About maximal distance minimizers

Yana Teplitskaya

Naples, January 30-31, 2023
Shape Optimization, Geometric Inequalities, and Related Topics

About maximal distance minimizers

Problem

For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $r>0$ find a closed connected Σ, such that

$$
\left\{\begin{array}{l}
M \subset \bar{B}_{r}(\Sigma) \\
\mathcal{H}^{1}(\Sigma) \text { is minimal }
\end{array}\right.
$$

The problem was stated at 2003 and was actively reseached in works by Miranda, Paolini, Butazzo and Stepanov (in \mathbb{R}^{n}). They proved that a minimizer Σ exists and that a minimizer can not contain a loop.

Today I am going to talk about:

- The statement of maximal distance minimizer problem;
- Explicit examples;
- Regularity properties of maximal distance minimizers;
- Energetic points: most important points of minimizers;
- A few words about Steiner tree problem;
- Sketch of the one proof for one example;
- Inverse problem and magic (if I will have time).

Problem (Statement 1)

For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $r>0$ to find a closed connected Σ, such that

$$
\left\{\begin{array}{l}
M \subset \bar{B}_{r}(\Sigma) \\
\mathcal{H}^{1}(\Sigma) \text { is minimal }
\end{array}\right.
$$

Problem (Statement 2)
For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $r>0$ find a closed connected Σ, such that

Problem (Dual statement)
For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $l>0$ find a closed connected Σ, such that

Problem (Statement 1)

For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $r>0$ to find a closed connected Σ, such that

$$
\left\{\begin{array}{l}
M \subset \bar{B}_{r}(\Sigma) \\
\mathcal{H}^{1}(\Sigma) \text { is minimal }
\end{array}\right.
$$

Problem (Statement 2)

For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $r>0$ find a closed connected Σ, such that

$$
\left\{\begin{array}{l}
F_{M}(\Sigma):=\max _{y \in M} \operatorname{dist}(y, \Sigma) \leq r \\
\mathcal{H}^{1}(\Sigma) \text { is minimal. }
\end{array}\right.
$$

Problem (Dual statement)
For a given compact set $M \subset \mathbb{D} n$ and a given number $l>0$ find a closed connected Σ, such that

Problem (Statement 1)

For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $r>0$ to find a closed connected Σ, such that

$$
\left\{\begin{array}{l}
M \subset \bar{B}_{r}(\Sigma) \\
\mathcal{H}^{1}(\Sigma) \text { is minimal }
\end{array}\right.
$$

Problem (Statement 2)

For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $r>0$ find a closed connected Σ, such that

$$
\left\{\begin{array}{l}
F_{M}(\Sigma):=\max _{y \in M} \operatorname{dist}(y, \Sigma) \leq r \\
\mathcal{H}^{1}(\Sigma) \text { is minimal. }
\end{array}\right.
$$

Problem (Dual statement)

For a given compact set $M \subset \mathbb{R}^{n}$ and a given number $l>0$ find a closed connected Σ, such that

$$
\left\{\begin{array}{l}
\mathcal{H}^{1}(\Sigma) \leq l \\
F_{M}(\Sigma) \text { is minimal }
\end{array}\right.
$$

The simplest examples

Example for two points at a distance $R>2 r$ apart:

One example for three points:

Each tripod Σ is a minimizer for some three points and $r>0$. But not vice versa.

Example for two points at a distance $R>2 r$ apart:

One example for three points:

Each tripod Σ is a minimizer for some three points and $r>0$. But not vice versa.

Example for two points at a distance $R>2 r$ apart:

One example for three points:

Each tripod Σ is a minimizer for some three points and $r>0$. But not vice versa.

The simplest examples

Another example for 3 points.

A segment Σ is minimizer for the border (or closure) of its r-neighbourhood.

Every maximal distance minimizer Σ for a set M and number $r>0$ is also a minimizer for r-neighbourhood of Σ. Uniqueness is an open question here.

The simplest examples
Another example for 3 points.

A segment Σ is minimizer for the border (or closure) of its r-neighbourhood.

Every maximal distance minimizer Σ for a set M and number $r>0$ is also a
minimizer for r-neighbourhood of Σ. Uniqueness is an open question here.

Another example for 3 points.

