Existence and multiplicity results for some classes of nonlinear differential problems

Shape Optimization, Geometric Inequalities and Related Topics

Angela Sciammetta
University of Palermo - Department of Mathematics and Computer Science

JANUARY 30-31, 2023
G. Bonanno, G. D'Aguì, A. Sciammetta, Existence of two positive solutions for anisotropic nonlinear elliptic equations, Advances in Differential Equations, vol. 26 (2021), 229-258.
D. Motreanu, A. Sciammetta, E. Tornatore, A sub-super solutions approach for Neumann boundary value problems with gradient dependence, Nonlinear Anal. Real World Appl. 54 (2020) 1-12.

First part

Anisotropic nonlinear elliptic equations via variational methods
G. Bonanno, G. D'Aguì, A. Sciammetta, Existence of two positive solutions for anisotropic nonlinear elliptic equations, Advances in Differential Equations, vol. 26 (2021), 229-258.

$$
\begin{cases}-\Delta_{\vec{p}} u=\lambda f(x, u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

- $\Omega \subset \mathbb{R}^{N}$ with a boundary of class C^{1} and with $N \geq 2$;
- $\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{N}\right), \vec{p} \in \mathbb{R}^{N}$;
- $p^{-}=\min \left\{p_{1}, p_{2} \ldots, p_{N}\right\}>N$;
- $p^{+}=\max \left\{p_{1}, p_{2} \ldots, p_{N}\right\}$;
- $\lambda>0$;
- $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Carathéodory function, that is:

1. $x \mapsto f(x, \xi)$ is measurable for every $\xi \in \mathbb{R}$;
2. $\xi \mapsto f(x, \xi)$ is continuous for almost every $x \in \Omega$;
3. for every $s>0$ there is a function $l_{s} \in L^{1}(\Omega)$ such that

$$
\sup _{|\xi| \leq s}|f(x, \xi)| \leq l_{s}(x), \quad \text { for a.e. } \quad x \in \Omega .
$$

Anisotropic p-Laplacian operator

$$
\Delta_{\vec{p}} u=\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}-2} \frac{\partial u}{\partial x_{i}}\right)
$$

If $p_{i}=p$ for all $i=1, \ldots, N$

$$
\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)=\tilde{\Delta}_{p} u, \quad \text { pseudo }-p-\text { Laplacian operator. }
$$

If $p_{i}=2$ for all $i=1, \ldots, N$

$$
\sum_{i=1}^{N} \frac{\partial^{2} u}{\partial x_{i}^{2}}=\Delta u, \quad \text { Laplacian operator. }
$$

[1] M. Belloni, B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as $p \rightarrow \infty$, ESAIM Control Optim. Calc. Var. 10 (2004), 28-52.
[2] L. Brasco, G. Franzina, An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities, Nonlinear Differ. Equ. Appl. 20 (2013), 1795-1830.

Some references

[1] S.M. Nikol'skii, An imbedding theorem for functions with partial derivatives considered in different metrics, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 321-336.
[2] J. Rákosník, Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis 13 (1979) 55-68.
[3] J. Rákosník, Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis 15 (1981), 127-140.
[4] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3-24.
Let $\alpha \in \mathbb{N}^{N}$ be multiindices such that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$. The length of α is $|\alpha|=\alpha_{1}+\ldots+\alpha_{N}$.

$$
\begin{gather*}
D^{\alpha} u:=\frac{\partial^{|\alpha|} u}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{N}^{\alpha_{N}}} \tag{1}\\
D^{0} u:=u
\end{gather*}
$$

$E=\left\{\alpha \in \mathbb{N}_{0}^{N}:|\alpha| \leq 1\right\}$ and $\vec{p}=\left(p_{0}, p_{1}, \ldots, p_{N}\right)$ with $p_{0} \geq p_{i} \geq 1$ for $i=1, \ldots, N$.

$$
\begin{equation*}
W^{E, \vec{p}}(\Omega)=\left\{u=u(x): D^{\alpha} u \in L^{p_{\alpha}}(\Omega), \text { for } \alpha \in E\right\} \tag{2}
\end{equation*}
$$

is a reflexive Banach space if it is equipped with the norm

$$
\begin{equation*}
\|u\|_{W^{E, \vec{p}}(\Omega)}:=\sum_{\alpha \in E}\left\|D^{\alpha} u\right\|_{L^{p} \alpha(\Omega)} \tag{3}
\end{equation*}
$$

We denote by $W_{0}^{E, \vec{p}}(\Omega)$ as closure of $C_{0}^{\infty}(\Omega)$ in the topology of $W^{E, \vec{p}}(\Omega)$.

Anisotripic Sobolev spaces

Consider the following $N+1$ multiindices of N-tuple

$$
E=\{(0,0, \ldots, 0),(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots(0,0, \ldots, 1)\},
$$

and consiter $\vec{p}=\left(p_{0}, p_{1}, p_{2}, \ldots, p_{N}\right)$ with $p_{i} \geq 1$ for all $i=1, \ldots N$.
Then, the set (2) becomes

$$
\begin{equation*}
W^{1, \vec{p}}(\Omega)=\left\{u \in L^{p_{0}}(\Omega): \frac{\partial u}{\partial x_{i}} \in L^{p_{i}}(\Omega), \text { for } i=1, \ldots, N\right\} \tag{4}
\end{equation*}
$$

in which we consider the norm

$$
\begin{equation*}
\|u\|_{W^{1, \vec{p}}(\Omega)}=\|u\|_{L^{p_{0}}(\Omega)}+\sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{p_{i}}(\Omega)} \tag{5}
\end{equation*}
$$

We define $W_{0}^{1, \vec{p}}(\Omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm (5). On $W_{0}^{1, \vec{p}}(\Omega)$ we can also define the following norm

$$
\begin{equation*}
\|u\|_{W_{0}^{1, \vec{p}}(\Omega)}:=\sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{p_{i}}(\Omega)} \tag{6}
\end{equation*}
$$

Remark

We observe also that if \vec{p} is constant (that is $p_{i}=p$ for all $i=0,1, \ldots, N$) we get

$$
W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega): \frac{\partial u}{\partial x_{i}} \in L^{p}(\Omega)\right\}
$$

Other references

[1] S.N. Antontsev, S. Shmarev, Energy methods for free boundary problems: applications to nonlinear PDEs and fluid mechanics, Progress in Nonlinear Differential Equations and Their Applications, Vol 48, Birkhauser Boston, Boston, MA, 2002.
[2] M. Bendahmane, M. Langlais, M. Saad, On some anisotropic reaction-diffusion systems with L^{1}-data modeling the propagation of an epidemic disease, Nonlinear Anal., (4) 54 (2003), 617-636.
[3] A. Cianchi, Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincarè ANL 17 (2000), 147-168.
[4] R. Di Nardo, F. Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations, Arch. Math. 102 (2014), 141-153.
[5] A. El Hamidi, J.M. Rakotoson, Extremal functions for the anisotropic Sobolev inequalities, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 741-75.
[6] G.M. Figueiredo, J.R.S. Silva, A critical anisotropic problem with discontinuous nonlinearities, Nonlinear Analysis: Real world and applications 47 (2019), 364-374.
[7] I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 21,715-734.
[8] N. Fusco, C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Commun. in Partial Differential Equations 18 (993), 153-167.
[9] S.M. Nikol'skii, An imbedding theorem for functions with partial derivatives considered in different metrics, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 321-336. English translation: Amer. Math.

