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A New MPLS-Based Forwarding Paradigm for
Multi-Radio Wireless Mesh Networks

Stefano Avallone and Giovanni Di Stasi

Abstract—Routing in multi-radio wireless mesh networks is a
very challenging problem. In this paper, we propose a forwarding
paradigm based on MPLS (Multi Protocol Label Switching)
which makes use of a novel mechanism, denoted as MPLS
splitting policy. Such mechanism allows to configure multiple next
hops at an intermediate node, so that the incoming traffic is par-
titioned among the next hops according to predefined coefficients
named split ratios. The MPLS splitting policy has been designed
to allow for load balancing and fast local restoration. With such
a mechanism, it is crucial to properly determine the set of split
ratios, as they determine how the traffic is routed across the
network. We present an approach to compute a set of split ratios
that guarantee high performance under different traffic loads. To
this end, we adopt the hose traffic model, according to which we
only have knowledge of the maximum amount of traffic entering
or leaving the network at each edge node. A thorough simulation
study is conducted to show that our approach outperforms other
routing protocols in terms of throughput and robustness against
traffic load variations and single node failures.

Index Terms—Multi-radio wireless mesh networks, MPLS,
routing.

I. INTRODUCTION

W IRELESS Mesh Networks (WMNs) have recently at-
tracted a big interest thanks to their ability to wire-

lessly cover large areas with a low cost of deployment
and maintenance. However, since wireless transmissions are
involved, interference is a major concern. In order to al-
leviate the interference, mesh routers are being equipped
with multiple radios which allow simultaneous transmissions
on orthogonal channels. The availability of multiple radios
per node leads to the channel assignment problem, i.e., the
problem how to select a channel for each radio in the network.
Channel assignment is a challenging problem and has been
massively investigated in the recent years [1][2][3][4]. Routing
in multi-radio wireless mesh networks is a very challenging
problem as well, due to a number of reasons:

• due to interference, nodes cannot dispose of the full
capacity of their links, because the channel capacity must
be shared among all the interfering links. Thus, it does not
suffice to ensure that each link is not allocated more flow
than its capacity to guarantee a feasible routing. Instead, a
routing protocol should be aware of which links interfere
with each other and route flows in such a way that the
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amount of flow allocated on each set of interfering links
does not exceed the channel capacity;

• wireless transmissions are affected by fading, propagation
losses, environment noise, etc. Such phenomena may
cause frequent (and temporary) unavailability of links.
Therefore, a routing protocol should quickly react to such
failures by providing an alternate path to the destination;

• given the decrease in the available bandwidth caused by
interference, it is necessary to fully exploit the network
resources. To this end, it is advisable that a routing
protocol support the ability to route flows over multiple
paths between the same ingress-egress pair, in order to
balance the traffic load across the whole network;

• the traffic load offered to the network may vary dy-
namically. A routing protocol should not be tailored for
a particular traffic matrix, but it should ensure a high
performance despite variations in the traffic load.

To our knowledge, the routing protocols proposed so far
for multi-radio wireless mesh networks fail to address all the
issues mentioned above (see Section II). In this paper, we
present a novel forwarding paradigm for multi-radio WMNs
based on Multi-Protocol Label Switching (MPLS) [5] with
the purpose to address all the aforementioned issues. The first
contribution of this paper is the definition of an MPLS splitting
policy, a new, standard-compliant, MPLS mechanism that
enables each intermediate node to split the incoming traffic
belonging to a specific Forwarding Equivalence Class (FEC)
among a predefined set of neighbors according to predefined
split ratios. As a result, different packets of a given FEC
follow distinct paths between the ingress and egress nodes.
The proposed mechanism has the potential for addressing the
second and the third of the above issues. Indeed, the traffic
between an ingress-egress pair can be balanced across multiple
paths (third issue). Also, the availability of multiple next hops
for a given destination enables a fast local restoration in case of
single node/link failures (second issue). The proposed splitting
policy is presented in Section III.

Enforcing the MPLS splitting policy requires to: (i) identify
a suitable set of paths for each ingress-egress pair and (ii)
compute the set of split ratios. We address the former task
by proposing RDAS (Resilient Directed Acyclic Graph), an
algorithm that finds, for a given ingress-egress pair, a set
of paths that guarantee protection against single node/link
failures (Section V-C). To accomplish the latter task, we
present an approach to compute, given the current channel
assignment, a set of split ratios that ensure high performance
despite variations in the traffic load (Section V-B). To this end,
rather than sticking to a given traffic matrix, we adopt the hose
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traffic model [6], according to which we only have knowledge
of the maximum amount of traffic entering and leaving the
network at each edge node, but we do not have knowledge
of the actual traffic matrix. Based on such a model, we
formulate a convex optimization problem whose objective is to
optimize the average performance over all the possible traffic
matrices (thus addressing the fourth of the above issues). The
performance of a given solution is measured in terms of its
ability to route flows such that the amount of flow allocated
on each set of interfering links does not exceed the channel
capacity (thus addressing the first of the above issues).

The proposed convex optimization problem requires the
knowledge of the network topology and of the maximum
amount of traffic entering and leaving the network at each
edge node (hose model). Given that mesh nodes are typically
stationary, changes in the network topology that require a
re-computation of the split ratios only occur due to the
addition/removal of mesh nodes (since temporary node/link
failures are handled by the splitting mechanism). Also, the
maximum amount of traffic entering (leaving) the network
at an edge node can be set to a value close to the sum
of the transmission rates of the radio interfaces used for
receiving (sending) the incoming (outgoing) traffic [6], hence
such values are rather stable as well. Thus, the computed set of
split ratios can be held for a long time. Hence, though the pro-
posed approach is centralized, it entails a low communication
overhead because both the retrieval of topology information
and the transmission of a new set of split ratios to the network
nodes do not need to be performed frequently.

The rest of the paper is structured as follows. In Section II
we give an overview of the related work. The MPLS splitting
policy is presented in Section III. In Section IV we formalize
the problem to find a proper set of split ratios for the use with
the MPLS splitting policy, while in Section V we present our
approach to solve such a problem. In Section VI we present
the results of the simulation study we conducted to show that
our approach achieves high throughput and is robust against
variations in the traffic load and against single node failures.
Finally, Section VII concludes the paper.

II. RELATED WORK

Most of the work related to routing in wireless mesh
networks focused on link or path metrics proposed as im-
provements upon the hop count metric. Among the first link
metrics to be introduced, the expected transmission count
(ETX) [7] estimates the number of transmissions required to
successfully send a packet to a neighbor. The authors in [8]
introduce two metrics, the expected transmission time (ETT)
and the weighted cumulative ETT (WCETT). MIC (metric
of interference and channel switching) [9] takes the inter-
flow interference into account in addition to the intra-flow
interference. A link metric based on the estimated available
bandwidth is instead proposed in [10]. The above mentioned
link metrics (and many others) are intended to be used with
a single path destination-based routing protocol. Very often,
the routing protocol used to test the proposed routing metric
is one of those designed for ad hoc networks, like AODV
[11] or OLSR [12]. The routing protocol specified in the
IEEE 802.11s amendment [13], too, is basically a modified

version of AODV that uses the Airtime link metric to associate
each link with an estimate of the amount of time needed to
successfully transmit a packet across that link. These routing
protocols, being single path, have limited capabilities in terms
of load balancing and require some time to discover alternative
routes in case of link/node failures. A number of proposals
extend the above mentioned single-path routing protocols to
use multiple paths between a source and a destination, such
as AODV-BR [14], AOMDV [15] and AODV-DM [16].Such
proposals define some measures of interference, but do not
consider the available bandwidth resulting from the channel
assignment. Also, in case of failures, repairing a path requires
the exchange of routing messages and hence some time is
needed to have consistent routing tables.