A segment Σ is minimizer for the border (or closure) of its r-neighbourhood.

Another example for 3 points.

A segment Σ is minimizer for the border (or closure) of its r-neighbourhood.

Every maximal distance minimizer Σ for a set M and number $r>0$ is also a minimizer for r-neighbourhood of Σ. Uniqueness is an open question here.

Let $M:=\partial B_{R}(O), R>4.98 r$. Then Σ is a horseshoe.

Conjectured by Miranda, Paolini and Stepanov in 2006 for $R>r$. Proved by Danila Cherkashin and T. in 2016 for $R>4.98 r$.

Let $M:=\partial B_{R}(O), R>4.98 r$. Then Σ is a horseshoe.

Conjectured by Miranda, Paolini and Stepanov in 2006 for $R>r$. Proved by Danila Cherkashin and T. in 2016 for $R>4.98 r$.

Figure: The solution for the set M with big radius of curvature

Theorem (Cherkashin, T., 2016)

For every closed convex curve M with minimal radius of curvature R and for every $r<R / 5$ the set of minimizers contains only horseshoes. For the circumference $M=\partial B_{R}(O)$ the claim is true for $r<R / 4.98$.

Still unknown: what is minimizer for a circle with $R>r>R / 4.98$? (it conjectured for a circle by Paolini, Miranda and Stepanov that the answer still is a horseshoe)

Solution for a concrete M. A stadium

Theorem (Cherkashin, T., 2016)

For every closed convex curve M with minimal radius of curvature R and for every $r<R / 5$ the set of minimizers contains only horseshoes. For the circumference $M=\partial B_{R}(O)$ the claim is true for $r<R / 4.98$.

Still unknown:
(1) What if $R>r>R / 4.98$? (it conjectured for a circle by Paolini, Miranda and Stepanov that the answer still is a horseshoe)
(2) What if M is a narrow stadium? (it is not a horseshoe!)

Figure: Horseshoe is not a minimizer for long enough stadium with $R<1.75 r$.

When M is a rectangle, we described the topology of maximal distance minimizers (see our preprint arXiv:2106.00809).

Theorem (Cherkashin-Gordeev-Strukov-T,2021)

Let $M=A_{1} A_{2} A_{3} A_{4}$ be a rectangle, $r>0$ be chosen small enough depending on M. Then any maximal distance minimizer has the topology depicted in the left part of Fig. ??. The middle part of the picture contains enlarged fragment of the minimizer near A_{1}; the labeled angles are equal to $\frac{2 \pi}{3}$. The rightmost part contains much more enlarged fragment of minimizer near A_{1}. A minimizer consists of 21 segments; an approximation of the length of a minimizer is Per $-8.473981 r$, where Per is the perimeter of the rectangle.

The regularity and local behaviour of the minimizers

Definition

We say that the ray ($a x$] is a tangent ray of the set Σ at the point $x \in \Sigma$ if there exists a non stabilized sequence of points $x_{k} \in \Sigma$ such that $x_{k} \rightarrow x$ and $\angle x_{k} x a \rightarrow 0$.

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set $M \subset \mathbb{R}^{n}$ and an $r>0$ be fixed. Then
(i) the angle between each pair of tangent rays at every point of Σ is at least $2 \pi / 3$. The number of tangent rays at every point of Σ is not greater than 3 .
(ii) In planar case Σ is a union of a finite number of injective images of the segment $[0,1]$ with non-intersecting interiors;

[^0]In planar case the number of triple points is finite.
Remark. It is not true for a Steiner tree, i. e. there exists an indecomposable Steiner tree with infinite number of triple points.

The regularity and local behaviour of the minimizers

Definition

We say that the ray ($a x$] is a tangent ray of the set Σ at the point $x \in \Sigma$ if there exists a non stabilized sequence of points $x_{k} \in \Sigma$ such that $x_{k} \rightarrow x$ and $\angle x_{k} x a \rightarrow 0$.

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set $M \subset \mathbb{R}^{n}$ and an $r>0$ be fixed. Then
(i) the angle between each pair of tangent rays at every point of Σ is at least $2 \pi / 3$. The number of tangent rays at every point of Σ is not greater than 3 .
(ii) In planar case Σ is a union of a finite number of injective images of the segment $[0,1]$ with non-intersecting interiors;

Corollary

In planar case the number of triple points is finite.
Remark. It is not true for a Steiner tree, i. e. there exists an indecomposable Steiner tree with infinite number of triple points.

