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About maximal distance minimizers

Problem
For a given compact set M ⊂ Rn and a given number r > 0 find a closed connected
Σ, such that {

M ⊂ Br(Σ)

H1(Σ) is minimal.

The problem was stated at 2003 and was actively reseached in works by Miranda,
Paolini, Butazzo and Stepanov (in Rn). They proved that a minimizer Σ exists and
that a minimizer can not contain a loop.

Today I am going to talk about:

• The statement of maximal distance minimizer problem;

• Explicit examples;

• Regularity properties of maximal distance minimizers;

• Energetic points: most important points of minimizers;

• A few words about Steiner tree problem;

• Sketch of the one proof for one example;

• Inverse problem and magic (if I will have time).



The statement of the problem

Problem (Statement 1)

For a given compact set M ⊂ Rn and a given number r > 0 to find a closed
connected Σ, such that {

M ⊂ Br(Σ)

H1(Σ) is minimal.

Problem (Statement 2)

For a given compact set M ⊂ Rn and a given number r > 0 find a closed connected
Σ, such that {

FM (Σ) := maxy∈M dist(y,Σ) ≤ r
H1(Σ) is minimal.

Problem (Dual statement)

For a given compact set M ⊂ Rn and a given number l > 0 find a closed connected
Σ, such that {

H1(Σ) ≤ l
FM (Σ) is minimal.
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The simplest examples

Example for two points at a distance R > 2r apart:
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Each tripod Σ is a minimizer for some three points and r > 0. But not vice versa.
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The simplest examples

Another example for 3 points.
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A segment Σ is minimizer for the border (or closure) of its r-neighbourhood.
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M

Every maximal distance minimizer Σ for a set M and number r > 0 is also a
minimizer for r-neighbourhood of Σ. Uniqueness is an open question here.
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What if M is a circle?

Let M := ∂BR(O), R > 4.98r. Then Σ is a horseshoe.

O
M O

M

Σ

Conjectured by Miranda, Paolini and Stepanov in 2006 for R > r. Proved by Danila
Cherkashin and T. in 2016 for R > 4.98r.
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Solution for a concrete M . A curve with a great curvature radius

M
Σ

Figure: The solution for the set M with big radius of curvature

Theorem (Cherkashin, T., 2016)

For every closed convex curve M with minimal radius of curvature R and for every
r < R/5 the set of minimizers contains only horseshoes. For the circumference
M = ∂BR(O) the claim is true for r < R/4.98.

Still unknown: what is minimizer for a circle with R > r > R/4.98? (it conjectured
for a circle by Paolini, Miranda and Stepanov that the answer still is a horseshoe)



Solution for a concrete M . A stadium

Theorem (Cherkashin, T., 2016)

For every closed convex curve M with minimal radius of curvature R and for every
r < R/5 the set of minimizers contains only horseshoes. For the circumference
M = ∂BR(O) the claim is true for r < R/4.98.

Still unknown:
1 What if R > r > R/4.98? (it conjectured for a circle by Paolini, Miranda and

Stepanov that the answer still is a horseshoe)
2 What if M is a narrow stadium? (it is not a horseshoe!)

Σ0

A B

Figure: Horseshoe is not a minimizer for long enough stadium with R < 1.75r.



Solution for a concrete M . A rectangle

A1

A2 A3

A4

r

r

A1

≈ 11π
12

≈ 0.98π

When M is a rectangle, we described the topology of maximal distance minimizers
(see our preprint arXiv:2106.00809).

Theorem (Cherkashin–Gordeev–Strukov–T,2021)

Let M = A1A2A3A4 be a rectangle, r > 0 be chosen small enough depending on M .
Then any maximal distance minimizer has the topology depicted in the left part of
Fig. ??. The middle part of the picture contains enlarged fragment of the minimizer
near A1; the labeled angles are equal to 2π

3
. The rightmost part contains much more

enlarged fragment of minimizer near A1. A minimizer consists of 21 segments; an
approximation of the length of a minimizer is Per − 8.473981r, where Per is the
perimeter of the rectangle.



The regularity and local behaviour of the minimizers

Definition
We say that the ray (ax] is a tangent ray of the set Σ at the point x ∈ Σ if there
exists a non stabilized sequence of points xk ∈ Σ such that xk → x and ∠xkxa→ 0.

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set M ⊂ Rn and an r > 0 be
fixed. Then

(i) the angle between each pair of tangent rays at every point of Σ is at least 2π/3.
The number of tangent rays at every point of Σ is not greater than 3.

(ii) In planar case Σ is a union of a finite number of injective images of the segment
[0, 1] with non-intersecting interiors;

Corollary

In planar case the number of triple points is finite.

Remark. It is not true for a Steiner tree, i. e. there exists an indecomposable Steiner
tree with infinite number of triple points.
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The regularity and local behaviour of the minimizers. Pictures

Theorem (Gordeev, T., 2022)
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Figure: Four cases of one-sided tangent lines in Rn

At the plane also:

• finiteness number of branching points;

• continuity of one-sided tangent rays;

• regular tripod in a neighbourhood of a branching point.