An adaptive load-aware routing scheme is proposed in [17].
The network is divided into multiple clusters and each cluster
head estimates the traffic load in its cluster. If the estimated
load gets higher, the cluster head increases the routing metrics
of the routes passing through the cluster so that the traffic
avoids overloaded clusters. This scheme requires a continuous
adaptation of the link costs to the offered traffic load, which
might lead to instabilities, and does not account for link/node
failures. A number of approaches exploits the broadcast na-
ture of the wireless medium. ExOR [18] is an opportunistic
approach where a node broadcast a packet and the nodes that
received it correctly agree on which of them has to further
forward the packet, based on the distance to the destination.
However, the protocol used to reach such agreement introduces
some overhead. ROMER [19] builds a “forwarding mesh”
around the minimum cost path and each packet is allowed to
travel along one of the paths in the forwarding mesh based on
the current conditions. GATOR [20] is another opportunistic
approach which exploits the knowledge of the geographic
coordinates of the nodes while selecting the receiver in charge
of retransmitting a packet. A drawback of the opportunistic
approaches, however, is that they are less effective in multi-
radio WMNs because only the neighbors listening on the
channel used by the sender can receive the packet.

The anypath routing paradigm [21] generalizes the oppor-
tunistic approach. Each node is pre-configured with a set of
next-hops, each having a different priority. A packet is further
forwarded only by the next-hop with the highest priority that
correctly received the packet. An anypath is composed by all
the possible paths that a packet can take from the source
to the destination. In [21] the goal is to find the least cost
anypath, while in [22] additive constraints to be satisfied
are considered. While sharing some concepts with anypath
routing, our proposal is deeply different. Firstly, anypath
routing requires a modified MAC to determine which next-
hop has to forward the packet. Secondly, the degree of load
balancing achieved depends on the outcome of the packet
transmissions: if all the transmissions were successful, the
anypath routing would reduce to single-path routing. Thirdly,
like other opportunistic approaches, anypath routing is less ef-
fective in multi-radio networks, where neighbors are reachable
via different channels.

Finally, we mention our previous approach known as Layer-
2.5 forwarding paradigm (L2.5) [4]. In L2.5, forwarding
decisions are not taken by looking up the routing table, but
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Fig. 1. Example to illustrate the splitting mechanism.

are based on two objectives: i) balance the traffic among
the outgoing links in proportion to their available bandwidth;
ii) guarantee that all the packets reach the destination in a
predetermined maximum number of hops. L2.5 suffers from
a loose control over the paths taken by packets and fails to
ensure that they are cycle-free. Also, the performance of L2.5
is dependent on the available bandwidth values associated with
the network links, and hence it may degrade if they are not
suited to the actual traffic load.

III. THE MPLS SPLITTING POLICY

According to RFC 3031 [5], MPLS nodes use three tables to
forward packets: NHLFE (Next Hop Label Forwarding Entry),
ILM (Incoming Label Map) and FTN (FEC-to-NHLFE Map).
An entry of the NHLFE specifies the next hop, the operation
to perform on the packet’s label stack and (optionally) any
additional information needed in order to properly dispose of
the packet. RFC 3031 provides the following three operations:
pop the label at the top of the stack, push a new label onto
the stack, swap the label at the top of the stack and possibly
push other labels. The ILM is used when forwarding packets
that arrive as labeled packets. An entry of the ILM maps an
incoming label to a set of NHLFE entries. The FTN, instead, is
used when forwarding packets that arrive unlabeled. An entry
of the FTN maps a FEC (Forwarding Equivalence Class) to
a set of NHLFE entries. Normally, each FEC in a FTN entry
is associated with a single NHLFE entry and each label in an
ILM entry is associated with a single NHLFE entry. In such
a way, there is a unique next hop for a given FEC or label at
each node and thus all the packets of a FEC follow the same
path (e.g., the dashed path from a to j in fig. 1).

As noted above, RFC 3031 explicitly mentions the possi-
bility that a label or a FEC may be associated with a set of
NHLFE entries, in order to perform, e.g., some sort of load
balancing. We exploit such a possibility to allow the packets
of a FEC to follow a predefined set of paths (as opposed to
a single path) between the ingress and egress nodes. Such
an approach is illustrated by fig. 1, where a continuous arrow
departing from a node denotes a possible next hop (as specified
in an NHLFE entry) for the packets that entered the network
at a and are destined to i. It can be observed that nodes
have multiple possible next hops from among they select
the one which a given packet is forwarded to. Consequently,
different packets of the same FEC may follow distinct paths
(e.g., a-d-h-i or a-b-d-f -i). All the possible paths taken by
the packets of a given FEC are determined a priori and can
be enforced by properly configuring the MPLS tables on the

MPLS SPLITTING({ρi}, {ρi}, B, p)

1 for each NHLFE i in decreasing order of ρi − ρi
2 if the next hop in NHLFE i is reachable
3 select NHLFE i

4 ρi =
ρi · B + p

B + p

5 ρj =
ρj ·B
B + p

∀j �= i

6 B = B + p
7 if B > Bmax

8 B = Bmin

Fig. 2. Pseudo-code of the MPLS splitting policy.

nodes. For instance, the behavior of node b is achieved by
configuring an entry in its ILM that associates the incoming
label 16 with two entries in the NHLFE: one that replaces
label 16 with label 17 and sends the packet to node d and
the other one that replaces label 16 with label 18 and sends
the packet to node e. When an incoming packet with label 16
arrives, node b has to select either of the two NHLFE entries.

In case a FEC or a label is associated with multiple NHLFE
entries, the procedures to choose an NHLFE entry among the
given set are beyond the scope of RFC 3031. Here, we define
a policy to select one of multiple NHLFE entries that fits our
goal to balance the traffic among the outgoing links according
to predefined proportions, while ensuring a fast reaction to
node/link failures. We assume that each NHLFE entry also
specifies, as an additional information, a split ratio, which is
a value between 0 and 1. The split ratios associated with a set
of NHLFE entries that correspond to the same FEC or to the
same label must sum to 1. The goal of the splitting policy is
to balance the traffic matching a given FEC or a given label
among the neighbors specified by the corresponding NHLFE
entries in proportion to the specified split ratios. For this
purpose, the algorithm shown in fig. 2 is used to select an
NHLFE entry (and hence a next hop) from among the set of
NHLFE entries associated with a given FEC or with a given
label. The procedure shown in fig. 2 is given the set of the
split ratios {ρi} associated with the set of NHLFE entries, the
set of the actual utilizations {ρi} of each NHLFE entry (i.e.,
the ratio of the amount of traffic transmitted as specified by
an NHLFE entry to the total traffic matching the FEC or the
label), a counter B that records the amount of traffic matching
the given FEC or label, and the size p of the packet for which
an NHLFE entry must be selected. Before the traffic starts
flowing, all the actual utilizations and the counter B are set
to zero. Then, every time a packet matches a given FEC or
label, the associated NHLFE entries are sorted and visited in
decreasing order of the gap between the split ratio and the
actual utilization. If the next hop neighbor included in the i-
th NHLFE entry is marked as unreachable, then the NHLFE
entry is skipped. To this end, we assume that a feedback is
provided by the lower layers informing on the unavailability
of a neighbor. Otherwise, the packet is sent as specified by the
i-th NHLFE entry and the actual utilization of all the NHLFE
entries and the total amount of traffic B are updated (lines 4–
6). To avoid that B grows indefinitely, it is reset to a value
Bmin once it exceeds a given threshold Bmax . Bmin should be
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a value greater than zero to avoid that all the actual utilizations
are reset after receiving the next packet (from line 5, ρj would
be null if B were zero). Also, a node that is marked as
unreachable can be included among the active neighbors again
after a configurable amount of time.

