
The Interaction Between TCP Reordering Mechanisms and Multi-path Forwarding

in Wireless Mesh Networks

Jonas Karlsson, Per Hurtig, Anna Brunstrom and Andreas Kassler

Dept. of Computer Science

Karlstad University

Karlstad, Sweden

Email: {jonas.karlsson, per.hurtig, anna.brunstrom, andreas.kassler}@kau.se

Giovanni Di Stasi

Dept. of Computer Science

University “Federico II” of Naples

Naples, Italy

Email: giovanni.distasi@unina.it

Abstract—Routing packets over multiple disjoint paths to-
wards a destination can increase network utilization by load-
balancing the traffic over the network. In wireless mesh
networks, multi-radio multi-channel nodes are often used to
create a larger set of interference-free paths thus increasing
the chance of load-balancing. The drawback of load-balancing
is that different paths might have different delay properties,
causing packets to be reordered. This can reduce TCP per-
formance significantly, as reordering is interpreted as a sign
of congestion. Packet reordering can be avoided by letting the
network layer forward traffic strictly on flow-level. This would
avoid the negative drawbacks of packet reordering, but will
also limit the ability to achieve optimal network throughput.
On the other hand, there are several proposals that try to
mitigate the effects of reordering at the transport layer. In
this paper, we perform an in-depth evaluation of such TCP
reordering mitigations in multi-radio multi-channel wireless
mesh networks when using multi-path forwarding. We evaluate
two TCP reordering mitigation techniques implemented in the
Linux kernel. The transport layer mitigations are compared
using different multi-path forwarding strategies. Our findings
show that, in general, flow-level forwarding gives the best TCP
performance and that transport layer reordering mitigations
only marginally can improve performance.

Keywords-TCP; reordering; Wireless Mesh Networks; Multi-
channel; Multi-radio; Multi-path

I. INTRODUCTION

Wireless mesh networks (WMNs) are considered to be a

new and promising technique to provide Internet connectiv-

ity for cities, rural areas or user-communities. To improve

both capacity and reliability in such networks each node

can be equipped with multiple radio interfaces using a set

of orthogonal channels. This channel diversity improves

the performance of a single-path, while at the same time

increases the possibility to create multiple interference-free

paths between the sender and the receiver. In this paper we

focus on the use of multiple paths to achieve load-balancing

and thus increase application performance.

Multi-path routing algorithms can be used for load-

balancing by forwarding traffic over disjoint links and paths.

This path allocation can be done on a per-flow or per-packet

basis. Both approaches have advantages and limitations.

When the number of flows is limited, per-flow allocation

may not fully utilize the network. Furthermore, this form

of allocation requires routers to track flow information and

support mechanism to handle stale flows. A packet-based

allocation scheme, on the other hand, allows a more fine-

grained control over the resources compared to per-flow

allocation. However, load-balancing packets from the same

flow over several paths, with different delay properties,

might cause packets to arrive reordered. For TCP, packet

reordering is a well-known problem that can seriously ham-

per application performance [1]. To solve such performance

problems, several techniques have been proposed to mitigate

the effects of reordering, e.g. [2].

To find the performance trade-off between packet re-

ordering and network utilization, we approach the problem

from two directions. First, we evaluate both flow-based and

packet-based path allocation. Second, we use three different

TCP implementations, including a TCP variant without

mechanisms to mitigate reordering effects, the standard

Linux TCP implementation with built-in reordering mitiga-

tion techniques and TCP with Non-Congestion Robustness

(NCR) [2] extensions. We consider a general multi-path

routing protocol that requires only minor knowledge about

the upper layers, i.e. flow information.

Our findings show that when the number of TCP-flows

increases, flow-based path allocation becomes superior to

using packet-based allocation, regardless if TCP is equipped

with mechanisms to mitigate the effects of reordering or not.

However, the TCP performance, using multi-path routing,

highly depends on the network topology and traffic profiles,

not so much on whether TCP is equipped with mechanisms

to mitigate the effects of reordering.