The regularity and local behaviour of the minimizers. Pictures

Theorem (Gordeev, T., 2022)
Let Σ be a maximal distance minimizer for a compact set $M \subset \mathbb{R}^{n}$ and an $r>0$ be fixed. Then
(i) the angle between each pair of tangent rays at every point of Σ is at least $2 \pi / 3$. The number of tangent rays at every point of Σ is not greater than 3 .
(i) In mlanar case Σ is a union of a finite number of iniective images of the segment
$[0,1]$ with non-intersecting interiors;

Figure: Four cases of one-sided tangent lines in \mathbb{R}^{n}

At the plane also:

- finiteness number of branching points;
- continuity of one-sided tangent rays;
- regular tripod in a neighbourhood of a branching point.

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set $M \subset \mathbb{R}^{n}$ and an $r>0$ be fixed. Then
(i) the angle between each pair of tangent rays at every point of Σ is at least $2 \pi / 3$. The number of tangent rays at every point of Σ is not greater than 3 .
(ii) In planar case Σ is a union of a finite number of injective images of the segment $[0,1]$ with non-intersecting interiors;

Figure: Four cases of one-sided tangent lines in \mathbb{R}^{n}

At the plane also

- finiteness number of branching points;
- continuity of one-sided tangent rays;
- regular tripod in a neighbourhood of a branching point.

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set $M \subset \mathbb{R}^{n}$ and an $r>0$ be fixed. Then
(i) the angle between each pair of tangent rays at every point of Σ is at least $2 \pi / 3$. The number of tangent rays at every point of Σ is not greater than 3 .
(ii) In planar case Σ is a union of a finite number of injective images of the segment $[0,1]$ with non-intersecting interiors;

Figure: Four cases of one-sided tangent lines in \mathbb{R}^{n}

At the plane also:

- finiteness number of branching points;
- continuity of one-sided tangent rays;
- regular tripod in a neighbourhood of a branching point.

Energetic points

Definition

A point $x \in \Sigma$ is called energetic, if for all $\rho>0$ one has $F_{M}\left(\Sigma \backslash B_{\rho}(x)\right)>F_{M}(\Sigma)$.
Main property. For every energetic point $x \in \Sigma$ there exists an $y \in M$ such that $|x-y|=r$ and $B_{r}(y) \cap \Sigma=\emptyset$.

Figure: The rightest can not be energetic; two middle should be energetic; the leftest can be both
Let us call an isolated energetic point of \sum such a point that it has a neighbourhood without any other energetic points. Every isolated point has one of first three depicted behaviours.
Note that in some sense, any minimizer in $\mathbb{R}^{n}, n>2$ does not have non-energetic points in a larger dimension:

Example

Let Σ be a (local) minimizer for a compact set $M \subset \mathbb{R}^{n}$ and $\gamma>0$. Then
$\bar{\Sigma}:=\Sigma \times\left\{\underset{\overline{0}}{0} \subset \subset \mathbb{R}^{n+1}\right.$ is a (local) minimizer for $\bar{M}=(M \times\{0\}) \cup(\Sigma \times\{r\}) \subset \mathbb{R}^{n+1}$ and $E_{\bar{\Sigma}}=\bar{\Sigma}$.

Energetic points

Definition

A point $x \in \Sigma$ is called energetic, if for all $\rho>0$ one has $F_{M}\left(\Sigma \backslash B_{\rho}(x)\right)>F_{M}(\Sigma)$.
Main property. For every energetic point $x \in \Sigma$ there exists an $y \in M$ such that $|x-y|=r$ and $B_{r}(y) \cap \Sigma=\emptyset$.

Figure: The rightest can not be energetic; two middle should be energetic; the leftest can be both
Let us call an isolated energetic noint of Σ such a noint that it has a neighbourhood without any other energetic points. Every isolated point has one of first three depicted behaviours.
Note that in some sense, any minimizer in $\mathbb{R}^{n}, n>2$ does not have non-energetic points in a larger dimension:

Energetic points

Definition

A point $x \in \Sigma$ is called energetic, if for all $\rho>0$ one has $F_{M}\left(\Sigma \backslash B_{\rho}(x)\right)>F_{M}(\Sigma)$.
Main property. For every energetic point $x \in \Sigma$ there exists an $y \in M$ such that $|x-y|=r$ and $B_{r}(y) \cap \Sigma=\emptyset$.