Thus, the proposed MPLS splitting policy enables to bal-
ance the traffic matching a given FEC or label among the
neighbors specified in the associated NHLFE entries in propor-
tion to the corresponding split ratios. Also, by having multiple
NHLFE entries (and hence next hop neighbors) already con-
figured, our splitting policy enables a fast restoration against
single node/link failures, as another NHLFE entry can be
readily used to send the packet. We note here that it also
makes sense to have NHLFE entries with an associated null
split ratio. Such entries are not used to forward packets in
normal conditions, but they are only used in case all the other
entries with non-null split ratios have been disabled due to
the corresponding next hops being unreachable. Thus, NHLFE
entries with a null split ratio (that may be present in a solution
returned by our approach proposed in Section V-B) can be
usefully configured since they serve as backup routes in case
of failures.

IV. PROBLEM STATEMENT

Interfering links and collision domains: We assume that
each mesh router is equipped with multiple radio interfaces,
each of which is assigned one of the |C| available channels
and transmits at a fixed transmission power. We also assume
the availability of a set of transmission rates. Given that a
radio may serve multiple links and the ability of commodity
hardware to set the transmission rate on a per-packet basis,
we will assign a rate to links rather than radios.

We model the WMN as a directed graph G = (V,E),
where V is a set of nodes each representing a mesh router.
Given two nodes u, v ∈ V , a directed edge u → v belongs
to E iff u and v share at least a common channel and, in
the absence of transmissions on other links, there exists a
rate r such that a transmission from u to v is successful.
We assume that a transmission from u to v is successful
if the Signal-to-Interference and Noise Ratio (SINR) at the
receiver is sufficiently high to decode the signal. The SINR
at receiver v when a signal is transmitted by u is defined as
SINRuv = GuvP (u→v)∑

x→y �=u→v GxvP (x→y)+nv
, where P (u → v) is

the power emitted by u to transmit to v, Guv is the gain of
the radio channel between u and v, and nv is the thermal
noise at receiver v. If u transmits at rate r, the receiver v
can correctly decode the signal if SINRuv � γr, where γr
denotes the minimum SINR required to correctly decode a
signal modulated at the rate r. Thus, a link u → v ∈ E
iff there exists a rate r such that GuvP (u→v)

nv
� γr. The

highest rate r for which such inequality holds is selected as
the capacity of the link and denoted by c(u → v). In case
u and v share multiple channels, the set E may include as
many links between the two nodes as the number of common
channels. To differentiate among those links and stress that a
link has been assigned channel c, we use the notation u

c→ v.
A link x

c→ y ∈ E interferes with u
c→ v ∈ E if a

transmission on x
c→ y prevents a simultaneous transmission

on u
c→ v. We assume that happens when i) the two links share

the same transmitter or receiver, ii) the transmitter of a link is
the receiver of the other (since a single radio cannot transmit
and receive simultaneously), or iii) a transmission on x

c→ y
makes the SINR at v too low to correctly decode the signal
from u. We define the set of all the links that interfere with
u

c→ v as its collision domain and denote it by D(u
c→ v) ={

x
c→ y ∈ E | {x, y} ∩ {u, v} �= ∅ ∨ GuvP (u→v)

GxvP (x→y)+nv
< γ

c(u
c→v)

}
.

In other words, none of the links in D(u
c→ v) can be active at

the same time as u
c→ v. Finally, we define the total utilization

of the collision domain of link e as Utot(e) =
∑

e0∈D(e)
f(e0)
c(e0)

,
where f(e0) denotes the amount of flow routed on link e0.

The MPLS splitting-based routing problem: Without
loss of generality, we consider a set Ve = {n1, ...nN} ⊆ V
of N edge nodes acting as both ingress and egress nodes.
We denote by {Imax

s }s∈Ve and {Omax
d }d∈Ve , respectively, the

sets of the maximum amount of incoming and outgoing traffic
at each edge node. According to the hose traffic model, we
only have knowledge of these values and we know neither the
actual amount of traffic entering at each edge node nor what
portion of traffic entering at a given edge node is destined to
each of the other N-1 edge nodes. A set of incoming flows
I = {Is}s∈Ve is said to be feasible if Is � Imax

s ∀s ∈ Ve.
Our goal is to route the (unknown) traffic matrix, using

MPLS and the splitting policy, in such a way to minimize
the cost function defined in Section V-A. A routing solution
consists of a set of split ratios {ρs,du→v}s∈Ve,d∈Ve−{s}

u→v∈Es,d , where
ρs,du→v represents the ratio of the flow between the ingress-
egress pair (s, d) entering node u that is forwarded to node
v and Es,d represents the set of links along which the flow
between the ingress s and the egress d is routed. Clearly, the
equation

∑
v |u→v∈Es,d

ρs,du→v = 1 must hold for each u and for

each ingress-egress pair (s, d). The set of split ratios determine
how the (unknown) traffic matrix is routed across the network.
Specifically, they determine, for each ingress-egress pair (s, d),
a directed subgraph of G, Ss,d = (Vs,d, Es,d), where Vs,d is
the set of nodes belonging to the links in Es,d. Given how
the splitting policy works, it turns out that the packets flowing
from ingress node s to egress node d can follow any of the
paths between s and d in the subgraph Ss,d. A routing solution
is said to be admissible if, for every ingress-egress pair (s, d),
the set of links Es,d, or, equivalently, the directed subgraph
Ss,d, meets the following constraints:

t′) to avoid that packets take excessively long paths, the
length of every path in Ss,d must be at most α times
the length of the shortest path between s and d in G

t′′) every path in Ss,d must be cycle-free
t′′′) the set of paths in Ss,d must guarantee protection

against single node/link failures, i.e., if a single
node/link fails, the upstream node must have an
alternative path to the egress node d

We denote by fs,d
u→v the variable representing the amount

of flow between the ingress-egress pair (s, d) that is routed on
link u → v. The total amount of flow routed on a link u → v

is fu→v =
∑

s∈Ve

∑
d∈Ve−{s}

f s,d
u→v . We denote by ϕs,d

u→v =
f s,d
u→v

Is
the variable representing the amount of flow on link u → v
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contributed by node s and destined to node d, normalized
to the actual (unknown) amount of traffic Is entering source
node s. We observe that ϕs,d

u→v is independent of the actual
amount of traffic entering source node s and only depends on
how traffic flows are routed. As shown in Section V-D, the
set Φ = {ϕs,d

u→v}s∈Ve,d∈Ve−{s}
u→v∈Es,d suffices to determine the set

of split ratios, and hence it can be considered as representative
of a particular routing solution.

