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 −∆p⃗u = λf (x, u) in Ω,

u = 0 on ∂Ω,
(Dp⃗

λ)

• Ω ⊂ RN with a boundary of class C1 and with N ≥ 2;
• p⃗ = (p1, p2, . . . , pN), p⃗ ∈ RN ;
• p− = min {p1, p2 . . . , pN} > N;
• p+ = max {p1, p2 . . . , pN};
• λ > 0;
• f : [0, 1]× R → R is an L1−Carathéodory function, that is:

1. x 7→ f (x, ξ) is measurable for every ξ ∈ R;
2. ξ 7→ f (x, ξ) is continuous for almost every x ∈ Ω;
3. for every s > 0 there is a function ls ∈ L1(Ω) such that

sup
|ξ|≤s

|f (x, ξ)| ≤ ls(x), for a.e. x ∈ Ω.
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Anisotropic p−Laplacian operator

∆p⃗u =
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣pi−2 ∂u
∂xi

)

If pi = p for all i = 1, . . . ,N

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣p−2 ∂u
∂xi

)
= ∆̃pu, pseudo−p−Laplacian operator.

If pi = 2 for all i = 1, . . . ,N

N∑
i=1

∂2u
∂x2

i
= ∆u, Laplacian operator.

[1] M. Belloni, B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞, ESAIM
Control Optim. Calc. Var. 10 (2004), 28–52.

[2] L. Brasco, G. Franzina, An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities,
Nonlinear Differ. Equ. Appl. 20 (2013), 1795–1830.



Introduction Basic notations and preliminary results Main result and some consequences

Some references

[1] S.M. Nikol’skii, An imbedding theorem for functions with partial derivatives considered in different
metrics, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 321–336.

[2] J. Rákosník, Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis 13 (1979) 55–68.

[3] J. Rákosník, Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis 15 (1981),
127–140.

[4] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3–24.

Let α ∈ NN be multiindices such that α = (α1, . . . , αN). The length of α is |α| = α1 + . . .+ αN .

Dαu :=
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαN
N

, (1)

D0u := u.

E =
{
α ∈ NN

0 : |α| ≤ 1
}

and p⃗ = (p0, p1, . . . , pN) with p0 ≥ pi ≥ 1 for i = 1, . . . ,N.

WE,⃗p(Ω) = {u = u(x) : Dαu ∈ Lpα (Ω), for α ∈ E} , (2)

is a reflexive Banach space if it is equipped with the norm

∥u∥WE,⃗p(Ω) :=
∑
α∈E

∥Dαu∥Lpα (Ω) . (3)

We denote by WE,⃗p
0 (Ω) as closure of C∞

0 (Ω) in the topology of WE,⃗p(Ω).



Introduction Basic notations and preliminary results Main result and some consequences

Anisotripic Sobolev spaces

Consider the following N + 1 multiindices of N−tuple

E = {(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . , 1)} ,
and consiter p⃗ = (p0, p1, p2, . . . , pN) with pi ≥ 1 for all i = 1, . . .N.
Then, the set (2) becomes

W1,⃗p(Ω) =

{
u ∈ Lp0 (Ω) :

∂u
∂xi

∈ Lpi (Ω), for i = 1, . . . ,N
}
, (4)

in which we consider the norm

∥u∥W1,⃗p(Ω) = ∥u∥Lp0 (Ω) +
N∑

i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
Lpi (Ω)

. (5)

We define W1,⃗p
0 (Ω) as the closure of C∞

0 (Ω) with respect to the norm (5). On W1,⃗p
0 (Ω) we can also

define the following norm

∥u∥
W1,⃗p

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
Lpi (Ω)

. (6)

Remark
We observe also that if p⃗ is constant (that is pi = p for all i = 0, 1, . . . ,N) we get

W1,p(Ω) =

{
u ∈ Lp(Ω) :

∂u
∂xi

∈ Lp(Ω)

}
.
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Main tool

Theorem (G. Bonanno and G. D’Aguì)
Let X be a real Banach space and let Φ, Ψ : X → R be two functionals of class C1 such that
inf

X
Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

, (7)

and, for each

λ ∈ Λ =

Φ(ũ)
Ψ(ũ)

,
r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

 ,

the functional Iλ = Φ− λΨ satisfies the (PS)−condition and it is unbounded from below.
Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points uλ,1, uλ,2 ∈ X such
that Iλ(uλ,1) < 0 < Iλ(uλ,2).

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct.
Anal. 14 (1973) 349–381.

[2] G. Bonanno, G. D’Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend. 35 (2016),
449–464.
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Variational approach

Φ,Ψ : W1,⃗p
0 (Ω) → R, F(x, t) =

∫ t

0
f (x, ξ)dξ for all (x, t) ∈ Ω× R.