The regularity and local behaviour of the minimizers. Pictures

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set M ⊂ Rn and an r > 0 be
fixed. Then

(i) the angle between each pair of tangent rays at every point of Σ is at least 2π/3.
The number of tangent rays at every point of Σ is not greater than 3.

(ii) In planar case Σ is a union of a finite number of injective images of the segment
[0, 1] with non-intersecting interiors;

x x x
x

Figure: Four cases of one-sided tangent lines in Rn

At the plane also:

• finiteness number of branching points;

• continuity of one-sided tangent rays;

• regular tripod in a neighbourhood of a branching point.



The regularity and local behaviour of the minimizers. Pictures

Theorem (Gordeev, T., 2022)

Let Σ be a maximal distance minimizer for a compact set M ⊂ Rn and an r > 0 be
fixed. Then

(i) the angle between each pair of tangent rays at every point of Σ is at least 2π/3.
The number of tangent rays at every point of Σ is not greater than 3.

(ii) In planar case Σ is a union of a finite number of injective images of the segment
[0, 1] with non-intersecting interiors;

x x x
x

Figure: Four cases of one-sided tangent lines in Rn

At the plane also:

• finiteness number of branching points;

• continuity of one-sided tangent rays;

• regular tripod in a neighbourhood of a branching point.



Energetic points

Definition
A point x ∈ Σ is called energetic, if for all ρ > 0 one has FM (Σ \Bρ(x)) > FM (Σ).

Main property. For every energetic point x ∈ Σ there exists an y ∈M such that
|x− y| = r and Br(y) ∩ Σ = ∅.

x x x
x

Figure: The rightest can not be energetic; two middle should be energetic; the leftest can be both

Let us call an isolated energetic point of Σ such a point that it has a neighbourhood
without any other energetic points. Every isolated point has one of first three depicted
behaviours.
Note that in some sense, any minimizer in Rn, n > 2 does not have non-energetic
points in a larger dimension:

Example

Let Σ be a (local) minimizer for a compact set M ⊂ Rn and r > 0. Then
Σ̄ := Σ× {0} ⊂ Rn+1 is a (local) minimizer for M̄ = (M × {0})∪ (Σ× {r}) ⊂ Rn+1

and EΣ̄ = Σ̄.
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The energetic points. Examples

Given set M is red. The energetic points of Σ are green. Non-energetic points of Σ
are blue.
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Energetic points of a horseshoe

Given set M is black. The energetic points of Σ are green. Non-energetic points of Σ
are blue.

O

M

O

M

Σ

The yellow points belong to EΣ, the green points to XΣ and blue ones are non
energetic.



Steiner problem for a finite set

Problem (Steiner tree problem)

C = {C1, C2 . . . Cm} ⊂ Rn. To find such a compact set S : C ⊂ S, S is connected,
H1(S) is the smallest.

Some properties

• S contains no loops;

• S is a finite union of segments with pairwise angle at least 2π/3.

• Each point of S \ C is a center of a segment or of a regular tripod (see two left
cases on the picture)

• A point of C can also be an endpoint or a cornerpoint.

Then S is usually called Steiner tree, and it is called indecomposable, when S \ C is
connected.

x
x

x x

Figure: Four cases of local behaviour of Steiner tree



Parallels between maximal distance and Steiner problems

We have: a set of points at the plane.
We should: construct the connected set arriving at the distance ≤ r to every points.

Example for two points with big distance R > 2r between them:

R

r r C

DE

Our problem (to find minimizers of the maximum distance): to connect
r−neighbourhoods of the points by the shortest connected set.

C

DE

C

DE

Steiner problem: to connect set of points by the shortest set:

C— subset of complete metric space.To find S: {S ∪ C — connected} =: St(C)

H1(S) ≤ H1(S′),∀S′ ∈ St(C)
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The proof for the rectangle

A1

A2 A3

A4
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≈ 11π
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≈ 0.98π

Theorem (Cherkashin–Gordeev–Strukov–T,2021)

If M is a rectangle and r > 0 is sufficiently small, then a maximal distance minimizer
has topology at depicted at the left figure.

Sketch of the proof:
• Is empty inside (no energetic points and no long segments → nothing).
• Angles and stripes. In each angle Σ is connected (we want to win almost 2r).
• Σ almost contains cycle C which should be convex polygon.
• Σ ∩ C in the angle has 5 vertices and exactly 1 of them is a branching point on C.
• Length of Σ in the angle is at least the length of Σ ∩ C plus the length a Steiner

tree for three quarter-circles and the branching point.
• Show, by computer that if such Steiner trees have close length then they are close

to each other (in Hausdorff sense; might have different topologies).
• Show, by the differentional argument, that only two topologies (the symmetric

and the answer) can be locally minimal and compare their lengths.



Sketch for the rectangle’s proof.