We denote by Γ(Φ, I) the cost of a particular configuration
where a routing solution Φ is used to route a feasible set
of incoming flows I = {Is}s∈Ve (see Section V-A for its
definition). The average cost of a routing solution Φ, i.e., the
average of Γ(Φ, I) over all the feasible sets I, is denoted by:

Γ(Φ) =
1∏

s∈Ve

Imax
s

∫ Imax
n1

0

· · ·
∫ Imax

nN

0

Γ(Φ, I)dIn1 · · · dInN (1)

Given the maximum amount of traffic entering or leaving
the network at each edge node, the MPLS splitting-based rout-
ing problem is to find a feasible admissible routing solution Φ
that minimizes Γ(Φ). A routing solution is said to be feasible,
given {Imax

s }s∈Ve and {Omax
d }d∈Ve , if it obeys the following

constraints:

f ′) the amount of flow routed on each link must not
exceed the link capacity, for every feasible set of
incoming flows

f ′′) the amount of flow routed towards each egress node
must not exceed the maximum amount of outgoing
traffic of that egress node, for every feasible set of
incoming flows

The feasible admissible routing solution that minimizes
Γ(Φ) has the minimum cost on the average and hence it
can be considered as the most robust routing solution against
variations of the traffic matrix.

V. SOLVING THE MPLS SPLITTING-BASED ROUTING

PROBLEM

In this section, we show how we solve the MPLS splitting-
based routing problem defined in the previous section:

• we first define the cost Γ(Φ, I) of routing a given set I
of actual incoming flows according to a particular routing
solution Φ. Then, we compute the average cost Γ(Φ) of a
routing solution Φ over all the feasible sets of incoming
flows (Section V-A)

• then, we address the problem to find a feasible admis-
sible routing solution minimizing Γ(Φ). Requiring that
the returned routing solution be admissible makes the
problem to find a feasible routing solution minimizing
Γ(Φ) hard to solve. Hence, our approach is to decouple
the problem to find a set of directed subgraphs that make
a routing solution admissible from the problem to find
a feasible routing solution minimizing Γ(Φ) subject to
the constraint that the flow between each pair of ingress
and egress nodes can only be routed along the links of
predefined subgraphs. We present a convex optimization
problem to find an optimal solution to the latter problem
(Section V-B) and propose a heuristic to solve the former
problem (Section V-C)

• finally, we show how the set of split ratios can be derived
from the values of the ϕs,d

l variables (Section V-D)

The main notations and symbols used in this section are
summarized in Table I.

A. Computing the average cost of a routing solution

In this section, we define the cost Γ(Φ, I) of a par-
ticular configuration where a given routing solution Φ =

{ϕs,d
u→v}s∈Ve,d∈Ve−{s}

u→v∈Es,d is used to route a given feasible set
of incoming flows I = {Is}s∈Ve . The proposed cost function
penalizes configurations where an excessive amount of flow
is routed on the links of a collision domain (which need to
share the available channel capacity). To this end, we exploit
the results of a theoretical analysis [23] that shows that a set
of flows routed on the links of a collision domain satisfy the
constraint on the channel capacity if the total utilization of
such collision domain is lower than a certain threshold λ0

(which depends on the overhead of the PHY layer and has
been determined in [23] for the case of IEEE 802.11a). Also, it
has been shown through extensive simulations that: i) as long
as the total utilization of all the collision domains is less than
λ0, there is a high probability (∼85%) that a high percentage
(>95%) of the traffic load offered to the network is delivered
to the destination; ii) if the total utilization exceeds that
threshold for some collision domains, the percentage of the
traffic load that is delivered to the destination is a decreasing
function of the average total utilization. Such results suggest
that, in order to maximize the portion of the traffic demands
that is satisfied, we should strive to keep the total utilization of
all the collision domains below a given threshold λ0 or, in case
that is not feasible, to minimize the average total utilization.
Hence, we define the cost of a particular routing configuration
as the average total utilization over all the collision domains.
However, in order to further penalize the solutions leading to
high values for the total utilization of some collision domains,
we consider a weighted average of the total utilizations. In
particular, we consider the weighting function:

w(x) =
ex − 1

eλ0 − 1

and define the cost Γ(Φ, I) of a particular configuration as
the average of w(Utot(e)) over all the links e ∈ E:

Γ(Φ, I) = 1

|E|
∑
l0∈E

w(Utot(l0)) =
1

|E|
∑
l0∈E

eUtot(l0) − 1

eλ0 − 1

(2)
The weighting function is such that w(x) � x if x � λ0

and w(x) > x if x > λ0, i.e., it decreases the weight of
the total utilizations below λ0 and increases the weight of the
total utilizations above λ0. The goal is thus to penalize the
configurations with total utilizations larger than λ0.

For conciseness, we define ϕs
l =

∑
d∈Ve−{s} ϕ

s,d
l , i.e.,

ϕs
l is the amount of flow on link l originated at node s

(independently of the destination node) and normalized to
the actual (unknown) amount of traffic Is entering node s.
It follows that the actual amount of flow routed on link l can
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be expressed as
∑

s∈Ve

ϕs
l Is. Hence:

Γ(Φ, I) = 1

|E|(eλ0 − 1)

∑
l0∈E

⎡
⎢⎣e

∑

l∈D(l0)

∑

s∈Ve

ϕs
l Is
c(l) − 1

⎤
⎥⎦

=
1

|E|(eλ0 − 1)

∑
l0∈E

⎡
⎢⎣e

∑

s∈Ve

∑

l∈D(l0)

ϕs
l Is
c(l) − 1

⎤
⎥⎦

Now, our goal is to compute Γ(Φ) by integrating Γ(Φ, I) over
the region of all the feasible sets of incoming flows (eq. 1):

Γ(Φ) =
1

|E|(eλ0 − 1)
∏

s∈Ve

Imax
s

·

∑
l0∈E

∫ Imax
n1

0

· · ·
∫ Imax

nN

0

⎡
⎢⎣e

N∑

s=1

∑

l∈D(l0)

ϕs
l Is
c(l) − 1

⎤
⎥⎦ dI1 · · · dIN

=
1

|E|(eλ0 − 1)
∏

s∈Ve

Imax
s

·

∑
l0∈E

⎡
⎢⎣∫ Imax

n1

0

· · ·
∫ Imax

nN

0

N∏
s=1

e

∑

l∈D(l0)

ϕs
l Is
c(l) dIn1 · · · dInN −

N∏
s=1

Imax
s

⎤
⎥⎦

(3)

The integrating function is the product of N functions each
depending on a distinct integration variable. Hence, the multi-
ple integral can be decomposed as the product of N integrals:

∫ Imax
n1

0

· · ·
∫ Imax

nN

0

∏
s∈Ve

e

∑

l∈D(l0)

ϕs
l Is
c(l) dIn1 · · · dInN

=
∏
s∈Ve

⎡
⎢⎢⎢⎣ 1∑

l∈D(l0)

ϕs
l

c(l)

· e
∑

l∈D(l0)

ϕs
l Is
c(l)

⎤
⎥⎥⎥⎦
Imax
s

0

=
∏
s∈Ve

e

∑

l∈D(l0)

ϕs
l I

max
s

c(l) − 1∑
l∈D(l0)

ϕs
l

c(l)