Iλ(u) =
N∑

i=1

1
pi

∫
Ω

∣∣∣∣ ∂u
∂xi

∣∣∣∣pi

dx

︸ ︷︷ ︸
Φ(u)

−λ

∫
Ω

F(x, u(x))dx︸ ︷︷ ︸
Ψ(u)︸ ︷︷ ︸

Energy functional

.

Definition
A function u : Ω → R is a weak solution of problem (Dp⃗

λ) if u ∈ X satisfies the following condition for
all v ∈ X

N∑
i=1

∫
Ω

∣∣∣∣ ∂u
∂xi

∣∣∣∣pi−2 ∂u
∂xi

∂v
∂xi

dx

︸ ︷︷ ︸
Φ′(u)(v)

= λ

∫
Ω

f (x, u(x))v(x)dx︸ ︷︷ ︸
Ψ′(u)(v)

.

(AR) There exist constants µ > p+ and M > 0 such that, 0 < µF(x, t) ≤ tf (x, t) for all x ∈ Ω and for
all |t| ≥ M.

Lemma 1
Assume that the (AR)−condition holds. Then Iλ satisfies the (PS)−condition and it is unbounded from
below.



Introduction Basic notations and preliminary results Main result and some consequences

Preliminary results(
W1,⃗p

0 (Ω), ∥·∥
W1,⃗p

0 (Ω)

)
is a Banach space, where W1,⃗p

0 (Ω) is the closure of C∞
0 (Ω) with

∥u∥
W1,⃗p

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
Lpi (Ω)

.

Proposition
W1,⃗p

0 (Ω) is compactely embedded in C0(Ω̄) and for each u ∈ W1,⃗p
0 (Ω)

∥u∥C0(Ω̄) ≤ 2
(N−1)(p−−1)

p− mp− max
1≤i≤N

{|Ω|
pi−p−

pip− }︸ ︷︷ ︸
=T0

∥u∥
W1,⃗p

0 (Ω)

Proof: p− > N, W1,p−

0 (Ω) is continuously embedded in C0(Ω̄), the embedding is compact and

∥u∥C0(Ω̄) ≤ mp− ∥u∥
W1,p−

0 (Ω)
≤ 2

(N−1)(p−−1)
p− mp− max

1≤i≤N
{|Ω|

pi−p−

pip− } ∥u∥
W1,⃗p

0 (Ω)
.

mp− =
N
− 1

p−

√
π

[
Γ

(
1 +

N
2

)] 1
N
(

p− − 1
p− − N

)1− 1
p−

|Ω|
1
N − 1

p−

[1] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3–24.
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Preliminary results

Proposition
Fix r > 0. Then for each u ∈ W1,⃗p

0 (Ω) such that

N∑
i=1

1
pi

∥∥∥∥ ∂u
∂xi

∥∥∥∥pi

Lpi (Ω)

< r,

one has
∥u∥C0(Ω̄) < T max{r1/p− ; r1/p+},

where T = T0

N∑
i=1

pi
1/pi .
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The sign of solutions

f+(x, t) =
{

f (x, 0), if t < 0,
f (x, t), if t ≥ 0, (8)

for all (x, t) ∈ Ω× R and {
−∆p⃗u = λf+(x, u) in Ω,
u = 0 on ∂Ω.

(Dp⃗
λ,f+

)

Lemma 2
Assume that

f (x, 0) ≥ 0 for a.e. x ∈ Ω.

Then, any weak solution of (Dp⃗
λ,f+

) is nonnegative and it is also a weak solution of (Dp⃗
λ).

Lemma 3
Assume that

f (x, t) ≥ 0 for a.e. x ∈ Ω, for all t ≥ 0.

Then, any non-zero weak solution of (Dp⃗
λ,f+

) is positive and it is also a weak solution of (Dp⃗
λ).

[1] A. Di Castro, E. Montefusco, Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations,
Nonlinear Anal. 70 (2009), 4093–4105.
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Main result

R := sup
x∈Ω

dist(x, ∂Ω) ⇒ ∃x0 ∈ Ω such that B(x0,R) ⊆ Ω

ωR := |B(x0,R)| =
π

N
2

Γ(1 + N
2 )

RN , K =
1[

N∑
i=1

1
pi

(
2
R

)pi
]
ωR

(
2N − 1

2N

)
max

{
Tp− ; Tp+

}
Theorem
Assume that the (AR)-condition holds and ∃c, d > 0, with max

{
dp−;dp+

}
<min

{
cp−;cp+

}
, s.t.