Sketch of the proof:
1 Consist of segments (boring energetic points) and is empty inside (no energetic

points and no long segments → nothing).

M

Mr

r

N

Nr

Figure: Definitions of N , Mr , N , and Nr
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Sketch for the rectangle’s proof

Sketch of the proof:

1 Consist of segments (boring energetic points) and is empty inside (no energetic
points and no long segments → nothing).

2 Angles and stripes. In each angle Σ is connected (we want to win almost 2r).

3 Σ almost contains cycle C which should be convex polygon.

Definition
For a polygonal chain B1, . . . , Bn define its turning as follows

turn(B1, . . . , Bn) :=

n−2∑
i=1

∠ ([BiBi+1), [Bi+1, Bi+2)) .

4 Σ ∩ C in the angle has 5 vertices and exactly 1 of them is a branching point
(empty balls and turn).
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Sketch for the rectangle’s proof
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Sketch of the proof:

1 Consist of segments (boring energetic points) and is empty inside (no energetic
points and no long segments → nothing).

2 Angles and stripes. In each angle Σ is connected (we want to win almost 2r).

3 Σ almost contains cycle C which should be convex polygon.

4 Σ ∩ C in the angle has 5 vertices and exactly 1 of them is a branching point
(empty balls and turn).

5 Length of Σ in the angle is at least the length of Σ ∩ C plus the length a Steiner
tree for three quarter-circles and the branching point.

6 Show, by computer that if such Steiner trees have close length then they are close
to each other (in Hausdorff sense; might have different topologies).

7 Show, by the differential argument, that only two topologies (the symmetric and
the answer) can be locally minimal and compare their lengths.
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Inverse problem if I have time

• If M is a finite set of points. Then Σ is a Steiner tree on at most ]M terminals.

Problem (Steiner tree problem)

C = {C1, C2 . . . Cm} ⊂ Rn. To find such a compact set S : C ⊂ S, S is connected,
H1(S) is the smallest.

Some properties
• S contains no loops;
• S is a finite union of segments with pairwise angle at least 2π/3.
• Each point of S \ C is a center of a segment or of a regular tripod (see two left cases

on the picture)
• A point of C can also be an endpoint or a cornerpoint.
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Square magic if I have time

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals A = (A1, ..., Am), Ai ∈ Rn such that every
Steiner tree for an n-tuple in the closed 2r-neighbourhood of A has the same topology
as St for some positive r. Then St is an r-minimizer for an m-tuple M and such M is
unique.

It turns out that a Steiner tree for the vertices of a square is not a maximal distance
minimizer for every set of four points:

1 2

34

1 2

34
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Inverse problem (for simple M)

• When M is a finite set of points

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals A = (A1, ..., An), Ai ∈ Rd such that every
Steiner tree for an n-tuple in the closed 2r-neighbourhood of A has the same topology
as St for some positive r. Then St is an r-minimizer for an n-tuple M and such M is
unique

• When M is an r-neighbourhood of smooth curve (for sufficiently small r > 0)

Theorem
Let γ be a C1,1-curve. Then γ is a maximal distance minimizer for a small enough r
and M = Br(γ).

M

Σ

M

Σ
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Thank you for your attention!

Figure: Indecomposable Steiner tree with infinite
number of branching points. Can be a self-similar
fractal since 2023
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Figure: The example of a minimizer with an infinite
number of corner points



Some open questions

• Find the minimizers for a circumference of radius r < R < 4.98r. Find the
minimizers for a ball.

• Find the explicit estimate for the curvature radius at the horseshoe theorem

• Find the minimizers for a given stadium.

• Can maximal distance minimizer in Euclidean space have infinite many branching
points?

• If Σ is a minimizer for some M then Σ is a minimizer for Br(Σ). Is Σ the unique

minimizer for Br(Σ)?



Limit points of corner points: the example
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Figure: The example of a minimizer with infinite number of corner points



Continuity of planar tangent rays

Lemma (Gordeev, Teplitskaya, 2021)

Let Σ be a local minimizer for a compact set M ⊂ R2 and r > 0 and let x ∈ Σ. Let
Σ1 be a connected component of Σ \ {x} with one-sided tangent (ax] and let x̄ ∈ Σ1.

1 For any one-sided tangent (āx̄] of Σ at x̄ the equality ∠((āx̄), (ax)) = o|x̄x|(1)
holds.

2 Let (āx̄] be a one-sided tangent at x̄ of any connected component of Σ \ {x̄} not
containing x. Then ∠((āx̄], (ax]) = o|x̄x|(1).

For maximal distance minimizers in Euclidean space the following objects coincide due
to regularity theorem

Definition
We will say that the ray (ax] is a one-sided tangent of the set Γ ⊂ Rn at the point
x ∈ Γ if there exists a connected component Γ1 of Γ \ {x} with the property that any
sequence of points xk ∈ Γ1 such that xk → x satisfies ∠xkxa→ 0. In this case we
will also say that (ax] is tangent to the connected component Γ1.