Figure: The rightest can not be energetic; two middle should be energetic; the leftest can be both
Let us call an isolated energetic point of Σ such a point that it has a neighbourhood without any other energetic points. Every isolated point has one of first three depicted
behaviours.
Note that in some sense, any minimizer in $\mathbb{R}^{n}, n>2$ does not have non-energetic points in a larger dimension:

Energetic points

Definition

A point $x \in \Sigma$ is called energetic, if for all $\rho>0$ one has $F_{M}\left(\Sigma \backslash B_{\rho}(x)\right)>F_{M}(\Sigma)$.
Main property. For every energetic point $x \in \Sigma$ there exists an $y \in M$ such that $\overline{|x-y|=r}$ and $B_{r}(y) \cap \Sigma=\emptyset$.

Figure: The rightest can not be energetic; two middle should be energetic; the leftest can be both Let us call an isolated energetic point of Σ such a point that it has a neighbourhood without any other energetic points. Every isolated point has one of first three depicted behaviours.
Note that in some sense, any minimizer in $\mathbb{R}^{n}, n>2$ does not have non-energetic points in a larger dimension:

Example

Let Σ be a (local) minimizer for a compact set $M \subset \mathbb{R}^{n}$ and $r>0$. Then $\bar{\Sigma}:=\Sigma \times\{0\} \subset \mathbb{R}^{n+1}$ is a (local) minimizer for $\bar{M}=(M \times\{0\}) \cup(\Sigma \times\{r\}) \subset \mathbb{R}^{n+1}$ and $E_{\bar{\Sigma}}=\bar{\Sigma}$.

The energetic points. Examples

Given set M is red. The energetic points of Σ are green. Non-energetic points of Σ are blue.

Given set M is red. The energetic points of Σ are green. Non-energetic points of Σ are blue.

Energetic points of a horseshoe

Given set M is black. The energetic points of Σ are green. Non-energetic points of Σ are blue.

Steiner problem for a finite set

Problem (Steiner tree problem)

$C=\left\{C_{1}, C_{2} \ldots C_{m}\right\} \subset \mathbb{R}^{n}$. To find such a compact set $S: C \subset S, S$ is connected, $\mathcal{H}^{1}(S)$ is the smallest.

Some properties

- \bar{S} contains no loops;
- S is a finite union of segments with pairwise angle at least $2 \pi / 3$.
- Each point of $S \backslash C$ is a center of a segment or of a regular tripod (see two left cases on the picture)
- A point of C can also be an endpoint or a cornerpoint.

Then S is usually called Steiner tree, and it is called indecomposable, when $S \backslash C$ is connected.

Figure: Four cases of local behaviour of Steiner tree

Parallels between maximal distance and Steiner problems

We have: a set of points at the plane.
We should: construct the connected set arriving at the distance $\leq r$ to every points.
Example for two points with big distance $R>2 r$ between them:

R

Our problem (to find minimizers of the maximum distance): to connect $r-$ neighbourhoods of the points by the shortest connected set.

$\underline{\text { Steiner problem: }}$ to connect set of points by the shortest set:
C - subset of complete metric space. To find $S:\{S \cup C$ - connected $\}=$ St (C)

Parallels between maximal distance and Steiner problems

We have: a set of points at the plane.
We should: construct the connected set arriving at the distance $\leq r$ to every points.
Example for two points with big distance $R>2 r$ between them:

Our problem (to find minimizers of the maximum distance): to connect r-neighbourhoods of the points by the shortest connected set.

Steiner problem: to connect set of points by the shortest set:
C - subset of complete metric space. To find $S:\{S \cup C$ - connected $\}=: S t(C)$

Parallels between maximal distance and Steiner problems

We have: a set of points at the plane.
We should: construct the connected set arriving at the distance $\leq r$ to every points.
Example for two points with big distance $R>2 r$ between them:

Our problem (to find minimizers of the maximum distance): to connect r-neighbourhoods of the points by the shortest connected set.