F(x, t) ≥ 0, for all (x, t) ∈ Ω× [0, d] , (9)∫
Ω
max
|ξ|≤c

F(x, ξ)dx

min
{

cp− ; cp+
} < K

∫
B(x0,

R
2 )

F (x, d) dx

max
{

dp− ; dp+
} . (10)

Then, for each

λ ∈ Λ̃ :=
] 1

max
{

Tp−;Tp+
} 1

K

max
{

dp−;dp+
}

∫
B(x0,

R
2 )

F (x, d) dx
,

1

max
{

Tp−;Tp+
} min

{
cp−;cp+

}
∫
Ω
max
|ξ|≤c

F(x, ξ)dx

[
,

problem (Dp⃗
λ) has at least two non-zero weak solutions.



Introduction Basic notations and preliminary results Main result and some consequences

Sketch of Proof

• X = W1,⃗p
0 (Ω) and λ ∈ Λ̃.

• Iλ =
N∑

i=1

1
pi

∫
Ω

∣∣∣∣ ∂u
∂xi

∣∣∣∣pi

dx − λ

∫
Ω

F(x, u(x))dx = Φ(u)− λΨ(u).

•
from (AR)−condition Lemma 1⇒ Iλ satisfies the (PS)-condition

Iλ is unbounded from below.

• Put r = min{
( c

T

)p−

;
( c

T

)p+

} and

ũ(x) =


0 if x ∈ Ω \ B(x0,R),
2d
R

(R − |x − x0|) if x ∈ B(x0,R) \ B
(
x0,

R
2

)
,

d if x ∈ B
(
x0,

R
2

)
.

Clearly, ũ ∈ W1,⃗p
0 (Ω). From max

{
dp− ; dp+

}
< min

{
cp− ; cp+

}
+ (10) ⇒ 0 < Φ(ũ) < r

Ψ(ũ)
Φ(ũ)

≥max
{

Tp−;Tp+
}
K

∫
B(x0,

R
2 )

F (x, d)dx

max
{

dp−;dp+
} >max

{
Tp−;Tp+

}∫
Ω
max
|ξ|≤c

F(x, ξ)dx

min
{

cp−;cp+
} ≥

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r

• λ ∈ Λ̃ ⊆
]Φ(ũ)
Ψ(ũ)

,
r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

[
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Some consequences

Theorem
Let f : Ω× R → R be a continuous function such that f (x, t) ≥ 0 for a.e. x ∈ Ω and for all t ≥ 0.
Assume that

(AR+) ∃ µ > p+ and M > 0 such that 0 < µF(x, t) ≤ tf (x, t) ∀ x ∈ Ω and ∀ t ≥ M.

Moreover, assume that there are two positive constants c and d, with d < 1 ≤ c, such that∫
Ω

F(x, c)dx

cp−
< K

∫
B(x0,

R
2 )

F (x, d) dx

dp−
.

Then, for each λ ∈
] 1

max
{

Tp− ; Tp+
} 1

K
dp−∫

B(x0,
R
2 )

F (x, d) dx
,

1

max
{

Tp− ; Tp+
} cp−∫

Ω
F(x, c)dx

[
,

problem (Dp⃗
λ) has at least two positive weak solutions.

Sketch of Proof
•

from (AR+)−condition Lemma 1⇒ I+λ := Φ− λΨ+satisfies the (PS)−condition
I+λ is unbounded from below

• From Lemma 3, any non-zero weak solution of (Dp⃗
λ,f+

) is a positive weak solution of (Dp⃗
λ).
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Some consequences
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Let f : Ω× R → R be a continuous function such that f (x, t) ≥ 0 for a.e. x ∈ Ω and for all t ≥ 0.
Assume that

(AR+) ∃ µ > p+ and M > 0 such that 0 < µF(x, t) ≤ tf (x, t) ∀ x ∈ Ω and ∀ t ≥ M.

Moreover, assume that there are two positive constants c and d, with d < c ≤ 1, such that∫
Ω

F(x, c)dx

cp+
< K

∫
B(x0,

R
2 )

F (x, d) dx

dp−
.

Then, for each λ ∈
] 1

max
{

Tp− ; Tp+
} 1

K
dp−∫

B(x0,
R
2 )

F (x, d) dx
,

1

max
{

Tp− ; Tp+
} cp+∫

Ω
F(x, c)dx

[
,
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λ) has at least two positive weak solutions.
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Some consequences

Theorem
Let f : Ω× R → R be a continuous function such that f (x, t) ≥ 0 for a.e. x ∈ Ω and for all t ≥ 0.
Assume that

(AR+) ∃ µ > p+ and M > 0 such that 0 < µF(x, t) ≤ tf (x, t) ∀ x ∈ Ω and ∀ t ≥ M.

Moreover, assume that there are two positive constants c and d, with 1 ≤ d < c, such that∫
Ω

F(x, c)dx

cp−
< K

∫
B(x0,

R
2 )

F (x, d) dx

dp+
.

Then, for each λ ∈
] 1

max
{

Tp− ; Tp+
} 1

K
dp+∫

B(x0,
R
2 )

F (x, d) dx
,

1

max
{

Tp− ; Tp+
} cp−∫

Ω
F(x, c)dx

[
,

problem (Dp⃗
λ) has at least two positive weak solutions.