Main tool

Theorem (G. Bonanno and G. D'Aguì)

Let X be a real Banach space and let $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two functionals of class C^{1} such that $\inf _{X} \Phi(u)=\Phi(0)=\Psi(0)=0$. Assume that there are $r \in \mathbb{R}$ and $\tilde{u} \in X$, with $0<\Phi(\tilde{u})<r$, such that

$$
\begin{equation*}
\frac{\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(u)}{r}<\frac{\Psi(\tilde{u})}{\Phi(\tilde{u})} \tag{7}
\end{equation*}
$$

and, for each

$$
\lambda \in \Lambda=] \frac{\Phi(\tilde{u})}{\Psi(\tilde{u})}, \frac{r}{\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(u)}[,
$$

the functional $I_{\lambda}=\Phi-\lambda \Psi$ satisfies the $(P S)-$ condition and it is unbounded from below.
Then, for each $\lambda \in \Lambda$, the functional I_{λ} admits at least two non-zero critical points $u_{\lambda, 1}, u_{\lambda, 2} \in X$ such that $I_{\lambda}\left(u_{\lambda, 1}\right)<0<I_{\lambda}\left(u_{\lambda, 2}\right)$.
[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[2] G. Bonanno, G. D'Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend. 35 (2016), 449-464.

Variational approach
$\Phi, \Psi: W_{0}^{1, \vec{p}}(\Omega) \rightarrow \mathbb{R}$,

$$
F(x, t)=\int_{0}^{t} f(x, \xi) d \xi \text { for all }(x, t) \in \Omega \times \mathbb{R}
$$

$$
\underbrace{I_{\lambda}(u)=\underbrace{\sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}} d x}_{\Phi(u)}-\lambda \underbrace{\int_{\Omega} F(x, u(x)) d x}_{\Psi(u)}}_{\text {Energy functional }}
$$

Definition

A function $u: \Omega \rightarrow \mathbb{R}$ is a weak solution of problem $\left(D_{\lambda}^{\vec{p}}\right)$ if $u \in X$ satisfies the following condition for all $v \in X$

$$
\underbrace{\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}-2} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x}_{\Phi^{\prime}(u)(v)}=\lambda \underbrace{\int_{\Omega} f(x, u(x)) v(x) d x}_{\Psi^{\prime}(u)(v)} .
$$

(AR) There exist constants $\mu>p^{+}$and $M>0$ such that, $0<\mu F(x, t) \leq t f(x, t)$ for all $x \in \Omega$ and for all $|t| \geq M$.

Lemma 1

Assume that the $(A R)$-condition holds. Then I_{λ} satisfies the $(P S)$-condition and it is unbounded from below.

Preliminary results

$\left(W_{0}^{1, \vec{p}}(\Omega),\|\cdot\|_{W_{0}^{1, \vec{p}}(\Omega)}\right)$ is a Banach space, where $W_{0}^{1, \vec{p}}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ with

$$
\|u\|_{W_{0}^{1, \vec{p}}(\Omega)}:=\sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{p_{i}}(\Omega)}
$$

Proposition

$W_{0}^{1, \vec{p}}(\Omega)$ is compactely embedded in $C^{0}(\bar{\Omega})$ and for each $u \in W_{0}^{1, \vec{p}}(\Omega)$

$$
\|u\|_{C^{0}(\bar{\Omega})} \leq \underbrace{2^{\frac{(N-1)\left(p^{-}-1\right)}{p^{-}}} m_{p^{-}} \max _{1 \leq i \leq N}\left\{|\Omega|^{\frac{p_{i}-p^{-}}{p_{i} p^{-}}}\right.}_{=T_{0}}\}\|u\|_{W_{0}^{1, \vec{p}}(\Omega)}
$$

Proof: $p^{-}>N, W_{0}^{1, p^{-}}(\Omega)$ is continuously embedded in $C^{0}(\bar{\Omega})$, the embedding is compact and

$$
\begin{gathered}
\|u\|_{C^{0}(\bar{\Omega})} \leq m_{p^{-}}\|u\|_{W_{0}^{1, p^{-}}}(\Omega) \\
\leq 2^{\frac{(N-1)\left(p^{-}-1\right)}{p^{-}}} m_{p^{-}} \max _{1 \leq i \leq N}\left\{|\Omega|^{\frac{p_{i}-p^{-}}{p_{i} p^{-}}}\right\}\|u\|_{W_{0}^{1, \vec{p}}(\Omega)} \\
m_{p^{-}}=\frac{N^{-\frac{1}{p^{-}}}}{\sqrt{\pi}}\left[\Gamma\left(1+\frac{N}{2}\right)\right]^{\frac{1}{N}}\left(\frac{p^{-}-1}{p^{-}-N}\right)^{1-\frac{1}{p^{-}}}|\Omega|^{\frac{1}{N}-\frac{1}{p^{-}}}
\end{gathered}
$$

[^0]
Preliminary results

Proposition

Fix $r>0$. Then for each $u \in W_{0}^{1, \vec{p}}(\Omega)$ such that

$$
\sum_{i=1}^{N} \frac{1}{p_{i}}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{p_{i}(\Omega)}}^{p_{i}}<r
$$

one has

$$
\|u\|_{C^{0}(\bar{\Omega})}<T \max \left\{r^{1 / p^{-}} ; r^{1 / p^{+}}\right\}
$$

where $T=T_{0} \sum_{i=1}^{N} p_{i}{ }^{1 / p_{i}}$.

The sign of solutions

$$
f^{+}(x, t)= \begin{cases}f(x, 0), & \text { if } t<0 \tag{8}\\ f(x, t), & \text { if } t \geq 0\end{cases}
$$

for all $(x, t) \in \Omega \times \mathbb{R}$ and

$$
\begin{cases}-\Delta_{\vec{p}} u=\lambda f^{+}(x, u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Lemma 2

Assume that

$$
f(x, 0) \geq 0 \quad \text { for a.e. } x \in \Omega .
$$

Then, any weak solution of $\left(D_{\lambda, f^{+}}^{\vec{p}}\right)$ is nonnegative and it is also a weak solution of $\left(D_{\lambda}^{\vec{p}}\right)$.

Lemma 3

Assume that

$$
f(x, t) \geq 0 \quad \text { for a.e. } x \in \Omega, \quad \text { for all } t \geq 0 \text {. }
$$

Then, any non-zero weak solution of $\left(D_{\lambda, f}^{\vec{p}}\right)$ is positive and it is also a weak solution of $\left(D_{\lambda}^{\vec{p}}\right)$.
[1] A. Di Castro, E. Montefusco, Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations, Nonlinear Anal. 70 (2009), 4093-4105.