Steiner problem: to connect set of points by the shortest set:
C - subset of complete metric space. To find $S:\{S \cup C —$ connected $\}=: \mathrm{St}(C)$

$$
\mathcal{H}^{1}(S) \leq \mathcal{H}^{1}\left(S^{\prime}\right), \forall S^{\prime} \in \operatorname{St}(C)
$$

The proof for the rectangle

Theorem (Cherkashin-Gordeev-Strukov-T, 2021)

If M is a rectangle and $r>0$ is sufficiently small, then a maximal distance minimizer has topology at depicted at the left figure.

Sketch of the proof:

- Is empty inside (no energetic points and no long segments \rightarrow nothing).
- Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
- Σ almost contains cycle \mathcal{C} which should be convex polygon.
- $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point on \mathcal{C}.
- Length of Σ in the angle is at least the length of $\Sigma \cap \mathcal{C}$ plus the length a Steiner tree for three quarter-circles and the branching point.
- Show, by computer that if such Steiner trees have close length then they are close to each other (in Hausdorff sense; might have different topologies).
- Show, by the differentional argument, that only two topologies (the symmetric and the answer) can be locally minimal and compare their lengths.

Sketch for the rectangle's proof.

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).

Figure: Definitions of N, M_{r}, N, and N_{r}

Sketch for the rectangle's proof.

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).

Figure: Definitions of N, M_{r}, N, and N_{r}

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon.

Definition
For a nolyoonal chain B_{1}, \ldots, B_{n} define its turning as follows
$\operatorname{turn}\left(B_{1}\right.$

(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn)

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon.

Definition
For a polygonal chain B_{1}, \ldots, B_{n} define its turning as follows
$\operatorname{turn}\left(B_{1}\right.$

(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn)

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon.

Definition

For a polygonal chain B_{1}, \ldots, B_{n} define its turning as follows

$$
\operatorname{turn}\left(B_{1}, \ldots, B_{n}\right):=\sum_{i=1}^{n-2} \angle\left(\left[B_{i} B_{i+1}\right),\left[B_{i+1}, B_{i+2}\right)\right)
$$

(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn).

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon
(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn)

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon.
(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn).

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon.
(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn).
© Length of Σ in the angle is at least the length of $\Sigma \cap \mathcal{C}$ plus the length a Steiner tree for three quarter-circles and the branching point.
(6 Show, by computer that if such Steiner trees have close length then they are close to each other (in Hausdorff sense; might have different topologies).
(7) Show, by the differential argument, that only two topologies (the symmetric and the answer) can be locally minimal and compare their lengths.

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon.
(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn).
© Length of Σ in the angle is at least the length of $\Sigma \cap \mathcal{C}$ plus the length a Steiner tree for three quarter-circles and the branching point.

- Show, by computer that if such Steiner trees have close length then they are close to each other (in Hausdorff sense; might have different topologies). the answer) can be locally minimal and compare their lengths.

Sketch for the rectangle's proof

Sketch of the proof:
(1) Consist of segments (boring energetic points) and is empty inside (no energetic points and no long segments \rightarrow nothing).
(2) Angles and stripes. In each angle Σ is connected (we want to win almost $2 r$).
(3) Σ almost contains cycle \mathcal{C} which should be convex polygon.
(4) $\Sigma \cap \mathcal{C}$ in the angle has 5 vertices and exactly 1 of them is a branching point (empty balls and turn).
© Length of Σ in the angle is at least the length of $\Sigma \cap \mathcal{C}$ plus the length a Steiner tree for three quarter-circles and the branching point.
© Show, by computer that if such Steiner trees have close length then they are close to each other (in Hausdorff sense; might have different topologies).
(0 Show, by the differential argument, that only two topologies (the symmetric and the answer) can be locally minimal and compare their lengths.

Inverse problem if I have time

- If M is a finite set of points. Then Σ is a Steiner tree on at most $\sharp M$ terminals.

Problem (Steiner tree problem)

$C=\left\{C_{1}, C_{2} \ldots C_{m}\right\} \subset \mathbb{R}^{n}$. To find such a compact set $S: C \subset S, S$ is connected, $\mathcal{H}^{1}(S)$ is the smallest.