Sketch of Proof
•

from (AR+)−condition Lemma 1⇒ I+λ := Φ− λΨ+satisfies the (PS)−condition
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• From Lemma 3, any non-zero weak solution of (Dp⃗
λ,f+

) is a positive weak solution of (Dp⃗
λ).
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Example 1: N = 3, Ω = B(0, 2), p1 = 4, p2 = 5, p3 = 6, c = 1 and d = 10−14


−

3∑
i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣pi−2 ∂u
∂xi

)
= 10−12(x2 + y2 + z2)u8 + 10−12u in Ω,

u = 0 on ∂Ω,

(11)

f (x, y, z, t) = (x2 + y2 + z2)t8 + t2 ⇒ F(x, y, z, t) = (x2 + y2 + z2)
t9

9
+

t3

3
.

We have that (AR+)−condition holds and

mp− =
4

√
33

2π
, T0 = 3

√
25 · 32
√
π

, T = (
√

2 +
5√5 +

6√6) 3

√
25 · 32
√
π

,

max
{

Tp− ; Tp+
}

= T6 = (
√

2+ 5√5+ 6√6)6

(
25 · 32

)2

π
, K =

5

210 · 32 · 7 · 37(
√

2 + 5√5 + 6√6)6
.

1

max
{

Tp− ; Tp+
} 1

K
dp−∫

B(x0,
R
2 )

F (x, d) dx
=

7 · 37
5

1
22

5 d5 + 22

d

≤
7 · 37

4
d =

7 · 37
4

10−14 < 10−12

<
1

max
{

Tp− ; Tp+
} cp−∫

Ω
F(x, c)dx

=
5

(
√

2 + 5√5 + 6√6)621534
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Some consequences

 −∆p⃗u = λf (u) in Ω,

u = 0 on ∂Ω.
(ADp⃗

λ)

Put
K∗ =

ωR

2N |Ω|
K.

(AR+
1 ) there exist constants µ > p+ and M > 0 such that, 0 < µF(t) ≤ tf (t) for all t ≥ M.

Theorem
Let f : [0,+∞[→ [0,+∞[ be a continuous function such that the (AR+

1 )−condition holds. Moreover,
assume that there are two positive constants c and d, with d < 1 ≤ c, such that

F(c)

cp−
< K∗ F (d)

dp−
. (12)

Then, for each

λ ∈ Λ̃1 :=

 1

max
{

Tp− ; Tp+
} 1

|Ω|
1
K∗

dp−

F (d)
,

1

max
{

Tp− ; Tp+
} 1

|Ω|
cp−

F(c)

,

the problem (ADp⃗
λ) has at least two positive weak solutions.
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Some consequences

 −∆p⃗u = λf (u) in Ω,

u = 0 on ∂Ω.
(ADp⃗

λ)

(AR+
1 ) There exist constants µ > p+ and M > 0 such that, 0 < µF(t) ≤ tf (t) for all t ≥ M.

Theorem
Let f : [0,+∞[→ [0,+∞[ be a continuous function such that the (AR+

1 )−condition holds. Assume that

lim sup
t→0+

F(t)

tp−
= +∞. (13)

Put λ∗ =
1

max
{

Tp− ; Tp+
} 1

|Ω|
sup
c≥1

cp−

F(c)
.

Then, for each λ ∈ ]0, λ∗[, the problem (ADp⃗
λ) admits at least two positive weak solutions.

Remark

λ∗ =
1

max
{

Tp− ; Tp+
} 1

|Ω|
max

{
sup
c≥1

cp−

F(c)
; sup

0<c<1

cp+

F(c)

}
.
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Some consequences

Theorem
Fix s, q such that 0 ≤ s < p− − 1 and p+ − 1 < q. Put

η∗= min


1− p+

q+1
p+
s+1 −1

,

 (s+1)(q+1)

max
{

Tp−;Tp+
}
|Ω|

(
p+

s+1 −1
)p+−(s+1)

q−s
(

1− p+

q+1

)(q+1)−p+

q−s

(q+1)
(

1− p+
q+1

)
+(s+1)

(
p+
s+1 −1

)


q−s
(q+1)−p+

.