Main result

$$
\begin{gathered}
R:=\sup _{x \in \Omega}^{\operatorname{dist}(x, \partial \Omega)} \Rightarrow \overrightarrow{x_{0} \in \Omega \text { such that } B\left(x_{0}, R\right) \subseteq \Omega} \\
\omega_{R}:=\left|B\left(x_{0}, R\right)\right|=\frac{\pi^{\frac{N}{2}}}{\Gamma\left(1+\frac{N}{2}\right)} R^{N}, \quad \mathcal{K}=\frac{1}{\left[\sum_{i=1}^{N} \frac{1}{p_{i}}\left(\frac{2}{R}\right)^{p_{i}}\right] \omega_{R}\left(\frac{2^{N}-1}{2^{N}}\right) \max \left\{T^{p^{-}} ; T^{p^{+}}\right\}}
\end{gathered}
$$

Theorem

Assume that the $(A R)$-condition holds and $\exists c, d>0$, with $\max \left\{d^{p^{-}} ; d^{p^{+}}\right\}<\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}$, s.t.

$$
\begin{gather*}
F(x, t) \geq 0, \quad \text { for all } \quad(x, t) \in \Omega \times[0, d], \tag{9}\\
\frac{\int_{\Omega} \max _{|\xi| \leq c} F(x, \xi) d x}{\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}}<\mathcal{K} \frac{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}{\max \left\{d^{p^{-}} ; d^{p^{+}}\right\}} . \tag{10}
\end{gather*}
$$

Then, for each
$\lambda \in \tilde{\Lambda}:=] \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{\mathcal{K}} \frac{\max \left\{d^{p^{-}} ; d^{p^{+}}\right\}}{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}, \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}}{\int_{\Omega} \max _{|\xi| \leq c} F(x, \xi) d x}[$,
problem $\left(D_{\lambda}^{\vec{p}}\right)$ has at least two non-zero weak solutions.

Sketch of Proof

- $X=W_{0}^{1, \vec{p}}(\Omega)$ and $\lambda \in \tilde{\Lambda}$.
- $I_{\lambda}=\sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}} d x-\lambda \int_{\Omega} F(x, u(x)) d x=\Phi(u)-\lambda \Psi(u)$.

$$
\begin{gathered}
\text { from }(A R) \text {-condition } \stackrel{\text { Lemma } 1}{\Rightarrow} \begin{array}{l}
I_{\lambda} \\
I_{\lambda}
\end{array} \\
\text { Put } r=\min \left\{\left(\frac{c}{T}\right)^{p^{-}} ;\left(\frac{c}{T}\right)^{p^{+}}\right\} \text {and }
\end{gathered}
$$

$$
\tilde{u}(x)= \begin{cases}0 & \text { if } x \in \Omega \backslash B\left(x_{0}, R\right) \\ \frac{2 d}{R}\left(R-\left|x-x_{0}\right|\right) & \text { if } x \in B\left(x_{0}, R\right) \backslash B\left(x_{0}, \frac{R}{2}\right), \\ d & \text { if } x \in B\left(x_{0}, \frac{R}{2}\right)\end{cases}
$$

Clearly, $\tilde{u} \in W_{0}^{1, \vec{p}}(\Omega)$. From max $\left\{d^{p^{-}} ; d^{p^{+}}\right\}<\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}+(10) \Rightarrow 0<\Phi(\tilde{u})<r$ $\frac{\Psi(\tilde{u})}{\Phi(\tilde{u})} \geq \max \left\{T^{p^{-}} ; T^{p^{+}}\right\} \mathcal{K} \frac{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}{\max \left\{d p^{p^{-}} ; d^{+}\right\}}>\max \left\{T^{p^{-}} ; T^{p^{+}}\right\} \frac{\int_{\Omega|\xi| \leq c} \max F(x, \xi) d x}{\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}} \geq \frac{\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(u)}{r}$

- $\lambda \in \tilde{\Lambda} \subseteq] \frac{\Phi(\tilde{u})}{\Psi(\tilde{u})}, \frac{r}{\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(u)}[$

Some consequences

Theorem

Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x, t) \geq 0$ for a.e. $x \in \Omega$ and for all $t \geq 0$. Assume that

$$
\left(A R^{+}\right) \exists \mu>p^{+} \text {and } M>0 \text { such that } 0<\mu F(x, t) \leq t f(x, t) \forall x \in \Omega \text { and } \forall t \geq M .
$$

Moreover, assume that there are two positive constants c and d, with $d<1 \leq c$, such that

$$
\frac{\int_{\Omega} F(x, c) d x}{c^{p^{-}}}<\mathcal{K} \frac{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}{d^{p^{-}}} .
$$

Then, for each $\lambda \in] \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{\mathcal{K}} \frac{d^{p^{-}}}{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}, \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{c^{p^{-}}}{\int_{\Omega} F(x, c) d x}[$,
problem ($D_{\lambda}^{\vec{p}}$) has at least two positive weak solutions.

Sketch of Proof

from $\left(A R^{+}\right)$-condition $\stackrel{\text { Lemma } 1}{\Rightarrow} \quad I_{\lambda}^{+}:=\Phi-\lambda \Psi^{+}$satisfies the $(P S)-$ condition
I_{λ}^{+}is unbounded from below

- From Lemma 3, any non-zero weak solution of $\left(D_{\lambda, f^{+}}^{\vec{p}}\right)$ is a positive weak solution of $\left(D_{\lambda}^{\vec{p}}\right)$.

Some consequences

Theorem

Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x, t) \geq 0$ for a.e. $x \in \Omega$ and for all $t \geq 0$. Assume that

$$
\left(A R^{+}\right) \exists \mu>p^{+} \text {and } M>0 \text { such that } 0<\mu F(x, t) \leq t f(x, t) \forall x \in \Omega \text { and } \forall t \geq M .
$$

Moreover, assume that there are two positive constants c and d, with $d<c \leq 1$, such that

$$
\frac{\int_{\Omega} F(x, c) d x}{c^{p^{+}}}<\mathcal{K} \frac{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}{d^{p^{-}}}
$$

Then, for each $\lambda \in] \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{\mathcal{K}} \frac{d^{p^{-}}}{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}, \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{c^{p^{+}}}{\int_{\Omega} F(x, c) d x}[$,
problem ($D_{\lambda}^{\vec{p}}$) has at least two positive weak solutions.

Sketch of Proof

from $\left(A R^{+}\right)$-condition $\stackrel{\text { Lemma } 1}{\Rightarrow} \quad I_{\lambda}^{+}:=\Phi-\lambda \Psi^{+}$satisfies the $(P S)-$ condition
I_{λ}^{+}is unbounded from below

- From Lemma 3, any non-zero weak solution of $\left(D_{\lambda, f^{+}}^{\vec{p}}\right)$ is a positive weak solution of $\left(D_{\lambda}^{\vec{p}}\right)$.

Some consequences

Theorem

Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x, t) \geq 0$ for a.e. $x \in \Omega$ and for all $t \geq 0$. Assume that

$$
\left(A R^{+}\right) \exists \mu>p^{+} \text {and } M>0 \text { such that } 0<\mu F(x, t) \leq t f(x, t) \forall x \in \Omega \text { and } \forall t \geq M .
$$

Moreover, assume that there are two positive constants c and d, with $1 \leq d<c$, such that

$$
\frac{\int_{\Omega} F(x, c) d x}{c^{p^{-}}}<\mathcal{K} \frac{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}{d^{p^{+}}} .
$$

Then, for each $\lambda \in] \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{\mathcal{K}} \frac{d^{p^{+}}}{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}, \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{c^{p^{-}}}{\int_{\Omega} F(x, c) d x}[$,
problem ($D_{\lambda}^{\vec{p}}$) has at least two positive weak solutions.

