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Total variation denoising models

Setting: screen ⇝ Rn , source image (corrupted) ⇝ f , final image (denoised) ⇝ u.

min
u∈BV (Rn)

[u]BV +
Λ
p



Rn
|u − f |p dx

where p ∈ [1 ,∞) and Λ > 0 is the fidelity.

Applications: gravitational-waves (2018) and black hole in Messier 87 galaxy (2019)
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◮ NOT contrast invariant: u solution for f , cu not solution for cf with c > 0

p = 1 ⇝ Chan and Esedoglu (CE) model (2005)

◮ contrast invariant
◮ convex but NOT strictly, hence non-uniqueness of minimizers
◮ depends on the shape of the images
◮ level-set decoupling via coarea formula

[u]BV =



R
P({u > t}) dt
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◮ quite efficient in reducing the noise and reconstructing the main features
◮ scarcely preserves the details and textures of the datum

Non-local BV
◮ good for digital images/filters
◮ weights the affinity between different parts/pixels in the image
◮ considers both geometric parts and textures

Source: Dipierro-Valdinoci (2018)
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[u]W s ,p =



Rn



Rn

|u(x)− u(y)|p
|x − y |n+sp dx dy

1/p
for p ∈ [1 ,∞)

[Bessas], [Bessas-S.], [Novaga-Onoue]

Others: [Buades-Coll-Morel], [Kindermann-Osher-Jones], [Gilboa-Osher], [Antil-Diíaz-Jing-
Schikorra] using [Comi-S.] and more...
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|u(x)−u(y)|K (x−y) dx dy .

STEP 1. We study the fundamental properties of the space

BV K (Rn) =


u ∈ L1 (Rn) : [u]BV K < ∞

.

STEP 2. We use the theory of BV K functions to study the L1 -denoising model

min
u∈BV K (Rn)

[u]BV K +Λ


Rn
|u−f | dx

STEP 3. We study the associated non-local Cheeger problem.
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n) is

[u]K =
1
2



Rn



Rn
|u(x)− u(y)|K (x − y) dx dy ,

so BV K (Rn) =


u ∈ L1 (Rn) : [u]K < ∞

. The K -perimeter is PK (E ) = [χE ]K .

Basic properties

• isometries: [ · ]K is translation invariant, homogeneous and [c]K = 0
• min-max: [u ∧ v ]K + [u ∨ v ]K ≤ [u]K + [v ]K
• Fatou: uk → u in L1

loc(R
n) =⇒ [u]K ≤ lim infk [uk ]K

• coarea formula: [u]K =



R
PK ({u > t}) dt

• BV ⊂ BV K : [u]K ≤ max

uL1 , 1

2 [u]BV


Rn
(1 ∧ |x |)K (x) dx

7/21



Sequential compactness in W K ,p

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

For p = 1 we recover [u]K ,1 = [u]BV K and W K ,1 = BV K .

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

For p = 1 we recover [u]K ,1 = [u]BV K and W K ,1 = BV K .

Sequential compactness [Bessas-S.], [Foghem Gounoue in Ph.D. thesis]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0

⇓
(uh)h ⊂ W K ,p bounded =⇒ ∃ subsequence (uhj )j Lp

loc-converging to u ∈ W K ,p

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

For p = 1 we recover [u]K ,1 = [u]BV K and W K ,1 = BV K .

Sequential compactness [Bessas-S.], [Foghem Gounoue in Ph.D. thesis]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0

⇓
(uh)h ⊂ W K ,p bounded =⇒ ∃ subsequence (uhj )j Lp

loc-converging to u ∈ W K ,p

Idea of proof:

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

For p = 1 we recover [u]K ,1 = [u]BV K and W K ,1 = BV K .

Sequential compactness [Bessas-S.], [Foghem Gounoue in Ph.D. thesis]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0

⇓
(uh)h ⊂ W K ,p bounded =⇒ ∃ subsequence (uhj )j Lp

loc-converging to u ∈ W K ,p

Idea of proof: Tη(u) = u ∗ η is Lp → Lp locally compact for η ∈ L1

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

For p = 1 we recover [u]K ,1 = [u]BV K and W K ,1 = BV K .