Some properties

- S contains no loops;
- S is a finite union of segments with pairwise angle at least $2 \pi / 3$
- Each point of $S \backslash C$ is a center of a segment or of a regular tripod (see two left cases on the picture)
- A point of C can also be an endpoint or a cornerpoint

Theorem
Cherkashin, T., 2022 Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right)$ $A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then St is an r-minimizer for an m-tuple M and such M is unique.

Usually the condition holds:
Theorem (Basok, Cherkashin, T., 2022)
For $m \geq 4$ the set of set of terminals with non unique Steiner trees has the Hausdorff dimension $2 m-1$.

Inverse problem if I have time

- If M is a finite set of points. Then Σ is a Steiner tree on at most $\sharp M$ terminals.

Problem (Steiner tree problem)

$C=\left\{C_{1}, C_{2} \ldots C_{m}\right\} \subset \mathbb{R}^{n}$. To find such a compact set $S: C \subset S, S$ is connected, $\mathcal{H}^{1}(S)$ is the smallest.

Some properties

- \bar{S} contains no loops;
- S is a finite union of segments with pairwise angle at least $2 \pi / 3$.
- Each point of $S \backslash C$ is a center of a segment or of a regular tripod (see two left cases on the picture)
- A point of C can also be an endpoint or a cornerpoint.

Theorem
Cherkashin, 7., 2022 Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right)$ $A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an m-tuple M and such M is unique.

Usually the condition holds:
Theorem (Basok, Cherkashin, T., 2022)
For $m \geq 1$ the set of set of terminals with non unique Steiner trees has the Hausdorff dimension $2 m-1$

Inverse problem if I have time

- If M is a finite set of points. Then Σ is a Steiner tree on at most $\sharp M$ terminals.

Problem (Steiner tree problem)

$C=\left\{C_{1}, C_{2} \ldots C_{m}\right\} \subset \mathbb{R}^{n}$. To find such a compact set $S: C \subset S, S$ is connected, $\mathcal{H}^{1}(S)$ is the smallest.

Some properties

- \bar{S} contains no loops;
- S is a finite union of segments with pairwise angle at least $2 \pi / 3$.
- Each point of $S \backslash C$ is a center of a segment or of a regular tripod (see two left cases on the picture)
- A point of C can also be an endpoint or a cornerpoint.

What about inverse problem? We want to construct M if Σ is Steiner tree.
Theorem
Cherkashin, T., 2022 Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right)$, $A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an m-tuple M and such M is unique.

Usually the condition holds:

Theorem (Basok, Cherkashin, T., 2022)
For $m>1$ the set of set of terminals with non unique Steiner trees has the Hausdorff dimension $2 m-1$

Inverse problem if I have time

- If M is a finite set of points. Then Σ is a Steiner tree on at most $\sharp M$ terminals.

Problem (Steiner tree problem)

$C=\left\{C_{1}, C_{2} \ldots C_{m}\right\} \subset \mathbb{R}^{n}$. To find such a compact set $S: C \subset S, S$ is connected, $\mathcal{H}^{1}(S)$ is the smallest.

Some properties

- \bar{S} contains no loops;
- S is a finite union of segments with pairwise angle at least $2 \pi / 3$.
- Each point of $S \backslash C$ is a center of a segment or of a regular tripod (see two left cases on the picture)
- A point of C can also be an endpoint or a cornerpoint.

What about inverse problem? We want to construct M if Σ is Steiner tree.

Theorem

Cherkashin, T., 2022 Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right)$, $A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an m-tuple M and such M is unique.

Usually the condition holds:

For $m \geq 4$ the set of set of terminals with non unique Steiner trees has the Hausdorff dimension $2 m-1$

Inverse problem if I have time

- If M is a finite set of points. Then Σ is a Steiner tree on at most $\sharp M$ terminals.

Problem (Steiner tree problem)

$C=\left\{C_{1}, C_{2} \ldots C_{m}\right\} \subset \mathbb{R}^{n}$. To find such a compact set $S: C \subset S, S$ is connected, $\mathcal{H}^{1}(S)$ is the smallest.

Some properties

- \bar{S} contains no loops;
- S is a finite union of segments with pairwise angle at least $2 \pi / 3$.
- Each point of $S \backslash C$ is a center of a segment or of a regular tripod (see two left cases on the picture)
- A point of C can also be an endpoint or a cornerpoint.