Sketch of Proof

from $\left(A R^{+}\right)$-condition $\stackrel{\text { Lemma } 1}{\Rightarrow} \quad I_{\lambda}^{+}:=\Phi-\lambda \Psi^{+}$satisfies the $(P S)-$ condition
I_{λ}^{+}is unbounded from below

- From Lemma 3, any non-zero weak solution of $\left(D_{\lambda, f^{+}}^{\vec{p}}\right)$ is a positive weak solution of $\left(D_{\lambda}^{\vec{p}}\right)$.

Example 1: $N=3, \Omega=B(0,2), p_{1}=4, p_{2}=5, p_{3}=6, c=1$ and $d=10^{-14}$

$$
\begin{align*}
& \begin{cases}-\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}-2} \frac{\partial u}{\partial x_{i}}\right)=10^{-12}\left(x^{2}+y^{2}+z^{2}\right) u^{8}+10^{-12} u & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega\end{cases} \tag{11}\\
& f(x, y, z, t)=\left(x^{2}+y^{2}+z^{2}\right) t^{8}+t^{2} \Rightarrow F(x, y, z, t)=\left(x^{2}+y^{2}+z^{2}\right) \frac{t^{9}}{9}+\frac{t^{3}}{3} .
\end{align*}
$$

We have that $\left(A R^{+}\right)$-condition holds and

$$
m_{p^{-}}=\sqrt[4]{\frac{3^{3}}{2 \pi}}, \quad T_{0}=\sqrt[3]{\frac{2^{5} \cdot 3^{2}}{\sqrt{\pi}}}, \quad T=(\sqrt{2}+\sqrt[5]{5}+\sqrt[6]{6}) \sqrt[3]{\frac{2^{5} \cdot 3^{2}}{\sqrt{\pi}}}
$$

$\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}=T^{6}=(\sqrt{2}+\sqrt[5]{5}+\sqrt[6]{6})^{6} \frac{\left(2^{5} \cdot 3^{2}\right)^{2}}{\pi}, \quad \mathcal{K}=\frac{5}{2^{10} \cdot 3^{2} \cdot 7 \cdot 37(\sqrt{2}+\sqrt[5]{5}+\sqrt[6]{6})^{6}}$.

$$
\begin{aligned}
\frac{1}{\max \left\{T^{p^{-}} ; T^{p+}\right\}} & \frac{1}{\mathcal{K}} \frac{d^{p^{-}}}{\int_{B\left(x_{0}, \frac{R}{2}\right)} F(x, d) d x}=\frac{7 \cdot 37}{5} \frac{1}{\frac{2^{2}}{5} d^{5}+\frac{2^{2}}{d}} \leq \frac{7 \cdot 37}{4} d=\frac{7 \cdot 37}{4} 10^{-14}<10^{-12} \\
& <\frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{c^{p^{-}}}{\int_{\Omega} F(x, c) d x}=\frac{5}{(\sqrt{2}+\sqrt[5]{5}+\sqrt[6]{6})^{6} 2^{15} 3^{4}}
\end{aligned}
$$

Some consequences

$$
\begin{cases}-\Delta_{\vec{p}} u=\lambda f(u) & \text { in } \Omega \tag{p}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Put

$$
\mathcal{K}^{*}=\frac{\omega_{R}}{2^{N}|\Omega|} \mathcal{K}
$$

$\left(A R_{1}^{+}\right)$there exist constants $\mu>p^{+}$and $M>0$ such that, $0<\mu F(t) \leq t f(t)$ for all $t \geq M$.

Theorem

Let $f:\left[0,+\infty\left[\rightarrow\left[0,+\infty\left[\right.\right.\right.\right.$ be a continuous function such that the $\left(A R_{1}^{+}\right)-$condition holds. Moreover, assume that there are two positive constants c and d, with $d<1 \leq c$, such that

$$
\begin{equation*}
\frac{F(c)}{c^{p^{-}}}<\mathcal{K}^{*} \frac{F(d)}{d^{p^{-}}} \tag{12}
\end{equation*}
$$

Then, for each
$\left.\lambda \in \tilde{\Lambda}_{1}:=\right] \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{|\Omega|} \frac{1}{\mathcal{K}^{*}} \frac{d^{p^{-}}}{F(d)}, \frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{|\Omega|} \frac{c^{p^{-}}}{F(c)}[$,
the problem $\left(A D_{\lambda}^{\vec{p}}\right)$ has at least two positive weak solutions.

Some consequences

$$
\begin{cases}-\Delta_{\vec{p}} u=\lambda f(u) & \text { in } \Omega \tag{p}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

$\left(A R_{1}^{+}\right)$There exist constants $\mu>p^{+}$and $M>0$ such that, $0<\mu F(t) \leq t f(t)$ for all $t \geq M$.

Theorem

Let $f:\left[0,+\infty\left[\rightarrow\left[0,+\infty\left[\right.\right.\right.\right.$ be a continuous function such that the $\left(A R_{1}^{+}\right)-$condition holds. Assume that

$$
\begin{equation*}
\limsup _{t \rightarrow 0^{+}} \frac{F(t)}{t^{p^{-}}}=+\infty \tag{13}
\end{equation*}
$$

Put $\lambda^{*}=\frac{1}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{|\Omega|} \sup _{c \geq 1} \frac{c^{p^{-}}}{F(c)}$.
Then, for each $\lambda \in] 0, \lambda^{*}\left[\right.$, the problem $\left(A D_{\lambda}^{\vec{p}}\right)$ admits at least two positive weak solutions.

Remark

$$
\lambda^{*}=\frac{1}{\max \left\{T_{p^{-}} ; T^{p^{+}}\right\}} \frac{1}{|\Omega|} \max \left\{\sup _{c \geq 1} \frac{c^{p^{-}}}{F(c)} ; \sup _{0<c<1} \frac{c^{p^{+}}}{F(c)}\right\} .
$$

Some consequences

Theorem

Fix s, q such that $0 \leq s<p^{-}-1$ and $p^{+}-1<q$. Put
$\eta^{*}=\min \left\{\frac{1-\frac{p^{+}}{q+1}}{\frac{p^{+}}{s+1}-1},\left[\frac{(s+1)(q+1)}{\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}|\Omega|} \frac{\left(\frac{p^{+}}{s+1}-1\right)^{\frac{p^{+}-(s+1)}{q-s}}\left(1-\frac{p^{+}}{q+1}\right)^{\frac{(q+1)-p^{+}}{q-s}}}{(q+1)\left(1-\frac{p^{+}}{q+1}\right)+(s+1)\left(\frac{p^{+}}{s+1}-1\right)}\right]^{\frac{q-s}{(q+1)-p^{+}}}\right\}$.
Then, for each $\eta \in] 0, \eta^{*}$ [the problem

$$
\begin{cases}-\Delta_{\vec{p}} u=\eta u^{s}+u^{q} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

$$
\left(A D_{\eta}^{\vec{p}}\right)
$$

has at least two positive weak solutions.