Then, for each η ∈]0, η∗[ the problem −∆p⃗u = ηus + uq in Ω,

u = 0 on ∂Ω
(ADp⃗

η)

has at least two positive weak solutions.
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Example 2: N = 2, Ω = B(0, 1), p1 = 3 and p2 = 4

For each η ∈
]

0, 3

28(2
1
2 +3

1
3 )8

[
, the problem−

∂

∂x1

(∣∣∣∣ ∂u
∂x1

∣∣∣∣ ∂u
∂x1

)
−

∂

∂x2

(∣∣∣∣ ∂u
∂x2

∣∣∣∣2 ∂u
∂x2

)
= ηu + u5 in Ω,

u = 0 on ∂Ω,

admits at least two positive weak solutions.
Indeed

mp− =

(
2
π

) 1
3
, T0 =

2

π
1
4

, T = (3
1
3 + 4

1
4 )

2

π
1
4

,

max
{

Tp− ; Tp+
}
|Ω| = (3

1
3 + 4

1
4 )424, (s + 1)(q + 1) = 12,

(
p+

s+1 − 1
) p+−(s+1)

q−s
(

1 − p+

q+1

) (q+1)−p+

q−s

(q + 1)
(

1 − p+
q+1

)
+ (s + 1)

(
p+
s+1 − 1

) =
1

3
1
2 4

,

η∗ = min

1
3
;

[
3

1
2

(3
1
3 + 4

1
4 )424

]2
 =

3

(3
1
3 + 4

1
4 )828

.
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Second part

Non-variational elliptic equations
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D. Motreanu, A. Sciammetta, E. Tornatore, A sub-super solutions approach for Neumann boundary
value problems with gradient dependence, Nonlinear Anal. Real World Appl. 54 (2020) 1–12.

{
−div(A(x,∇u)) + α(x)|u|p−2u = f (x, u,∇u) in Ω

A(x,∇u) · ν(x) = 0 su ∂Ω.
(P)

1. A : Ω× RN → RN is a continuous map;

2. Ω ⊂ RN is a nonempty bounded domain with boundary C1,γ for γ ∈]0, 1[;

3. 1 < p < +∞ with p < N;

4. f : Ω× R → R is a Carathéodory function;

5. α ∈ L∞(Ω), with α ≥ 0 and α ̸≡ 0;

6. ν is the unit outward normal vector to ∂Ω at each point x ∈ ∂Ω.

7. X = W1,p(Ω);

8. ∥u∥ =

(∫
Ω
|∇u|p dx +

∫
Ω
α(x)|u|p dx

) 1
p

, which is equivalent to the usual one

∥u∥p =
(
∥∇u∥p

Lp(Ω)
+ ∥u∥p

Lp(Ω)

) 1
p

[1] V.G. Mazja, Sobolev Spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985.
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nonlinear Neumann eigenvalue problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011),
729–755.

D. Motreanu, M. Tanaka, Existence of solutions for quasilinear elliptic equations with jumping
nonlinearities under the Neumann boundary condition, Calc. Var. Partial Differential Equations 43
(2013), 231–264.

D. Motreanu, P. Winkert, Existence and asymptotic properties for quasilinear elliptic equations
with gradient dependence, Appl. Math. Lett. 95 (2019), 78–84.

M. Tanaka, Existence of a positive solution for quasilinear elliptic equations with a nonlinearity
including the gradient, Bound. Value Probl., 173 (2013), 11 pp.

P. Winkert, Multiple solution results for elliptic Neumann problems involving set-valued
nonlinearities, J. Math. Anal. Appl. 377 (1) (2011) 121–134.
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Basic notations

Definition
A function u : Ω → R is a weak solution of problem (P) if u ∈ W1,p(Ω) satisfies the following
condition for all v ∈ W1,p(Ω)∫

Ω
A(x,∇u) · ∇vdx +

∫
Ω
α(x) |u|p−2 uvdx =

∫
Ω

f (x, u,∇u)vdx.

A function u ∈ W1,p(Ω) is a supersolution of problem (P) if u ∈ W1,p(Ω) satisfies the following
condition ∫

Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv

)
dx ≥

∫
Ω

f (x, u,∇u)v dx

for all v ∈ W1,p(Ω), with v ≥ 0 a.e. in Ω.
A function u ∈ W1,p(Ω) is a subsolution of problem (P) if u ∈ W1,p(Ω) satisfies the following condition∫

Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv

)
dx ≤

∫
Ω

f (x, u,∇u)v dx

for all v ∈ W1,p(Ω), with v ≥ 0 a.e. in Ω.

(H) There exists a function σ ∈ Lγ′
(Ω) with γ ∈ (1, p∗) and a > 0 and β ∈ [0, p

(p∗)′ ) such that

|f (x, s, ξ)| ≤ σ(x) + a|ξ|β for a.e. x ∈ Ω, all s ∈ [u(x), u(x)], ξ ∈ RN .
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Basic notations

Definition
A function u : Ω → R is a weak solution of problem (P) if u ∈ W1,p(Ω) satisfies the following
condition for all v ∈ W1,p(Ω)∫

Ω
A(x,∇u) · ∇vdx +

∫
Ω
α(x) |u|p−2 uvdx =

∫
Ω

f (x, u,∇u)vdx.