Hence, the average cost Γ(Φ) of a routing solution Φ over all
the feasible sets of incoming flows is:

Γ(Φ)=
1

eλ0−1

⎡
⎢⎢⎢⎣ 1

|E| ∏
s∈Ve

Imax
s

·
∑
l0∈E

∏
s∈Ve

e

∑

l∈D(l0)

ϕs
l I

max
s

c(l) −1∑
l∈D(l0)

ϕs
l

c(l)

− 1

⎤
⎥⎥⎥⎦

(4)

B. Finding an optimal feasible routing solution

The average cost Γ(Φ) of a particular routing solution Φ
over all the feasible sets of incoming flows is expressed by
equation (4). Here, we formulate a convex optimization prob-
lem, denoted as METER (Minimum avErage cosT fEasible
Routing), to find a routing solution that is feasible given the

TABLE I
NOTATIONS AND SYMBOLS USED IN THIS PAPER

Notation Explanation
D(l) collision domain of link l ∈ E
c(l) capacity of link l ∈ E
Ve subset of nodes acting as ingress/egress nodes
Imax
s maximum amount of incoming traffic at s ∈ Ve

Omax
d maximum amount of outgoing traffic at d ∈ Ve

Is actual (unknown) amount of incoming traffic at s ∈ Ve

I {Is}s∈Ve

Es,d set of links along which flow between s and d is routed
fs,d
l flow between edge nodes s and d that is routed on link l

fl total flow routed on link l

ϕs,d
l flow between s and d on link l (fs,d

l ) normalized to Is
ϕs
l flow originated at s and routed on link l, normalized to Is

Φ routing solution (set of ϕs,d
l for each s, d, l ∈ Es,d)

Γ(Φ, I) cost of routing a given set of incoming flows according to Φ
Γ(Φ) average of Γ(Φ, I) over all feasible sets of incoming flows I
ρs,du→v ratio of the flow from s to d entering u that is forwarded to

v

maximum amount of traffic entering or leaving the network at
each edge node and minimizes Γ(Φ), subject to the constraint
that the flow between each pair of ingress and egress nodes
can only be routed along a predefined set of links. Solving
such a problem provides the normalized amount of flow ϕs,d

l

routed on each link l and belonging to each ingress-egress pair
(s, d). From such information, as illustrated in section V-D,
we can derive the set of split ratios that each node needs to
enforce our MPLS splitting policy.

The formulation of the METER problem is shown
in fig. 6. Besides the set of normalized variables
{ϕs,d

l }s∈Ve, d∈Ve−{s}
l∈Es,d , we also consider a set of auxiliary

variables {F s,d}s∈Ve,d∈Ve−{s}, each representing the amount
of flow routed between an ingress node s and an egress node
d, normalized to the actual incoming traffic at node s. The
objective of METER is to minimize Γ(Φ). Constraints 1)
represent the usual (normalized) flow conservation constraint
that must be enforced at each node for every pair of ingress-
egress nodes. Constraints 2) ensure that all the actual amount
of incoming flow at each edge node is split among the
other edge nodes. Constraints 3) ensure that the amount of
flow routed towards each egress node does not exceed the
maximum amount of outgoing traffic of that egress node,
for every feasible set of incoming flows (constraint f ′′ of
Section IV). Indeed, if the incoming set of flows is feasible,
then

∑
s∈Ve−{d}

F s,dIs �
∑

s∈Ve−{d}
F s,dImax

s , where the left

hand side is the actual amount of flow routed towards egress
node d. Hence, if constraint 3) holds, constraint f ′′) holds as
well. Constraints 4) prevent the incoming (outgoing) flow at
an edge node to be re-routed back to the ingress node (from
the egress node). Constraints 5) ensure that the amount of flow
routed on each link does not exceed the link capacity, for every
feasible set of incoming flows (constraint f ′ of Section IV).
Finally, constraints 6) ensure that the flow between edge
nodes s and d is only allocated on links that belong to the
predefined set Es,d. In such a way, if the predefined set of
links are properly computed, the routing solution returned
by the optimization problem is guaranteed to be admissible.
In Section V-C we present an algorithm that finds, for a
given ingress-egress pair (s, d), a directed subgraph that meets
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Fig. 3. Example to illustrate loops in
the directed subgraph

Fig. 4. Example to illustrate paths
exceeding the maximum length in the
directed subgraph

Fig. 5. Topologically sorted nodes of the DAG in fig. 4.

variables

ϕs,d
l ∈ [0, 1] ∀l ∈ E, ∀s ∈ Ve, ∀d ∈ Ve − {s}

F s,d ∈ [0, 1] ∀s ∈ Ve, ∀d ∈ Ve − {s}

minimize Γ

({
ϕs,d

l

}s∈Ve,d∈Ve−{s}

l∈Es,d

)

subject to
1)

∑
u→v∈Es,d

ϕs,d
u→v − ∑

v→u∈Es,d

ϕs,d
v→u =⎧⎪⎨

⎪⎩
0 if u �= s ∧ u �= d

F s,d if u = s

−F s,d if u = d

∀u ∈ V, ∀s ∈ Ve, ∀d ∈ Ve − {s}
2)

∑
d∈Ve−{s}

F s,d = 1

∀s ∈ Ve

3)
∑

s∈Ve−{d}
F s,dImax

s � Omax
d

∀d ∈ Ve

4) ϕs,d
u→v = 0

∀s ∈ Ve, ∀d ∈ Ve − {s}, v = s ∨ u = d

5)
∑

s∈Ve

∑
d∈Ve−{s}

ϕs,d
l Imax

s � c(l)

∀l ∈ E

6) ϕs,d
l = 0

∀s ∈ Ve, ∀d ∈ Ve − {s}, l /∈ Es,d

Fig. 6. Formulation of the METER problem.

constraints t′), t′′) and t′′′) of Section IV.
METER is a convex optimization problem, because the

objective function is convex (see the Appendix) and the
constraint functions are linear. Convex optimization problems
have the property that a locally optimal point is also globally
optimal. Hence, we use an interior point method [24] to find
an optimal solution to the problem.

C. Finding a directed subgraph for an ingress-egress pair

We now address the problem to find, for a given ingress-
egress pair (s, d), a set of links Es,d or, equivalently, a
directed subgraph Ss,d that guarantees that a routing solution
is admissible. The approach we follow is to find a set of paths
between s and d (in G) and insert all of their links into Es,d.
Given the constraint on the maximum allowed length of any
path between s and d in Ss,d, a possible approach would be
to use a k-shortest loopless path algorithm [25] to find all the
loopless paths between s and d in G having a length less than
the maximum one. A k-shortest loopless path algorithm indeed

returns all the shortest paths in increasing order of length.
However, the following two issues should be considered:

• only adding loopless paths to Es,d does not ensure that
all the possible paths in the subgraph Ss,d are loopless.
An example is illustrated in fig. 3, where the links of
two loopless paths (a-c-g-h-f -i and a-b-e-f -d-h-i) are
added to Es,d. The resulting subgraph includes paths
(e.g., a-b-e-f -d-h-f -i) containing a cycle (f -d-h-f )

• only adding paths with length less than the maximum
allowed one does not ensure that all the possible paths
in the subgraph have a length less than the maximum
allowed one. An example is illustrated in fig. 4, where
the maximum length is fixed to 6 hops. If we add the links
of two paths satisfying the constraint on the maximum
path length (a-d-c-g-j-i and a-b-e-f -d-h-i), the resulting
subgraph includes a path (a-b-e-f -d-c-g-j-i) having a
length (8 hops) exceeding the maximum allowed length