Example 2: $N=2, \Omega=B(0,1), p_{1}=3$ and $p_{2}=4$
For each $\eta \in] 0, \frac{3}{2^{8}\left(2^{\frac{1}{2}}+3^{\frac{1}{3}}\right)^{8}}[$, the problem

$$
\begin{cases}-\frac{\partial}{\partial x_{1}}\left(\left|\frac{\partial u}{\partial x_{1}}\right| \frac{\partial u}{\partial x_{1}}\right)-\frac{\partial}{\partial x_{2}}\left(\left|\frac{\partial u}{\partial x_{2}}\right|^{2} \frac{\partial u}{\partial x_{2}}\right)=\eta u+u^{5} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

admits at least two positive weak solutions.
Indeed

$$
\begin{gathered}
m_{p^{-}}=\left(\frac{2}{\pi}\right)^{\frac{1}{3}}, \quad T_{0}=\frac{2}{\pi^{\frac{1}{4}}}, \quad T=\left(3^{\frac{1}{3}}+4^{\frac{1}{4}}\right) \frac{2}{\pi^{\frac{1}{4}}}, \\
\max \left\{T^{p^{-}} ; T^{p^{+}}\right\}|\Omega|=\left(3^{\frac{1}{3}}+4^{\frac{1}{4}}\right)^{4} 2^{4}, \quad(s+1)(q+1)=12, \\
\frac{\left(\frac{p^{+}}{s+1}-1\right)^{\frac{p^{+}-(s+1)}{q-s}}\left(1-\frac{p^{+}}{q+1}\right)^{\frac{(q+1)-p^{+}}{q-s}}}{(q+1)\left(1-\frac{p^{+}}{q+1}\right)+(s+1)\left(\frac{p^{+}}{s+1}-1\right)}=\frac{1}{3^{\frac{1}{2} 4}}, \\
\eta^{*}=\min \left\{\frac{1}{3} ;\left[\frac{3^{\frac{1}{2}}}{\left(3^{\frac{1}{3}}+4^{\frac{1}{4}}\right)^{4} 2^{4}}\right]^{2}\right\}=\frac{3}{\left(3^{\frac{1}{3}}+4^{\frac{1}{4}}\right)^{8} 2^{8}} .
\end{gathered}
$$

Second part

Non-variational elliptic equations

D. Motreanu, A. Sciammetta, E. Tornatore, A sub-super solutions approach for Neumann boundary value problems with gradient dependence, Nonlinear Anal. Real World Appl. 54 (2020) 1-12.

$$
\begin{cases}-\operatorname{div}(A(x, \nabla u))+\alpha(x)|u|^{p-2} u=f(x, u, \nabla u) & \text { in } \Omega \tag{P}\\ A(x, \nabla u) \cdot \nu(x)=0 & \text { su } \partial \Omega .\end{cases}
$$

1. $A: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a continuous map;
2. $\Omega \subset \mathbb{R}^{N}$ is a nonempty bounded domain with boundary $C^{1, \gamma}$ for $\left.\gamma \in\right] 0,1[$;
3. $1<p<+\infty$ with $p<N$;
4. $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function;
5. $\alpha \in L^{\infty}(\Omega)$, with $\alpha \geq 0$ and $\alpha \not \equiv 0$;
6. ν is the unit outward normal vector to $\partial \Omega$ at each point $x \in \partial \Omega$.
7. $X=W^{1, p}(\Omega)$;
8. $\|u\|=\left(\int_{\Omega}|\nabla u|^{p} d x+\int_{\Omega} \alpha(x)|u|^{p} d x\right)^{\frac{1}{p}}$, which is equivalent to the usual one

$$
\|u\|_{p}=\left(\|\nabla u\|_{L^{p}(\Omega)}^{p}+\|u\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

[1] V.G. Mazja, Sobolev Spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985.

G．Barletta，P．Candito，D．Motreanu，Constant sign and sign－changing solutions for quasilinear elliptic equations with Neumann boundary condition，J．Convex Anal． 21 （2014），53－66．

G．Bonanno，P．Candito，Three solutions to a Neumann problem for elliptic equations involving the p－Laplacian，Arch．Math． 80 （2003），424－429．

F．Faraci，D．Motreanu，D．Puglisi，Positive solutions of quasi－linear elliptic equations with dependence on the gradient，Calc．Var．Partial Differential Equations 54 （2015），525－538．

D．Motreanu，V．V．Motreanu，N．Papageorgiou，Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems，Ann．Sc．Norm．Super．Pisa Cl．Sci．（5） 10 （2011）， 729－755．

D．Motreanu，M．Tanaka，Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under the Neumann boundary condition，Calc．Var．Partial Differential Equations 43 （2013），231－264．

D．Motreanu，P．Winkert，Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence，Appl．Math．Lett． 95 （2019），78－84．

M．Tanaka，Existence of a positive solution for quasilinear elliptic equations with a nonlinearity including the gradient，Bound．Value Probl．， 173 （2013）， 11 pp．
春
P．Winkert，Multiple solution results for elliptic Neumann problems involving set－valued nonlinearities，J．Math．Anal．Appl． 377 （1）（2011）121－134．

Basic notations

Definition

A function $u: \Omega \rightarrow \mathbb{R}$ is a weak solution of problem (P) if $u \in W^{1, p}(\Omega)$ satisfies the following condition for all $v \in W^{1, p}(\Omega)$

$$
\int_{\Omega} A(x, \nabla u) \cdot \nabla v d x+\int_{\Omega} \alpha(x)|u|^{p-2} u v d x=\int_{\Omega} f(x, u, \nabla u) v d x .
$$

A function $\bar{u} \in W^{1, p}(\Omega)$ is a supersolution of problem (P) if $u \in W^{1, p}(\Omega)$ satisfies the following condition

$$
\int_{\Omega}\left(A(x, \nabla \bar{u}) \cdot \nabla v+\alpha(x)|\bar{u}|^{p-2} \bar{u} v\right) d x \geq \int_{\Omega} f(x, \bar{u}, \nabla \bar{u}) v d x
$$

for all $v \in W^{1, p}(\Omega)$, with $v \geq 0$ a.e. in Ω.
A function $\underline{u} \in W^{1, p}(\Omega)$ is a subsolution of problem (P) if $u \in W^{1, p}(\Omega)$ satisfies the following condition

$$
\int_{\Omega}\left(A(x, \nabla \underline{u}) \cdot \nabla v+\alpha(x)|\underline{u}|^{p-2} \underline{u} v\right) d x \leq \int_{\Omega} f(x, \underline{u}, \nabla \underline{u}) v d x
$$

for all $v \in W^{1, p}(\Omega)$, with $v \geq 0$ a.e. in Ω.