The rest of the paper is structured as follows. Section

II provides a background on multi-path routing in wireless

networks. Section III discusses the negative effects that

multi-path routing might have on TCP performance and how

it is possible to mitigate these effects. This section also

introduces the mitigation techniques that we consider in this

paper. Section IV evaluates the considered TCP implemen-

tations, in a simple topology to determine how performance

2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-4673-1430-5/12/$31.00 ©2012 IEEE 276

is affected by different path allocation strategies. Section V

then repeats the evaluation in a realistic WMN topology,

using more complex traffic patterns. Section VI discusses

related work. Finally, Section VII concludes the paper.

II. MULTI-PATH ROUTING

Standard routing protocols discover a single route between

a source and a destination. In wireless multi-hop networks

such as mesh networks, routes may break frequently due

to fading or congestion. Multi-path routing is an interesting

alternative as it allows discovering multiple paths for each

source/destination pair. Such path diversity can be used

to provide fault tolerance and higher aggregate bandwidth.

Especially load balancing is an interesting option as it

spreads traffic along multiple paths thus avoiding congestion

and bottleneck links. Due to the shared nature of wireless

communication, multi-path routing strategies may be diffi-

cult to design as interference from nearby nodes limits the

performance.

For multi-path routing the following steps are required:

route discovery, route maintenance and traffic forwarding.

The route discovery step finds multiple routes between each

source and destination pair. Typically, protocols want to find

node disjoint or link disjoint paths to minimize interference

and to provide higher fault tolerance. Even if node- or link-

disjoint paths are found, transmissions on different links

still interfere if the links are in the same collision domain.

However, when multiple radios and channels can be used,

such interference can be minimized through a proper channel

assignment algorithm. Once traffic is sent along multiple

routes, paths may break due to link or node failures. Then

route maintenance needs to find alternative routes. There are

different approaches to when such route maintenance should

be triggered, due to the availability of different paths.

Traffic forwarding refers to the strategy of the node to

select one or more out of the multiple next hops to send

the packets towards the destination along the multiple paths.

This is decided based on the allocation strategy. As an

example, a flow-based allocating strategy would pin all

the packets of one flow to a single path. A packet-based

allocation strategy would distribute different packets from

all flows amongst the paths found by the route discovery.

Clearly, a packet-based allocation scheme allows a more

fine-grained control over the resources compared to pinning

flows to single paths. Mainly because it can be difficult to

evenly load-balance the traffic amongst all paths when the

offered rate of the flows may be different. However, when

packet-based allocation is used and paths have different

delay and capacity properties, packets might arrive out-of-

order at the receiver, possibly leading to low transport layer

performance when TCP is used. Note, that when using TCP,

the data packets and acknowledgments can be treated as two

different flows. So even a strategy where data packets are

pinned to a single path while acknowledgments are allocated

on a per packet basis is possible.