Therefore, we present an algorithm that finds, for a given
ingress-egress node pair, a directed subgraph of the network
topology that meets constraint t′), t′′) and t′′′) of Section IV.
Basically, the subgraph is initialized to contain the shortest
path between the ingress and egress nodes and then it is
augmented with other paths to fulfil constraint t′′′). Every
time we attempt to add a path to the subgraph, we check
whether the augmented subgraph contains a cycle or a path
having a length exceeding the maximum one. Fortunately, the
subgraph we seek is a directed acyclic graph (DAG) and hence
performing the above checks is as simple as running a Depth-
First-Search (DFS) [26]. Also, a DFS in a DAG allows to
sort the nodes in a topological ordering, which is such that
if a link u → v exists in the DAG, then u precedes v in the
ordering. Thus, the ingress (egress) node is the first (last) node
in this ordering. As an example, fig. 5 shows a topological sort
ordering of the DAG resulting from the two paths highlighted
in fig. 4.

Figure 7 shows the pseudo-code of the Depth-First-Search
visit used by our algorithm. The DFS procedure initializes
the attributes (color, predecessor and maximum distance from
the egress node) of all the nodes of the subgraph D, clears
the list that will contain the nodes sorted in a topological
ordering, sets the boolean variable acyclic to true and calls
DFS VISIT on node s. The DFS VISIT procedure performs
the classic DFS visit starting from node u. In addition, if a
back edge is detected (lines 6–7), the acyclic variable is set to
false. Indeed, a directed graph is acyclic if and only if a depth-
first-search yields no back edges. To obtain a list of the nodes
of the DAG sorted in a topological ordering, we can push
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DFS(D = (VD, ED), s)

1 for each u ∈ VD

2 color [u] = WHITE
3 pred [u] = NIL
4 maxdist [u] = 0
5 sortedList = ∅
6 acyclic = TRUE
7 DFS VISIT(D, s)

DFS VISIT(D = (VD, ED), u)

1 color [u] = GRAY
2 for each v ∈ VD |u → v ∈ ED

3 if color [v] = WHITE
4 pred [v] = u
5 DFS VISIT(D, v)
6 else if color [v] = GRAY
7 acyclic = FALSE
8 color [u] = BLACK
9 if sortedList �= ∅

10 maxdist [u] = max
v |u→v∈ED

maxdist [v] + 1

11 sortedList = u, sortedList

Fig. 7. Pseudo-code of the depth-first-search.

nodes on the front of such a list as soon as they are marked
as black (line 11). Also (lines 9–10), when inserting a node u
in such a list (but the first node being inserted, which is the
egress node), we compute the maximum distance in the DAG
between u and the last node of the sorted list (the egress node)
by increasing by 1 the maximum distance of each neighbor
of u (at this point, all the neighbors v of u such that u → v
exists in the DAG have been already inserted into the sorted
list, by definition of topological ordering). Therefore, a DFS
on a subgraph D checks whether D is a DAG and, in that
case, returns a sorted list of nodes in a topological ordering
and the length of the longest path between each node in D
and the last node in the topological ordering (the egress node).

We now present our algorithm, denoted as RDAS (Resilient
Directed Acyclic Subgraph), to find, for a given pair (s,d) of
ingress and egress nodes, a directed subgraph of a graph G
that meets constraint t′), t′′) and t′′′) of Section IV. Basically,
RDAS (fig. 8) initializes the subgraph D to the shortest path
in G between the ingress and egress nodes and then explores
the nodes in D in a reverse topological order, starting from
the penultimate node. To satisfy constraint t′′′), an attempt is
made to ensure that the explored node u has two distinct next
hops in D. To this end, a path between u and the egress node
d is sought that does not include the current next hop of u
and satisfies t′) and t′′). If such a path is found, it is added to
D and the exploration restarts from the penultimate node in
the new topological ordering of the nodes in D. An explored
node is marked as done, so that it is explored just once. The
algorithm ends when the ingress node is marked as done.

We now describe the exploration of a node in more details.
If the explored node has been already marked as done,
we continue by exploring its predecessor in the topological
ordering of the nodes in D (lines 9–11). If the explored node
has already more than one next hop in D, it is marked as done
and its predecessor in the topological ordering is then explored
(lines 34–35). If the explored node u has a single neighbor

RDAS(G = (V,E), s, d, α)

1 D = ∅
2 SP = SHORTEST PATH(G, s, d)
3 PATH ADD(D, SP)
4 DFS(D, s)
5 for each u ∈ V
6 done[u] = FALSE
7 u = previous [back [sortedlist [D]]]
8 while u <> NIL
9 if done [u] = TRUE

10 u = previous [u]
11 continue
12 if |Adj (D, u)| = 1
13 v = front [Adj (D,u)]
14 GPruned = G
15 if v = d
16 REMOVE EDGE(GPruned , u → d)
17 else REMOVE VERTEX(GPruned , v)
18 found = FALSE
19 Lsu = MAX DIST FROM SOURCE(D,u)
20 Lud = 0
21 while !found AND Lsu + Lud � α · length [SP ]

AND KSP HAS NEXT(GPruned , u, d)
22 P = KSP NEXT(GPruned , u, d)
23 DAugm = D
24 PATH ADD(DAugm , P )
25 DFS(DAugm , s)
26 if IS ACYCLIC(DAugm) AND

MAX DIST TO DEST(DAugm , s)
� α · length [SP ]

27 found = TRUE
28 Lud = length [P ]
29 if found
30 done [u] = TRUE
31 D = DAugm

32 u = previous [back [sortedlist [D]]]
33 continue
34 done[u] = TRUE
35 u = previous [u]

Fig. 8. Pseudo-code of the RDAS algorithm.

(v) in D, we attempt to find an alternative path to the egress
node. For this purpose, we consider a copy (Gpruned ) of the
input graph G and prune the link u → v, in case v is the
egress node, or the vertex v otherwise. Then, we look for a
path between u and the egress node d in the pruned graph. A
k-shortest loopless path algorithm [25] provides, one-by-one
and in increasing order of length, the shortest paths between
u and d in the pruned graph. The path P returned by the k-
shortest path algorithm is tentatively added to a copy (DAugm )
of the subgraph D. A DFS of DAugm is run, which determines
whether DAugm is acyclic, finds the length of the longest path
between s and d and topologically sorts the nodes. If DAugm

is acyclic and the length of the longest path is less than the
maximum allowed path length, the path P is actually added to
D, node u is marked as done and the exploration of the nodes
restarts from the penultimate node in the new topological
ordering (lines 29–33). Otherwise, a new path returned by
the k-shortest path algorithm is considered.

To avoid that a number of shortest paths between u and d
in the pruned graph are uselessly considered, we compute the
length Lsu of the longest path between the ingress node s and
u in D (line 19). Given that we already have a topological
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(a) Sample values for the ϕs,d
l variables (b) Corresponding set of split ratios

Fig. 9. Deriving the set of split ratios from the set of ϕs,d
l variables.

ordering of the nodes in D, computing such a value only
requires to relax all the edges of D (whose weights must be
set to -1) [26]. Thus, as soon as the k-shortest path algorithm
returns a path with a length Lud such that Lsu+Lud exceeds
the maximum allowed path length, we can stop processing
the shortest paths between u and d. Indeed, since shortest
paths are returned in increasing order of length, none of the
following shortest paths can be added to the subgraph without
violating the constraint on the maximum path length. In such
a case, node u is marked as done (despite it only has one
neighbor) and the predecessor of u in the topological ordering
is explored. The algorithm ends when the ingress node s is
marked as done and returns the directed subgraph D.