Sequential compactness [Bessas-S.], [Foghem Gounoue in Ph.D. thesis]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0

⇓
(uh)h ⊂ W K ,p bounded =⇒ ∃ subsequence (uhj )j Lp

loc-converging to u ∈ W K ,p

Idea of proof: Tη(u) = u ∗ η is Lp → Lp locally compact for η ∈ L1 and

u − Tηδ
(u)Lp ≲ Kδ−1/p [u]K ,p

for ηδ = Kδ/KδL1 and Kδ = K 1Rn\Bδ
.

8/21



Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

For p = 1 we recover [u]K ,1 = [u]BV K and W K ,1 = BV K .

Sequential compactness [Bessas-S.], [Foghem Gounoue in Ph.D. thesis]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0

⇓
(uh)h ⊂ W K ,p bounded =⇒ ∃ subsequence (uhj )j Lp

loc-converging to u ∈ W K ,p

Idea of proof: Tη(u) = u ∗ η is Lp → Lp locally compact for η ∈ L1 and

u − Tηδ
(u)Lp ≲ Kδ−1/p [u]K ,p

for ηδ = Kδ/KδL1 and Kδ = K 1Rn\Bδ
. Note that KδL1 → ∞ as δ → 0+.
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0
|E | |{K > t}|−



Rn



Rn
1E (x) 1E (y) 1{K>t}(x − y) dx dy dt

noticing that {K > t} = BR(t) is a ball for some R(t) ∈ [0 ,∞].

Open problem: find isoperimteric sets for K /∈ L1 NOT radially symmetric!

Corollary [Bessas-S.]

K radially symmetric decreasing =⇒ [u]K ≥ [u]K

equality ⇐⇒ u ≥ 0 , {u > t} is a ball, if K radial+ in a ngbh of the origin

where u is the symmetric decreasing rearrangement of u (apply coarea formula).
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Isoperimetric inequality for small volumes [Bessas-S.]

K radial and q < n + 1 : |E | ≤ |B| =⇒ PK (E )

|E |2− q
n
≥ PK (B)

|B|2− q
n

Gagliardo-Nirenberg-Sobolev for finite support [Bessas-S.]

u ∈ BV K with |supp(u)| < ∞ =⇒ u
L

n
2n−q ,1 ≤ C iso

n,q,|supp(u)| [u]K .
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Local minimality of half-spaces [Pagliari], [Cabré]

H is a half-space, 0 ∈ ∂H =⇒ PK (H;BR) ≤ PK (E ;BR) if E \ BR = H \ BR

K -Archimedes: A ⊂ B with A convex and |B| < +∞ =⇒ PK (A) ≤ PK (B)
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We study the functional K -variation L1 denoising problem

(FP) min
u∈L1

loc(R
n)
[u]BV K + Λ



Rn
|u − f | dν

where ν ∈ W(Rn) = {ν = wL n : w ∈ L∞, infRn w > 0} an L∞-weight measure.

Why L∞-weight measures? ⇝ deep learning

◮ do not alter the L1 nature of the approximation term
◮ more flexibility, adding a degree of freedom in the fidelity
◮ Λ > 0 keeps its role of global Lagrangian multiplier
◮ ν secondary local fidelity parameter (emphasis on specific regions only)

Source: Sun-Parwani 12/21
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Idea of proof: Use lsc of energy and compactness in BV K .

Basic properties of F-solutions

◮ FSol(f , Λ, ν) ⊂ L1
loc is convex and closed

◮ uj ∈ FSol(fj , Λ, ν), fj → f in L1 , uj → u in L1
loc =⇒ u ∈ FSol(f , Λ, ν)

◮ FSol(f + c , Λ, ν) = FSol(f , Λ, ν) + c
◮ FSol(cf , Λ, ν) = c FSol(f , Λ, ν)
◮ u ∈ FSol(f , Λ, ν) =⇒ u+ ∈ FSol(f +, Λ, ν), u− ∈ FSol(f −, Λ, ν)
◮ u ∈ FSol(f , Λ, ν) =⇒ u ∧ c ∈ FSol(f ∧ c , Λ, ν), u ∨ c ∈ FSol(f ∨ c , Λ, ν)
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◮ {u > t} ∈ GSol({f > t}, Λ, ν) for a.e. t ∈ R =⇒ u ∈ FSol(f , Λ, ν)

