − Cε

∫
R2

u
p(1−p)
2−p |∇η|pηl−p dx .

It is classical that

∆pu ≤ 0 in Rn \ K ⇒ u(x) ≥ C |x |−
n−p
p−1 for |x | ≥ ρ ;

hence, choosing suitable cut-off functions, we obtain for R > 1

−
∫
BR

u
p

2−p dx ≥
(

2(p − 1)

2− p
− ε
)∫

BR

u−
p

2−p |∇u|p dx − CεR
2 .

Choose ε small enough and reorder terms.
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Our general results

Theorem [Catino-Monticelli-R. (2022)]
Let u be a weak solution to{

∆pu + up
∗−1 = 0 in Rn

u > 0 ,
(9)

Then u(x) = Uλ,x0(x), if one of the following holds:

I EB2R\BR
(u) = O(Rθ), for some suitable θ = θ(n, p) > 0,

I u(x) ≤ C |x |α, as |x | → ∞ for some suitable α = α(n, p).
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Final remarks: Riemannian case

Theorem [Catino, Monticelli (2022)].
Let (Mn, g), be a complete noncompact Riemannian manifold with
Ric ≥ 0 and let u ∈ C 2(M) be a solution of{

∆u + u2
∗−1 = 0 in M

u > 0 ,

such that u ∈ D1,2(M), then (Mn, g) is isometric to the Euclidean space
and u(x) = Uλ,x0(x).

I Proof based on the Bochner formula and on integral estimates
on the traceless Hessian of a suitable power of the solution:

∇̊2f := ∇2f − ∆f

n
g .

I Previous result by Fogagnolo, Malchiodi, Mazzieri (2022).

I In Catino, Monticelli, R. (2022) generalized to the quasilinear case:

I if 1 < p < 2 with Ric ≥ 0;
I if 2 < p < n with Sec ≥ 0.

I On Cartan-Hadamard manifolds by Muratori, Soave (2022).
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Final remarks: anisotropic setting

Let H : Rn → R an anisotropic norm, i.e. H is convex, H is positive
1-homogeneous and H is positive such that H is uniformly convex and
H2 ∈ C 2(Rn \ {O}) ∩ C 1,1(Rn).
The minimizers of the anisotropic Sobolev constant:

inf
u∈D1,p(Rn)

∫
Rn H(∇u)p dx(∫
Rn up

∗ dx
)p/p∗ , are UH

λ,x0(x) =

 n
1
p

(
n−p
p−1

) p−1
p

λ

1 + λ
p

p−1H0(x0 − x)
p

p−1


n−p
p

has been computed by Cordero-Erasquin, Nazaret, Villani (2004).

Theorem [Ciraolo, Figalli, R. (2021)]
Let u ∈ D1,p(Rn) be a weak solution of{

∆H
p u + up

∗−1 = 0 in Rn

u > 0 ,
where ∆H

p u := div
(
H(∇u)p−1∇H(∇u)

)
.

Then u(x) = UH
λ,x0

(x).

I Same picture in convex cones of Rn (see Lions, Pacella, Tricarico
(1988), Ciraolo, Figalli, R. (2021)).
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p u + up

∗−1 = 0 in Rn

u > 0 ,
where ∆H

p u := div
(
H(∇u)p−1∇H(∇u)

)
.

Then u(x) = UH
λ,x0

(x).

I Same picture in convex cones of Rn (see Lions, Pacella, Tricarico
(1988), Ciraolo, Figalli, R. (2021)).



Final remarks: related problems I

The natural extension of the Lane-Emden equation

∆u + uq = 0 in Rn ,

is the following Lane-Emden system{
∆u + vp = 0 in Rn

∆v + uq = 0 in Rn .
(10)

Conjecture: if the pair (p, q) is subcritical, i.e.

1

p + 1
+

1

q + 1
> 1− 2

n
.

Then system (10) has no positive classical solutions.

I True in the radial setting: Serrin-Zou (1994-1996),Mitidieri (1996);

I True if n = 2: Serrin-Zou (1994), Souto (1995), Mitidieri (1996);

I True if n = 3: Polácik-Quittner-Souplet (2007);

I True if n = 4: Souplet (2009), Li-Zhang (2019);

I Partial results if n ≥ 5: de Figueiredo,-Felmer (1994), Lin (1998),
Busca-Manásevich (2002), Reichel-Zou (2000), Souplet (2009),
Li-Zhang (2019).
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