A function u ∈ W1,p(Ω) is a supersolution of problem (P) if u ∈ W1,p(Ω) satisfies the following
condition ∫

Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv
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∫
Ω

f (x, u,∇u)v dx

for all v ∈ W1,p(Ω), with v ≥ 0 a.e. in Ω.
A function u ∈ W1,p(Ω) is a subsolution of problem (P) if u ∈ W1,p(Ω) satisfies the following condition∫

Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv

)
dx ≤

∫
Ω

f (x, u,∇u)v dx

for all v ∈ W1,p(Ω), with v ≥ 0 a.e. in Ω.

(H) There exists a function σ ∈ Lγ′
(Ω) with γ ∈ (1, p∗) and a > 0 and β ∈ [0, p

(p∗)′ ) such that

|f (x, s, ξ)| ≤ σ(x) + a|ξ|β for a.e. x ∈ Ω, all s ∈ [u(x), u(x)], ξ ∈ RN .
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Put λ > 0 and we consider the following auxiliary Neumann problem:{
−div(A(x,∇u)) + α(x)|u|p−2u + λΠ(u) = Nf (Tu) in Ω,

A(x,∇u) · ν(x) = 0 su ∂Ω.
(Tλ)

1. Nf : [u, u] → (W1,p(Ω))∗ is the Nemytskij operator corresponding to the function
f : Ω× R× RN → R in (P), that is〈

Nf (u), v
〉
=

∫
Ω

f (x, u(x),∇u(x))v(x)dx;

2. for all u ∈ W1,p(Ω), truncation operator T : W1,p(Ω) → W1,p(Ω)

Tu(x) =

 u(x) if u(x) > u(x),
u(x) if u(x) ≤ u(x) ≤ u(x),
u(x) if u(x) < u(x)

(14)

3. cut-off function π : Ω× R → R

π(x, s) =


(s − u(x))

β
p−β if s > u(x),

0 if u(x) ≤ s ≤ u(x),

−(u(x)− s)
β

p−β if s < u(x),

(15)

4. Π : W1,p(Ω) → (W1,p(Ω))∗ is the Nemytskij operator corresponding to the function
π : Ω× R → R

Π(u) = π(·, u(·)).
5. for each λ > 0 the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is defined as

Aλ(u) = −div(A(x,∇u)) + α(x)|u|p−2u + λΠ(u)− Nf (Tu)
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Main tool - Surjectivity theorem

Theorem (see [1, Theorem 2.99])
Let X be a real reflexive Banach space and let Aλ : X → X∗ be an operator which satisfies following
conditions:

1. Aλ is bounded, that is Aλ maps bounded sets to bounded sets;

2. Aλ is coercive, that is

lim
∥u∥→∞

⟨Aλu, u⟩
∥u∥

= +∞;

3. Aλ is pseudomonotone, that is let {un} ∈ X be such that

un ⇀ u in X and lim sup
n→∞

⟨Aλun, un − u⟩ ≤ 0,

then ∀w ∈ X, ⟨Aλu, u − w⟩ ≤ lim infn→∞ ⟨Aλun, un − w⟩ .
Then Aλ is surjective, i.e. for every b ∈ X∗ the equation Aλx = b has at least one solution x ∈ X.

[1] S. Carl, V.K. Le, D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles
and applications, Springer, New York, 2007.
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Hypothesis on A

A : Ω× RN → RN is continuous and verifies the following condition:
(A) There exist constants 0 < c1 ≤ c2 such that

A(x, ξ) · ξ ≥ c1|ξ|p and |A(x, ξ)| ≤ c2(|ξ|p−1 + 1)

for a.e. x ∈ Ω, all ξ ∈ RN . A(x, ·) is monotone on RN , i.e.

(A(x, ξ)− A(x, η)) · (ξ − η) ≥ 0 for all ξ, η ∈ RN .

Remark
We do not require that A has to be a potential operator.

Example: A(x, ξ) = |ξ|p−2ξ + g(x, ξ)|ξ|q−2ξ

• 1 < q < p < +∞ ;
• g : Ω× RN → R nonnegative, continuous function such that

|g(x, ξ)| ≤ c0(1 + |ξ|p−q)

for a constant c0 > 0 for all x ∈ Ω, for all ξ ∈ RN ;
• g(x, ·) monotone on RN for a.e. x ∈ Ω.

If g ≡ 0 =⇒ ∆pu := div
(
|∇u|p−2∇u

)
, p−Laplacian operator.

If g ≡ 1 =⇒ ∆pu +∆qu := div
(
|∇u|p−2∇u + |∇u|q−2∇u

)
, (p, q)−Laplacian operator.
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Hypothesis on π

|π(x, s)| ≤ c|s|
β

p−β + ϱ(x) for a.e. x ∈ Ω, all s ∈ R, (16)

with c > 0 and ϱ ∈ L
p
β (Ω).