Moreover, if |E | < ∞, then:
◮ U ∈ GSol(E , Λ, ν) =⇒ χU ∈ FSol(χE , Λ, ν)
◮ u ∈ FSol(χE , Λ, ν) =⇒ 0 ≤ u ≤ 1 a.e., {u > t} ∈ GSol(E , Λ, ν) for t ∈ (0 , 1)
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Moreover, if also K /∈ L1 , then

(2) E bounded convex =⇒ FSol(χE , Λ, ν) = {χUΛ} for a.e. Λ > 0 with UΛ ⊂ E

Idea of proof:

(1) ν((U ∩ BR) ∩ E ) ≤ ν(U ∩ E ) and PK (U ∩ BR) ≤ PK (U), since BR convex.

(2) Consider monotone maps Λ → inf / sup

u − χEL1 (ν) : u ∈ FSol(χE , Λ, ν)


.

Prove that FSol(χE , Λ, ν) = {uΛ} for Λ > 0 outside countable jump set.

Observe that u = χU for some U ⊂ E by basic properties.

Since FSol(χE , Λ, ν) is convex, U is unique.
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i |} < ∞ for i = 1 , 2 , then

E2 ⊂ E1 =⇒ (E2 )
− ⊂ (E1 )

− and (E2 )
+ ⊂ (E1 )

+

Proof is tricky! One compares U1 ∈ GSol(E1 , Λ, ν) with U2 ∈ GSol(E2 , Λ, ν).

Remark K > 0 can be weaken to get a comparison principle at small scales.
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In this case, GSol(BR(x), Λ, ν) = {Br (x)} by isoperimetric inequality for 0 ≤ r ≤ R .

To prove r = R , one exploits the monotonicity of PK (K is 1 -decreasing).

Arguing via level sets, one can extend the previous result to functions.

High fidelity for uniformly C1 ,1 regular functions [Bessas-S.]

Let f ∈ L1 have uniformly C1 ,1 regular superlevel sets. There is Λ̄ > 0 such that

FSol(f , Λ, ν) = {f } for all Λ > Λ̄.

uniformly C1 ,1 regular superlevels = inner/outer radius of {f > t} uniform in t ∈ R
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[u]K + Λ u − f L1 (BR , ν) ≤ Λ f L1 (BR ,ν).

The trick is to estimate [u]K ≳h u(·+ h)− uL1 = 2uL1 ≳ν uL1 (BR , ν) for
2R ≤ |h| ≤ D

2 . The first inequality follows from an L1 -estimate on translation of
BV K functions which, in turn, is a consequence of a pointwise Lusin-type estimate

|u(x)− u(y)| ≤ ωK , D(|x − y |)

DK u(x) + DK u(y)


,

DK u(x) = 1
2



Rn
|u(x)− u(z)|K (x − z) dz and ωK , D modulus of continuity
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Moreover, ∂E ∩ ∂Ω ∕= ∅ for ν = L n , Ω open and K n-decreasing+.

Idea of proof: exploit compactness in BV K , isoperimetric ineq. and monotonicity.

Further properties for ν = L n [Bessas-S.]

◮ calibrability: balls are self-Cheeger sets
◮ K -Faber-Krahn inequality: hK (Ω) ≥ hK (B|Ω|) where |B|Ω|| = |Ω|
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(4) Λ > hK , ν(E ) and E is calibrable =⇒ GSol(E , Λ, ν) = {E}.

For ν = L n and E = ball B , such result can be improved as

GSol(B , Λ,L n) =






{∅} for Λ < Λ0

{∅, B} for Λ = Λ0

{B} for Λ > Λ0

where Λ0 =
PK (B)

|B|
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THANK YOU FOR YOUR ATTENTION!

Slides available via giorgio.stefani.math@gmail.com or giorgiostefani.weebly.com.
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