The complexity of RDAS is dominated by the inner while
loop (lines 21–28). In the worst case (since the nodes in D
are a subset of those in G), a DFS on D requires O(|V | +
|E|), while obtaining the next path from the k-shortest path
algorithm requires O(|V |(|E|+ |V | log |V |)). The outer while
loop is repeated at most |V | times (once for each node in D),
hence the complexity of RDAS is O(|V |2(|E|+ |V | log |V |)).

D. Computing the optimal set of split ratios

Solving the METER problem (fig. 6) provides the values
for the set of variables {ϕs,d

l }s∈Ve,d∈Ve−{s}
l∈Es,d representing the

amount of flow routed on each link and associated with
each pair of ingress-egress nodes, normalized to the actual
incoming flow at the ingress node. Figure 9a shows a network
with some sample values for the flows routed between a
and i and between a and j (the superscript next to a value
indicates the destination of the flow) normalized to the in-
coming flow at a. Since the splitting policy balances the traffic
among the outgoing links in proportion to the split ratios, to
achieve the normalized flows given by the set of variables
{ϕs,d

l }s∈Ve,d∈Ve−{s}
l∈Es,d we need to set the split ratios as follows:

ρs,du→v =
ϕs,d
u→v∑

u→w∈Es,d

ϕs,d
u→w

Figure 9b shows the set of split ratios corresponding to the
normalized flow values of fig. 9a.

VI. PERFORMANCE EVALUATION

We conducted a number of simulation studies to evaluate
the performance of the proposed MPLS-based forwarding
paradigm. For this purpose, we implemented a software tool
that uses the planar coordinates of the mesh nodes to build the

Fig. 10. Empirical CDF of δ.

network topology based on the interference model described in
Section IV. We assume the gain Guv of the radio channel be-
tween u and v to be the reciprocal of the square of the distance
between u and v and the thermal noise to be -20dbm. The
SINR thresholds are set to allow a rate of 54Mbps when the
nodes are within 30m, 48Mbps when within 32m, 36Mbps
when within 37m, 24Mbps when within 45m, 18Mbps when
within 60m, 12Mbps when within 69m, 9Mbps when within
77m and 6Mbps when within 90m. The channel assignment
is performed by FCRA [4]. Since FCRA is a traffic-aware
channel assignment algorithm, different channel assignments
can be obtained by feeding FCRA with different sets of link
flows. We consider two topologies with 30 nodes and two
radios per node. In the dense topology, nodes are placed in
a 193× 215m2 area and the maximum link rate is 54Mbps.
In the sparse topology, nodes are placed in a 261 × 265m2

area and the maximum link rate is 36Mbps. We consider 4
edge nodes and hence 12 ingress-egress pairs. METER, the
convex problem described in Section V-B, is solved by using
the open source software Ipopt (Interior Point OPTimizer).
The next subsections (but the first one) aim to evaluate the
performance of our approach in terms of network throughput.
To this end, experiments were carried out with the network
simulator ns-3. We contributed to the implementation of the
MPLS module in ns-3 and added the MPLS splitting policy1 In
such experiments, we compare our approach (simply labelled
as MPLS) based on the MPLS splitting policy with the split
ratios determined as shown in Section V to our previous Layer-
2.5 forwarding paradigm (L2.5) and to the routing protocol
specified in IEEE 802.11s [13]. Unless otherwise stated,
RDAS is run with α=3 in order to consider paths that are much
longer than the shortest path, which likely consists of links
between distant nodes utilizing low bit rates. The threshold λ0

is set to 0.5. In the ns-3 experiments, TCP traffic is generated
(for a duration of 60 seconds) according to the on-off model,
with Ton ∼ U(0.5s, 1.5s) and Toff ∼ U(0.05s, 0.15s).

A. Comparing METER-RDAS to a lower bound

Our approach to solve the MPLS splitting-based routing
problem is to solve the METER-RDAS problem, where RDAS
is used to compute the set of directed subgraphs that are

1As of this writing, the MPLS module has not been merged
yet into the mainline ns-3 code. The MPLS code is available at
http://code.google.com/p/ns-3-shop.
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(a) Dense topology, 3 channels (b) Dense topology, 11 channels (c) Sparse topology, 11 channels

Fig. 11. Average throughput achieved under different traffic loads.

required to formulate the METER problem. Thus, our ap-
proach might not return the optimal feasible admissible routing
solution of the MPLS splitting-based routing problem, because
the returned routing solution is constrained to allocate flow
on the links of the directed subgraphs computed by RDAS.
Though the average cost of the optimal routing solution Φopt

is difficult to find, it is straightforward to compute a lower
bound to such value. To this end, we denote by Es,d

KSP the set of
links of all the paths between s and d in G whose length is at
most α times the length of the shortest path. Such a set can be
easily computed by using a k-shortest loopless path algorithm
to find all the paths between s and d with length less than the
maximum one. Es,d

KSP is not guaranteed to satisfy constraints
t′), t′′) and t′′′), but it certainly includes any set Es,d leading to
an admissible routing solution. Thus, if we solve the METER
problem with Es,d

KSP as the set of links that are allowed to
carry the flow between s and d (we denote such a problem
by METER-KSP), the obtained objective value, denoted as
Γ(ΦKSP ), represents a lower bound to the average cost of the
optimal feasible admissible routing solution.

In order to compare the average cost of the routing solution
returned by METER-RDAS, denoted as Γ(ΦRDAS ), to the
lower bound to the minimum average cost, we performed 100
experiments with varying values for the maximum amount of
traffic entering and leaving the network at the edge nodes,
different channel assignments and α values (ranging from 1.5
to 3). For each experiment, we solved both METER-RDAS
and METER-KSP and computed δ = Γ(ΦRDAS )−Γ(ΦKSP )

Γ(ΦKSP ) , i.e.,
the percentage increase with respect to the lower bound.
The empirical CDF (Cumulative Distribution Function) of the
values of δ resulting from our experiments is shown in fig. 10.
It can be observed that the percentage increase of the average
cost of the routing solution returned when using RDAS is
always below 20%, while the percentage increase is below
10% in the 70% of the cases and below 6% in the 30% of the
cases. If we consider that such results refer to a comparison
with a lower bound and that Es,d

KSP is unlikely to lead to an
admissible routing solution, we can assert that our approach
achives an average cost very close to the minimum one.