Basic notations

Definition

A function $u: \Omega \rightarrow \mathbb{R}$ is a weak solution of problem (P) if $u \in W^{1, p}(\Omega)$ satisfies the following condition for all $v \in W^{1, p}(\Omega)$

$$
\int_{\Omega} A(x, \nabla u) \cdot \nabla v d x+\int_{\Omega} \alpha(x)|u|^{p-2} u v d x=\int_{\Omega} f(x, u, \nabla u) v d x .
$$

A function $\bar{u} \in W^{1, p}(\Omega)$ is a supersolution of problem (P) if $u \in W^{1, p}(\Omega)$ satisfies the following condition

$$
\int_{\Omega}\left(A(x, \nabla \bar{u}) \cdot \nabla v+\alpha(x)|\bar{u}|^{p-2} \bar{u} v\right) d x \geq \int_{\Omega} f(x, \bar{u}, \nabla \bar{u}) v d x
$$

for all $v \in W^{1, p}(\Omega)$, with $v \geq 0$ a.e. in Ω.
A function $\underline{u} \in W^{1, p}(\Omega)$ is a subsolution of problem (P) if $u \in W^{1, p}(\Omega)$ satisfies the following condition

$$
\int_{\Omega}\left(A(x, \nabla \underline{u}) \cdot \nabla v+\alpha(x)|\underline{u}|^{p-2} \underline{u} v\right) d x \leq \int_{\Omega} f(x, \underline{u}, \nabla \underline{u}) v d x
$$

for all $v \in W^{1, p}(\Omega)$, with $v \geq 0$ a.e. in Ω.
(H) There exists a function $\sigma \in L^{\gamma^{\prime}}(\Omega)$ with $\gamma \in\left(1, p^{*}\right)$ and $a>0$ and $\beta \in\left[0, \frac{p}{\left(p^{*}\right)^{\prime}}\right)$ such that

$$
|f(x, s, \xi)| \leq \sigma(x)+a|\xi|^{\beta} \text { for a.e. } x \in \Omega, \text { all } s \in[\underline{u}(x), \bar{u}(x)], \xi \in \mathbb{R}^{N} .
$$

Put $\lambda>0$ and we consider the following auxiliary Neumann problem:

$$
\begin{cases}-\operatorname{div}(A(x, \nabla u))+\alpha(x)|u|^{p-2} u+\lambda \Pi(u)=N_{f}(T u) & \text { in } \Omega \\ A(x, \nabla u) \cdot \nu(x)=0 & \text { su } \partial \Omega\end{cases}
$$

1. $N_{f}:[\underline{u}, \bar{u}] \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ is the Nemytskij operator corresponding to the function $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ in (P), that is

$$
\left\langle N_{f}(u), v\right\rangle=\int_{\Omega} f(x, u(x), \nabla u(x)) v(x) d x
$$

2. for all $u \in W^{1, p}(\Omega)$, truncation operator $T: W^{1, p}(\Omega) \rightarrow W^{1, p}(\Omega)$

$$
T u(x)=\left\{\begin{array}{lll}
\bar{u}(x) & \text { if } & u(x)>\bar{u}(x) \tag{14}\\
u(x) & \text { if } & \underline{u}(x) \leq u(x) \leq \bar{u}(x), \\
\underline{u}(x) & \text { if } & u(x)<\underline{u}(x)
\end{array}\right.
$$

3. cut-off function $\pi: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$

$$
\pi(x, s)=\left\{\begin{array}{lll}
(s-\bar{u}(x))^{\frac{\beta}{p-\beta}} & \text { if } s>\bar{u}(x), \tag{15}\\
0 & \text { if } \underline{u}(x) \leq s \leq \bar{u}(x) \\
-(\underline{u}(x)-s)^{\frac{\beta}{p-\beta}} & \text { if } s<\underline{u}(x)
\end{array}\right.
$$

4. $\Pi: W^{1, p}(\Omega) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ is the Nemytskij operator corresponding to the function $\pi: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$

$$
\Pi(u)=\pi(\cdot, u(\cdot))
$$

5. for each $\lambda>0$ the operator $A_{\lambda}: W^{1, p}(\Omega) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ is defined as

$$
A_{\lambda}(u)=-\operatorname{div}(A(x, \nabla u))+\alpha(x)|u|^{p-2} u+\lambda \Pi(u)-N_{f}(T u)
$$

Main tool - Surjectivity theorem

Theorem (see [1, Theorem 2.99])

Let X be a real reflexive Banach space and let $A_{\lambda}: X \rightarrow X^{*}$ be an operator which satisfies following conditions:

1. A_{λ} is bounded, that is A_{λ} maps bounded sets to bounded sets;
2. A_{λ} is coercive, that is

$$
\lim _{\|u\| \rightarrow \infty} \frac{\left\langle A_{\lambda} u, u\right\rangle}{\|u\|}=+\infty
$$

3. A_{λ} is pseudomonotone, that is let $\left\{u_{n}\right\} \in X$ be such that

$$
u_{n} \rightharpoonup u \quad \text { in } \quad X \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\langle A_{\lambda} u_{n}, u_{n}-u\right\rangle \leq 0
$$

then $\forall w \in X, \quad\left\langle A_{\lambda} u, u-w\right\rangle \leq \liminf _{n \rightarrow \infty}\left\langle A_{\lambda} u_{n}, u_{n}-w\right\rangle$.
Then A_{λ} is surjective, i.e. for every $b \in X^{*}$ the equation $A_{\lambda} x=b$ has at least one solution $x \in X$.
[1] S. Carl, V.K. Le, D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles and applications, Springer, New York, 2007.

Hypothesis on A

$A: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is continuous and verifies the following condition:
(A) There exist constants $0<c_{1} \leq c_{2}$ such that

$$
A(x, \xi) \cdot \xi \geq c_{1}|\xi|^{p} \text { and }|A(x, \xi)| \leq c_{2}\left(|\xi|^{p-1}+1\right)
$$

for a.e. $x \in \Omega$, all $\xi \in \mathbb{R}^{N} . A(x, \cdot)$ is monotone on \mathbb{R}^{N}, i.e.

$$
(A(x, \xi)-A(x, \eta)) \cdot(\xi-\eta) \geq 0 \text { for all } \xi, \eta \in \mathbb{R}^{N}
$$

Remark

We do not require that A has to be a potential operator.
Example: $A(x, \xi)=|\xi|^{p-2} \xi+g(x, \xi)|\xi|^{q-2} \xi$

- $1<q<p<+\infty$;
- $g: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ nonnegative, continuous function such that

$$
|g(x, \xi)| \leq c_{0}\left(1+|\xi|^{p-q}\right)
$$

for a constant $c_{0}>0$ for all $x \in \Omega$, for all $\xi \in \mathbb{R}^{N}$;

- $g(x, \cdot)$ monotone on \mathbb{R}^{N} for a.e. $x \in \Omega$.

If $g \equiv 0 \Longrightarrow \Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$,
p-Laplacian operator.
If $g \equiv 1 \Longrightarrow \Delta_{p} u+\Delta_{q} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+|\nabla u|^{q-2} \nabla u\right), \quad(p, q)$-Laplacian operator.