From definition of π : Ω× R → R we obtain that∫
Ω
π(x, u(x))u(x) dx ≥ r1∥u∥

p
p−β

L
p

p−β (Ω)

− r2 for all u ∈ W1,p(Ω) (17)

∫
Ω
|π(x, u(x))||v(x)| dx ≤ r3∥u∥

β
p−β

L
p

p−β (Ω)

∥v∥
L

p
p−β (Ω)

+ r4∥v∥
L

p
p−β (Ω)

for all u, v ∈ W1,p(Ω),

(18)
with r1, r2, r3 and r4 positive constants.
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Theorem 1 (Esistence of a solution of auxiliary problem (Tλ))
Assume that u and u are a subsolution and a supersolution of problem (P) respectively, with u ≤ u a.e. in
Ω such that hypotheses (A) and (H) are fulfilled. Then there exists λ0 > 0 such that whenever λ ≥ λ0
there is a solution of auxiliary problem (Tλ).

Sketch of Proof: Aλ : W1,p
0 (Ω) → (W1,p(Ω))∗

⟨Aλu, v⟩ =
∫
Ω

A(x,∇u) · ∇v dx +
∫
Ω
α(x)|u|p−2uv dx +

∫
Ω
π(x, u)v dx −

∫
Ω

f (x, Tu,∇Tu)v dx.

• Aλ is bounded. From (A), (H), estimate (18), and since α ∈ L∞(Ω).
• Aλ is pseudomonotone. Let {un} ⊂ W1,p(Ω) be a sequence satisfies

un ⇀ u in W1,p(Ω) and lim sup
n→∞

⟨Aλun, un − u⟩ ≤ 0.

From our assumption on f , T , π, α, Hölder inequality and R-K compact embedding theorem we get

lim
n→∞

∫
Ω

f (x, Tun,∇(Tun))(un−u)dx=0, lim
n→∞

∫
Ω
π(x, un)(un−u)dx=0, lim

n→∞

∫
Ω
α(x)|un|p−1(un−u)dx= 0.

Then
lim sup

n→∞

∫
Ω

A(x,∇un)·∇(un − u)dx≤0

=⇒ un → u in W1,p(Ω) =⇒ Aλun ⇀ Aλu,
(S)+ − property ⟨Aλun, un⟩ → ⟨Aλu, u⟩
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• Aλ is coercive.

⟨Aλu, u⟩ =

∫
Ω

A(x,∇u) · ∇vudx +
∫
Ω
α(x)|u|pdx +

∫
Ω
π(x, u)udx −

∫
Ω

f (x, Tu,∇Tu)vdx

≥
∫
Ω

A(x,∇u) · ∇udx +
∫
Ω
π(x, u)udx −

∫
Ω

f (x, Tu,∇Tu)udx

≥ (c1 − ε)∥u∥p + (λr1 − c(ε))∥u∥
p

p−β

L
p

p−β (Ω)

− d∥u∥ − λr2,

with positive constants c(ε), c1, r1, d. Choose ε ∈ (0, c) and λ >
c(ε)

r1
, then

lim
∥u∥→+∞

⟨Aλu, u⟩
∥u∥

= +∞.

• Since the operator Aλ : W1,p(Ω → (W1,p(Ω))∗ is bounded, pseudomonotone and coercive, it is
surjective (see [1, p. 40]). Therefore we can find u ∈ W1,p(Ω) that solves{

−div(A(x,∇u)) + α(x)|u|p−2u + λΠ(u) = Nf (Tu) in Ω,

A(x,∇u) · ν(x) = 0 on ∂Ω.
(Tλ)

[1] S. Carl, V.K. Le, D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles
and applications, Springer, New York, 2007.
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Theorem 2 (the solution of problem (Tλ) is a solution of (P))
Let u and u be a subsolution and a supersolution of (P), respectively, with u ≤ u a.e. in Ω such that
hypotheses (A) and (H) are fulfilled. Then problem (P) possesses a solution u ∈ W1,p(Ω) located in the
ordered interval [u, u].

• From Theorem 1, there is a solution u ∈ W1,p
0 (Ω) of auxiliary problem provided λ > 0 sufficiently

large {
−div(A(x,∇u)) + α(x)|u|p−2u + λΠ(u) = Nf (Tu) in Ω,

A(x,∇u) · ν(x) = 0 on ∂Ω.
(Tλ)

• Using comparison arguments we prove that every solution u ∈ W1,p
0 (Ω) of auxiliary problem

satisfies u ≤ u ≤ u a.e. in Ω;
• The solution u of the auxiliary truncated problem satisfies Tu = u and Π(u) = 0, so it is a solution

of the original problem{
−div(A(x,∇u)) + α(x)|u|p−2u = f (x, u,∇u) in Ω

A(x,∇u) · ν(x) = 0 su ∂Ω.
(P)
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Put
ω(x, s) := α(x)sp−1 − f (x, s, 0) whenever (x, s) ∈ Ω× (0,+∞),

Theorem
Assume that condition (A) holds and there exist two positive constants a1 and a2 with a1 < a2 for which

ω(x, a1) ≤ 0 and ω(x, a2) ≥ 0 for a.e. x ∈ Ω,

|f (x, s, ξ)| ≤ σ(x) + a|ξ|β for a.e. x ∈ Ω, for all s ∈ [a1, a2], ξ ∈ RN ,

for σ ∈ Lγ′
(Ω) with γ′ = γ

γ−1 , γ ∈ (1, p∗), a > 0 e β ∈ [0, p
(p∗)′ ).