B. Robustness against variations in the traffic load

Our approach to solve the MPLS splitting-based routing
problem has been designed to provide a set of split ratios
ensuring high performance under different traffic loads. The

experiments described in this section aim to show that our
approach is actually more robust against variations in the
traffic load than other routing protocols such as the default
routing protocol specified in IEEE 802.11s and our previous
approach L2.5. We report the results obtained for the two
topologies mentioned earlier, where the maximum amount
of traffic entering each edge node is uniformly distributed
between 6Mbps and 8Mbps. We also considered the avail-
ability of 3 and 11 orthogonal channels. For each topology,
we performed different experiments where the actual traffic
load entering the network was, on the average, a percentage
of the maximum amount ranging from 20% to 60%. For
each such cases, we considered 4 uniform random vari-
ables with a mean equal to the required percentage (e.g.,
U(0.4, 0.6), U(0.3, 0.7), U(0.2, 0.8), U(0.1, 0.9) in case the
actual traffic load is, on the average, the 50% of the maximum
amount). Each of such uniform random variables was used to
derive the fraction of the maximum amount of traffic entering
each edge node that actually entered the network. Then, the
actual traffic entering each edge node was split among the
destination nodes in 5 different ways, thus leading to a total
of 20 experiments for each topology and for each given
percentage of the maximum amount of traffic load.

Figure 11 summarizes the distribution of the throughput
(average over the whole duration of a simulation) achieved
by each algorithm in the 20 experiments carried out for each
given percentage of the maximum amount of traffic load. In
particular, a vertical line spans from the minimum to the
maximum values, while a white box spans from the first
quartile to the third quartile. It can be observed that our
approach outperforms 802.11s and L2.5 in all the considered
scenarios. The average throughput achieved by our approach
is indeed from 20% to 200% higher than that of the other
routing protocols. The poor performance of 802.11s in some
experiments can be explained by considering that 802.11s is
a single path routing protocol and therefore, in case of a high
traffic demand between an ingress-egress pair, the selected
path may be easily congested, thus leading to a decrease
in the throughput. The poor performance of L2.5 in some
experiments can be explained by considering that each node
attempts to utilize each link in proportion to predefined flow
rates, that are returned by a traffic aware channel assignment
algorithm. Thus, if the channel assignment has been computed
based on a traffic load which is different than the actual offered
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(a) Dense topology, 3 channels (b) Dense topology, 11 channels (c) Sparse topology, 11 channels

Fig. 12. Transferred data loss due to a single node failure.

load, the performance of L2.5 may decrease.
Figures 11a-11c also show that our approach ensures higher

robustness against variations in the traffic load. Indeed, the
ratio of the maximum average throughput to the minimum
average throughput achieved in the 20 experiments associated
with a given topology and a given percentage of the maximum
amount of traffic load ranges from 5% to 21% for our ap-
proach, from 23% to 400% for 802.11s and from 50% to 600%
for L2.5. Such results prove that the performance in terms of
throughput of our approach keeps firmly at high values despite
variations in the traffic load, while the performance of the
other routing protocols oscillates between low and moderate
to high values depending on the offered traffic load.

C. Robustness against a single node failure

The experiments described in this section aim at evaluating
the behavior of the routing protocols in the presence of a
single node failure. We consider the same topologies as in
the previous section and an actual traffic load equal to 20% of
the maximum traffic load. Each experiment lasts 45 seconds
and, after 15 seconds from the beginning, a node failure is
simulated by increasing the noise level at every radio interface
of that node to the point that the node is not able to send or
receive packets. For each topology, we perform 26 experi-
ments, each involving the failure of a different node (except
the edge nodes), and compute, for each 1s interval, the average
throughput over all the experiments. The average throughput
over a 1s interval represents the amount of data transferred
to the destination nodes during that interval. Figures 12a-12c
show, for each second following the failure, the ratio of the
average (over the 26 experiments) amount of data transferred
to the destination nodes since the failure to the amount of data
transferred in the same interval in the absence of failures.
It can be observed that our approach based on the MPLS
splitting policy outperforms both 802.11s and L2.5. Indeed,
our approach keeps the data loss in case of a node failure
below 5% in all the considered scenarios. Instead, 802.11s
and L2.5 experience higher data losses, ranging from 5% to
18%. Such results thus prove that our approach is able to better
react to single node failures than 802.11s and L2.5.

VII. CONCLUSION

We addressed the problem to develop a routing strategy
for multi-radio wireless mesh networks which: i) takes the

constraint on the channel capacity into account; ii) is able to
quickly recover from node/link failures; iii) supports multi-
path routing; iv) ensures high performance with a wide range
of traffic matrices. For this purpose, we presented a novel
mechanism, the MPLS splitting policy, which consists in
allowing multiple candidate next hops at each intermediate
node for a given FEC and partitioning the traffic of that FEC
among such next hops in proportion to predefined split ratios.
The MPLS splitting policy enables to balance the traffic load
across multiple paths and allows for a fast local restoration. We
then developed a technique to compute the set of split ratios
in order to ensure high throughput despite variations in the
traffic load. This goal is achieved by properly defining a cost
function, computing directed subgraphs along which the flow
of each ingress-egress pair can be routed and solving a convex
optimization problem. Finally, we performed a thorough sim-
ulation study which confirmed that our approach outperforms
other routing protocols in terms of network throughput and
robustness against load variations and single node failures.

APPENDIX

We first show that f : �x ∈ RN → ∏N
i=1

exi−1
xi

is log-

convex, i.e., log f(�x) =
∑N

i=1 log
exi−1
xi

is convex. To this
end, we denote by gi(�x) = log exi−1

xi
the i-th term in the

expression of log f(�x). Since ∂2

∂xj∂xk
gi(�x) = 0 if j �= i or

k �= i, it follows that the Hessian of gi(�x) is a diagonal matrix:

∇2gi(�x) = diag

(
1

x2
i

− exi

(exi − 1)2
, 0, ...0

)
The unique non-null eigenvalue is always positive (it can be
easily seen by plotting its graph) and hence the Hessian is
positive semidefinite, which means that gi(�x) is a convex
function. Being a sum of convex functions, log f(�x) is convex,
i.e., f(�x) is log-convex, which implies that f(�x) is convex.

We now consider the column vector �ϕl0 ∈ RN ·|D(l0)|:

�ϕl0 = [ϕ1
l1 . . . ϕ

1
ld
ϕ2
l1 . . . ϕ

2
ld
. . . ϕN

l1 . . . ϕ
N
ld
]T

where l0 is a link, d = |D(l0)| and {li}di=1 = D(l0), and the
matrix Al0 ∈ RN×N ·|D(l0)|:

Al0=

⎡
⎢⎢⎢⎣

a1,1 . . . a1,d 0 . . . 0 . . . 0 . . . 0
0 . . . 0 a2,d+1 . . . a2,2d . . . 0 . . . 0
...

...
...

...
. . .

...
...

0 . . . 0 0 . . . 0 . . . aN,(N−1)d+1 . . . aN,Nd

⎤
⎥⎥⎥⎦
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where

ai,j =

⎧⎨
⎩

Imax
i

c(l(j−1)mod d+1)
if (i − 1)d < j � id,

0 otherwise

with i = 1, ...d and j = 1, ...Nd. Then, the function:

h(�ϕl0) = f(Al0 �ϕl0) =
N∏
s=1

e

∑

l∈D(l0)

ϕs
l I

max
s

c(l) − 1

Imax
s

∑
l∈D(l0)

ϕs
l

c(l)

is convex because obtained from a convex function (f(�x))
through composition with an affine mapping. Hence the aver-
age cost of a routing solution (eq. 4) can be expressed as:

Γ(Φ) =
1

eλ0 − 1

[
1

|E|
∑
l0∈E

h(�ϕl0)− 1

]

and therefore it is convex as well, because sum of convex
functions. Hence, the objective function of the optimization
problem defined in section V-B is convex.
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