Hypothesis on π

$$
\begin{equation*}
|\pi(x, s)| \leq c|s|^{\frac{\beta}{p-\beta}}+\varrho(x) \text { for a.e. } x \in \Omega, \text { all } s \in \mathbb{R} \tag{16}
\end{equation*}
$$

with $c>0$ and $\varrho \in L^{\frac{p}{\beta}}(\Omega)$.
From definition of $\pi: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ we obtain that

$$
\begin{gather*}
\int_{\Omega} \pi(x, u(x)) u(x) d x \geq r_{1}\|u\|_{\frac{L^{\frac{p}{p-\beta}}(\Omega)}{\frac{p}{p-\beta}}-r_{2} \text { for all } u \in W^{1, p}(\Omega)} \begin{array}{c}
\int_{\Omega}\left|\pi(x, u(x))\left\|v(x) \mid d x \leq r_{3}\right\| u\left\|_{L^{\frac{p}{p-\beta}}(\Omega)}^{\frac{\beta}{p-\beta}}\right\| v \|_{L^{p}}^{\frac{p}{p-\beta}}(\Omega)\right.
\end{array}+r_{4}\|v\|_{L^{\frac{p}{p-\beta}}(\Omega)} \text { for all } u, v \in W^{1, p}(\Omega),
\end{gather*}
$$

with r_{1}, r_{2}, r_{3} and r_{4} positive constants.

Theorem 1 (Esistence of a solution of auxiliary problem $\left(\mathrm{T}_{\lambda}\right)$)

Assume that \underline{u} and \bar{u} are a subsolution and a supersolution of problem (P) respectively, with $\underline{u} \leq \bar{u}$ a.e. in Ω such that hypotheses (A) and (H) are fulfilled. Then there exists $\lambda_{0}>0$ such that whenever $\lambda \geq \lambda_{0}$ there is a solution of auxiliary problem (T_{λ}).

Sketch of Proof: $A_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$

$$
\left\langle A_{\lambda} u, v\right\rangle=\int_{\Omega} A(x, \nabla u) \cdot \nabla v d x+\int_{\Omega} \alpha(x)|u|^{p-2} u v d x+\int_{\Omega} \pi(x, u) v d x-\int_{\Omega} f(x, T u, \nabla T u) v d x .
$$

- A_{λ} is bounded. From $(A),(H)$, estimate (18), and since $\alpha \in L^{\infty}(\Omega)$.
- A_{λ} is pseudomonotone. Let $\left\{u_{n}\right\} \subset W^{1, p}(\Omega)$ be a sequence satisfies

$$
u_{n} \rightharpoonup u \text { in } W^{1, p}(\Omega) \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\langle A_{\lambda} u_{n}, u_{n}-u\right\rangle \leq 0 .
$$

From our assumption on f, T, π, α, Hölder inequality and R - K compact embedding theorem we get $\lim _{n \rightarrow \infty} \int_{\Omega} f\left(x, T u_{n}, \nabla\left(T u_{n}\right)\right)\left(u_{n}-u\right) d x=0, \lim _{n \rightarrow \infty} \int_{\Omega} \pi\left(x, u_{n}\right)\left(u_{n}-u\right) d x=0, \lim _{n \rightarrow \infty} \int_{\Omega} \alpha(x)\left|u_{n}\right|^{p-1}\left(u_{n}-u\right) d x=0$.

Then

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} A\left(x, \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) d x \leq 0
$$

$$
(S)_{+}-\text {property }
$$

$$
\Longrightarrow u_{n} \rightarrow u \text { in } W^{1, p}(\Omega) \Longrightarrow \begin{aligned}
& A_{\lambda} u_{n} \rightharpoonup A_{\lambda} u, \\
& \\
& \left\langle A_{\lambda} u_{n}, u_{n}\right\rangle \rightarrow\left\langle A_{\lambda} u, u\right\rangle
\end{aligned}
$$

- A_{λ} is coercive.

$$
\begin{aligned}
\left\langle A_{\lambda} u, u\right\rangle & =\int_{\Omega} A(x, \nabla u) \cdot \nabla v u d x+\int_{\Omega} \alpha(x)|u|^{p} d x+\int_{\Omega} \pi(x, u) u d x-\int_{\Omega} f(x, T u, \nabla T u) v d x \\
& \geq \int_{\Omega} A(x, \nabla u) \cdot \nabla u d x+\int_{\Omega} \pi(x, u) u d x-\int_{\Omega} f(x, T u, \nabla T u) u d x \\
& \geq\left(c_{1}-\varepsilon\right)\|u\|^{p}+\left(\lambda r_{1}-c(\varepsilon)\right)\|u\|_{L^{\frac{p}{p-\beta}}(\Omega)}^{\frac{p}{p-\beta}}-d\|u\|-\lambda r_{2},
\end{aligned}
$$

with positive constants $c(\varepsilon), c_{1}, r_{1}, d$. Choose $\varepsilon \in(0, c)$ and $\lambda>\frac{c(\varepsilon)}{r_{1}}$, then

$$
\lim _{\|u\| \rightarrow+\infty} \frac{\left\langle A_{\lambda} u, u\right\rangle}{\|u\|}=+\infty .
$$

- Since the operator $A_{\lambda}: W^{1, p}\left(\Omega \rightarrow\left(W^{1, p}(\Omega)\right)^{*}\right.$ is bounded, pseudomonotone and coercive, it is surjective (see [1, p. 40]). Therefore we can find $u \in W^{1, p}(\Omega)$ that solves

$$
\begin{cases}-\operatorname{div}(A(x, \nabla u))+\alpha(x)|u|^{p-2} u+\lambda \Pi(u)=N_{f}(T u) & \text { in } \Omega, \\ A(x, \nabla u) \cdot \nu(x)=0 & \text { on } \partial \Omega .\end{cases}
$$

[1] S. Carl, V.K. Le, D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles and applications, Springer, New York, 2007.

Theorem 2 (the solution of problem $\left(\mathrm{T}_{\lambda}\right)$ is a solution of (P))

Let \underline{u} and \bar{u} be a subsolution and a supersolution of (P), respectively, with $\underline{u} \leq \bar{u}$ a.e. in Ω such that hypotheses (A) and (H) are fulfilled. Then problem (P) possesses a solution $\bar{u} \in W^{1, p}(\Omega)$ located in the ordered interval $[\underline{u}, \bar{u}]$.