Then (P) admits at least a (positive) solution u ∈ W1,p
0 (Ω) satisfying the a priori estimate

a1 ≤ u(x) ≤ a2 for all x ∈ Ω.

Sketch of Proof:
• u = a1 =⇒ ω(x, a1) = α(x)ap−1

1 − f (x, a1, 0) ≤ 0 ⇐⇒ α(x)ap−1
1 ≤ f (x, a1, 0)∫

Ω

(
A(x, 0) · ∇v︸ ︷︷ ︸

=0

+α(x)|a1|p−2a1v
)
dx ≤

∫
Ω

f (x, a1, 0)vdx, ∀v ∈ W1,p(Ω) with v ≥ 0 a.e. on Ω.

• u = a2 =⇒ ω(x, a2) = α(x)ap−1
2 − f (x, a2, 0) ≥ 0 ⇐⇒ α(x)ap−1

2 ≥ f (x, a2, 0)∫
Ω

(
A(x, 0) · ∇v︸ ︷︷ ︸

=0

+α(x)|a2|p−2a2v
)

dx ≥
∫
Ω

f (x, a2, 0)vdx, ∀v ∈ W1,p(Ω) with v ≥ 0 a.e. on Ω.

• From Theorem 2, problem (P) possesses a solution u ∈ W1,p(Ω) such that u ∈ [u, u].



Introduction Basic notations Preliminary results Main result

Put
ω(x, s) := α(x)sp−1 − f (x, s, 0) whenever (x, s) ∈ Ω× (0,+∞),

and that condition (A) holds.

Theorem
If there exist positive constants ai (i = 1, . . . , 2m) with a1 < a2 < a3 < . . . < a2m−1 < a2m for which

ω(x, a2j−1) ≤ 0 and ω(x, a2j) ≥ 0 for a.e. x ∈ Ω, for all j = 1, . . . ,m,

|f (x, s, ξ)| ≤ σ(x) + a|ξ|β for a.e. x ∈ Ω, for all s ∈ ∪m
j=1[a2j−1, a2j], ξ ∈ RN ,

for σ ∈ Lγ′
(Ω), γ′ = γ

γ−1 , γ ∈ (1, p∗), a > 0 and β ∈ [0, p
(p∗)′ ).

Then (P) admits at least m (positive) solutions uj ∈ W1,p
0 (Ω) , satisfying the a priori estimate

a2j−1 ≤ uj(x) ≤ a2j for all x ∈ Ω, j = 1, . . . ,m.
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Put
ω(x, s) := α(x)sp−1 − f (x, s, 0) whenever (x, s) ∈ Ω× (0,+∞),

and that condition (A) holds.

Theorem
If there exists a strictly increasing sequence of positive numbers {aj}j≥1 such that

ω(x, a2j−1) ≤ 0 and ω(x, a2j) ≥ 0 for a.e. x ∈ Ω, for all j ≥ 1,

|f (x, s, ξ)| ≤ σ(x) + a|ξ|β for a.e. x ∈ Ω, for all s ∈ ∪∞
j=1[a2j−1, a2j], ξ ∈ RN ,

for σ ∈ Lγ′
(Ω), γ′ = γ

γ−1 , γ ∈ (1, p∗), a > 0 and β ∈ [0, p
(p∗)′ ).

Then (P) admits infinitely many (positive) solutions uj ∈ W1,p
0 (Ω), satisfying the a priori estimate

a2j−1 ≤ uj(x) ≤ a2j for all x ∈ Ω, j ≥ 1.
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Example (infinitely many solutions)

Given constants s0 > 0, β1, β2 ∈
[

0,
p

(p∗)′

[
, η ∈ L∞(Ω), ed

f (x, s, ξ) = (α(x)sp−1 + sin s)(1 + |ξ|β1 ) + η(x)|ξ|β2

for a.e. x ∈ Ω, for alls ≥ s0, ξ ∈ RN .

f (x, s, ξ) = f (x, s0, ξ),

for a.e. x ∈ Ω, for all s < s0, ξ ∈ RN .

ω(x, s) = − sin s,

for a.e. x ∈ Ω, for all s ≥ s0.
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Thank you for your kind attention
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