What about inverse problem? We want to construct M if Σ is Steiner tree.

Theorem

Cherkashin, T., 2022 Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right)$, $A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an m-tuple M and such M is unique.

Usually the condition holds:

Theorem (Basok, Cherkashin, T., 2022)

For $m \geq 4$ the set of set of terminals with non unique Steiner trees has the Hausdorff dimension $2 m-1$.

What if the condition does not hold?

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right), A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an m-tuple M and such M is unique.

It turns out that a Steiner tree for the vertices of a square is not a maximal distance minimizer for every set of four points:

Square magic if I have time

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right), A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an m-tuple M and such M is unique.

It turns out that a Steiner tree for the vertices of a square is not a maximal distance minimizer for every set of four points:

- When M is a finite set of points

Theorem (Cherkashin, T., 2022)
Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{n}\right), A_{i} \in \mathbb{R}^{d}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an n-tuple M and such M is unique

- When M is an r-neighbourhood of smooth curve (for sufficiently small $r>0$)

Theorem

let α be a C-curve. Then γ is a maximal distance minimizer for a small enough γ and $M=\overline{B_{r}(\gamma)}$.

- When M is a finite set of points

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{n}\right), A_{i} \in \mathbb{R}^{d}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an n-tuple M and such M is unique

- When M is an r-neighbourhood of smooth curve (for sufficiently small $r>0$)

Theorem

Let γ be a $C^{1,1}$-curve. Then γ is a maximal distance minimizer for a small enough r and $M=\overline{B_{r}(\gamma)}$.

- When M is a finite set of points

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{n}\right), A_{i} \in \mathbb{R}^{d}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ is an r-minimizer for an n-tuple M and such M is unique

- When M is an r-neighbourhood of smooth curve (for sufficiently small $r>0$)

Theorem

Let γ be a $C^{1,1}$-curve. Then γ is a maximal distance minimizer for a small enough r and $M=\overline{B_{r}(\gamma)}$.

Figure: Indecomposable Steiner tree with infinite number of branching points. Can be a self-similar fractal since 2023

Figure: The example of a minimizer with an infinite number of corner points

Some open questions

- Find the minimizers for a circumference of radius $r<R<4.98 r$. Find the minimizers for a ball.
- Find the explicit estimate for the curvature radius at the horseshoe theorem
- Find the minimizers for a given stadium.
- Can maximal distance minimizer in Euclidean space have infinite many branching points?
- If Σ is a minimizer for some M then Σ is a minimizer for $\overline{B_{r}(\Sigma)}$. Is Σ the unique minimizer for $\overline{B_{r}(\Sigma)}$?

Figure: The example of a minimizer with infinite number of corner points

Continuity of planar tangent rays

Lemma (Gordeev, Teplitskaya, 2021)

Let Σ be a local minimizer for a compact set $M \subset \mathbb{R}^{2}$ and $r>0$ and let $x \in \Sigma$. Let Σ_{1} be a connected component of $\Sigma \backslash\{x\}$ with one-sided tangent (ax] and let $\bar{x} \in \Sigma_{1}$.
(1) For any one-sided tangent $(\bar{a} \bar{x}]$ of Σ at \bar{x} the equality $\angle((\bar{a} \bar{x}),(a x))=o_{|\bar{x} x|}(1)$ holds.
(2) Let ($\bar{a} \bar{x}]$ be a one-sided tangent at \bar{x} of any connected component of $\Sigma \backslash\{\bar{x}\}$ not containing x. Then $\angle((\bar{a} \bar{x}],(a x])=o_{|\bar{x} x|}(1)$.

For maximal distance minimizers in Euclidean space the following objects coincide due to regularity theorem

Definition

We will say that the ray $(a x]$ is a one-sided tangent of the set $\Gamma \subset \mathbb{R}^{n}$ at the point $x \in \Gamma$ if there exists a connected component Γ_{1} of $\Gamma \backslash\{x\}$ with the property that any sequence of points $x_{k} \in \Gamma_{1}$ such that $x_{k} \rightarrow x$ satisfies $\angle x_{k} x a \rightarrow 0$. In this case we will also say that ($a x]$ is tangent to the connected component Γ_{1}.

[^0]: Corolay