- From Theorem 1, there is a solution $u \in W_{0}^{1, p}(\Omega)$ of auxiliary problem provided $\lambda>0$ sufficiently large

$$
\begin{cases}-\operatorname{div}(A(x, \nabla u))+\alpha(x)|u|^{p-2} u+\lambda \Pi(u)=N_{f}(T u) & \text { in } \Omega, \\ A(x, \nabla u) \cdot \nu(x)=0 & \text { on } \partial \Omega .\end{cases}
$$

- Using comparison arguments we prove that every solution $u \in W_{0}^{1, p}(\Omega)$ of auxiliary problem satisfies $\underline{u} \leq u \leq \bar{u}$ a.e. in Ω;
- The solution u of the auxiliary truncated problem satisfies $T u=u$ and $\Pi(u)=0$, so it is a solution of the original problem

$$
\begin{cases}-\operatorname{div}(A(x, \nabla u))+\alpha(x)|u|^{p-2} u=f(x, u, \nabla u) & \text { in } \Omega \tag{P}\\ A(x, \nabla u) \cdot \nu(x)=0 & \text { su } \partial \Omega\end{cases}
$$

Put

$$
\omega(x, s):=\alpha(x) s^{p-1}-f(x, s, 0) \text { whenever }(x, s) \in \Omega \times(0,+\infty)
$$

Theorem

Assume that condition (A) holds and there exist two positive constants a_{1} and a_{2} with $a_{1}<a_{2}$ for which

$$
\begin{gathered}
\omega\left(x, a_{1}\right) \leq 0 \text { and } \omega\left(x, a_{2}\right) \geq 0 \text { for a.e. } x \in \Omega, \\
|f(x, s, \xi)| \leq \sigma(x)+a|\xi|^{\beta} \text { for a.e. } x \in \Omega, \text { for all } s \in\left[a_{1}, a_{2}\right], \xi \in \mathbb{R}^{N},
\end{gathered}
$$

for $\sigma \in L^{\gamma^{\prime}}(\Omega)$ with $\gamma^{\prime}=\frac{\gamma}{\gamma-1}, \gamma \in\left(1, p^{*}\right), a>0 e \beta \in\left[0, \frac{p}{\left(p^{*}\right)^{\prime}}\right)$.
Then (P) admits at least a (positive) solution $u \in W_{0}^{1, p}(\Omega)$ satisfying the a priori estimate $a_{1} \leq u(x) \leq a_{2}$ for all $x \in \Omega$.

Sketch of Proof:

- $\underline{u}=a_{1} \Longrightarrow \omega\left(x, a_{1}\right)=\alpha(x) a_{1}^{p-1}-f\left(x, a_{1}, 0\right) \leq 0 \Longleftrightarrow \alpha(x) a_{1}^{p-1} \leq f\left(x, a_{1}, 0\right)$

$$
\int_{\Omega}(\underbrace{A(x, 0) \cdot \nabla v}_{=0}+\alpha(x)\left|a_{1}\right|^{p-2} a_{1} v) d x \leq \int_{\Omega} f\left(x, a_{1}, 0\right) v d x, \forall v \in W^{1, p}(\Omega) \text { with } v \geq 0 \text { a.e. on } \Omega .
$$

- $\bar{u}=a_{2} \Longrightarrow \omega\left(x, a_{2}\right)=\alpha(x) a_{2}^{p-1}-f\left(x, a_{2}, 0\right) \geq 0 \Longleftrightarrow \alpha(x) a_{2}^{p-1} \geq f\left(x, a_{2}, 0\right)$
$\int_{\Omega}(\underbrace{A(x, 0) \cdot \nabla v}_{=0}+\alpha(x)\left|a_{2}\right|^{p-2} a_{2} v) d x \geq \int_{\Omega} f\left(x, a_{2}, 0\right) v d x, \forall v \in W^{1, p}(\Omega)$ with $v \geq 0$ a.e. on Ω.
- From Theorem 2, problem (P) possesses a solution $u \in W^{1, p}(\Omega)$ such that $u \in[\underline{u}, \bar{u}]$.

Put

$$
\omega(x, s):=\alpha(x) s^{p-1}-f(x, s, 0) \text { whenever }(x, s) \in \Omega \times(0,+\infty),
$$

and that condition (A) holds.

Theorem

If there exist positive constants $a_{i}(i=1, \ldots, 2 m)$ with $a_{1}<a_{2}<a_{3}<\ldots<a_{2 m-1}<a_{2 m}$ for which

$$
\begin{gathered}
\omega\left(x, a_{2 j-1}\right) \leq 0 \text { and } \omega\left(x, a_{2 j}\right) \geq 0 \text { for a.e. } x \in \Omega \text {, for all } j=1, \ldots, m, \\
|f(x, s, \xi)| \leq \sigma(x)+a|\xi|^{\beta} \text { for a.e. } x \in \Omega, \text { for all } s \in \cup_{j=1}^{m}\left[a_{2 j-1}, a_{2 j}\right], \xi \in \mathbb{R}^{N},
\end{gathered}
$$

for $\sigma \in L^{\gamma^{\prime}}(\Omega), \gamma^{\prime}=\frac{\gamma}{\gamma-1}, \gamma \in\left(1, p^{*}\right), a>0$ and $\beta \in\left[0, \frac{p}{\left(p^{*}\right)^{\prime}}\right)$.
Then (P) admits at least m (positive) solutions $u_{j} \in W_{0}^{1, p}(\Omega)$, satisfying the a priori estimate $a_{2 j-1} \leq u_{j}(x) \leq a_{2 j}$ for all $x \in \Omega, j=1, \ldots, m$.

Put

$$
\omega(x, s):=\alpha(x) s^{p-1}-f(x, s, 0) \text { whenever }(x, s) \in \Omega \times(0,+\infty),
$$

and that condition (A) holds.

Theorem

If there exists a strictly increasing sequence of positive numbers $\left\{a_{j}\right\}_{j \geq 1}$ such that

$$
\begin{gathered}
\omega\left(x, a_{2 j-1}\right) \leq 0 \text { and } \omega\left(x, a_{2 j}\right) \geq 0 \text { for a.e. } x \in \Omega, \text { for all } j \geq 1, \\
|f(x, s, \xi)| \leq \sigma(x)+a|\xi|^{\beta} \text { for a.e. } x \in \Omega \text {, for all } s \in \cup_{j=1}^{\infty}\left[a_{2 j-1}, a_{2 j}\right], \xi \in \mathbb{R}^{N},
\end{gathered}
$$

for $\sigma \in L^{\gamma^{\prime}}(\Omega), \gamma^{\prime}=\frac{\gamma}{\gamma-1}, \gamma \in\left(1, p^{*}\right), a>0$ and $\beta \in\left[0, \frac{p}{\left(p^{*}\right)^{\prime}}\right)$.
Then (P) admits infinitely many (positive) solutions $u_{j} \in W_{0}^{1, p}(\Omega)$, satisfying the a priori estimate $a_{2 j-1} \leq u_{j}(x) \leq a_{2 j}$ for all $x \in \Omega, j \geq 1$.

Example (infinitely many solutions)

Given constants $s_{0}>0, \beta_{1}, \beta_{2} \in\left[0, \frac{p}{\left(p^{*}\right)^{\prime}}\left[, \eta \in L^{\infty}(\Omega)\right.\right.$, ed

$$
f(x, s, \xi)=\left(\alpha(x) s^{p-1}+\sin s\right)\left(1+|\xi|^{\beta_{1}}\right)+\eta(x)|\xi|^{\beta_{2}}
$$

for a.e. $x \in \Omega$, for alls $\geq s_{0}, \xi \in \mathbb{R}^{N}$.

$$
f(x, s, \xi)=f\left(x, s_{0}, \xi\right)
$$

for a.e. $x \in \Omega$, for all $s<s_{0}, \xi \in \mathbb{R}^{N}$.

$$
\omega(x, s)=-\sin s,
$$

for a.e. $x \in \Omega$, for all $s \geq s_{0}$.

Thank you for your kind attention

[^0]: [1] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3-24.