Especially for multi-radio/channel WMNs, the allocation

of traffic is an important point to consider. Typically, the

channel assignment determines the links within a collision

domain that interfere and therefore the capacity. In order

to avoid excessive collisions, it is important to not send

more traffic over the links than supported by the channel

assignment. An important scheme which achieves that is

[3] (denoted here as L2.5R). The channel assignment is

conducted by the FCRA (Flow-based Channel and Rate

Assignment) algorithm [3] on a set of flow rates which

represent the desired utilization of the link. The channels

are assigned to links in order to make the precomputed

flow-rates schedulable. Finally, in case flow rates cannot be

served accordingly, they are scaled down to obtain a feasible

solution. Once channels are assigned to nodes, the route

discovery finds for each source/destination pair a set of paths

centered around the shortest hop path. Only paths which

fulfill a certain constraint in terms of number of hops are

included in the multi-path. The packet scheduler in the nodes

distributes traffic over the multiple paths in proportion to the

adjusted flow-rate as calculated by the channel assignment

algorithm. In order to do so, each node records the amount

of traffic sent on each link to its neighbors, and chooses for

each packet the neighbor among the candidate next-hops

according to a minimum cost metric. Besides taking the

bandwidth available on links into account, L2.5R has the

potential for fast recovery from node/link failures. This is

because it is not required to wait for nodes to re-compute

the routing tables, as the node adjacent to the failed node/link

can promptly blacklist the failed neighbor and balance the

traffic among the remaining outgoing links. We use the

L2.5R packet scheduler in the following as the base for the

forwarding decisions but extend it in order to be able to pin

certain flows (TCP data and/or acknowledgments) to a single

next hop within the candidate next-hop set. More details on

L2.5R can be found in [3].

III. TCP AND PACKET REORDERING

Packet reordering is a rather common event that poses

negative effects on applications and protocols that require

in-order data delivery. For TCP, the reordering of both data

and acknowledgments affect performance [4]. Reordered

data can be misinterpreted as packet loss by TCP’s fast

retransmit mechanism [5], causing unnecessary retransmis-

sions and invocation of congestion control procedures. While

retransmissions and reductions of the congestion window

only occur if the reordering is severe enough to generate

three duplicate acknowledgments at the receiver, shorter

reordering events also affect TCP. For example, as TCP

guarantees in-order data delivery all packets arriving out-of-

order must be buffered, potentially requiring large receive

buffers. Furthermore, when acknowledgments are reordered

277

the transmission becomes bursty and the congestion window

may have difficulties in growing properly, resulting in poor

performance.

To mitigate performance issues related to reordering,

a number of approaches can be taken at the transport-

layer. While we refer to such approaches as mitigation

techniques/schemes, they typically try to inhibit the negative

effects of reordering, not the reordering itself. Furthermore,

most mitigation schemes are focused at solving performance

problems related to unnecessary congestion control invoca-

tions, as this is regarded as the major performance problem

related to reordering.

Typically, it is possible to classify a mitigation scheme

as reactive, pro-active or mixed. Reactive schemes, such

as [6], are often designed to revert TCP state changes

that were made under the false assumption that packets

were lost, when in fact reordering occurred. This type of

mitigation technique can help TCP to maintain the sending

rate by restoring the congestion window, when reordering

is detected. Pro-active schemes, such as [2], [7], are in-

stead designed to inhibit reordered packets from triggering

the TCP loss recovery and thus the congestion control.

To accomplish this, such proposals often extend the loss

detection phase in TCP to allow more time to distinguish

between loss and reordering. Practically, such loss detection

extensions are often achieved by increasing the number of

duplicate acknowledgments needed to trigger fast retransmit,

i.e., the duplicate acknowledgment threshold. The increase

can be based on previously observed reordering events, on

the amount of outstanding data or other relevant metrics. As

the reactive and pro-active approaches are fairly orthogonal,

many mitigation schemes are designed to mix them to offer

better overall robustness to reordering, e.g. [8], [9].

While most of the proposed mitigation techniques are not

widely implemented, the built-in techniques of the Linux

kernel [8] and the TCP-NCR algorithms [2] can be seen as

the most accepted solutions. The former because of its wide-

spread use, as being enabled by default in the Linux kernel,

and the latter as it is formalized by the Internet Engineering

Task Force (IETF) through RFC 4653.

The Linux TCP implementation offers protection against

reordering by using a mixed mitigation approach. The reac-

tive part tries to undo congestion control decisions that were

made unnecessarily. To detect unnecessary invocations of the

congestion control, Linux uses either Duplicate-SACKs (D-

SACKs) [10] or the TCP timestamps (TS) extension [11].

When one of these mechanisms discovers that an unneces-

sary retransmission has been conducted, due to reordering,

the congestion state is simply reverted. The pro-active part

tries to inhibit unnecessary retransmissions by dynamically

increasing the duplicate acknowledgment threshold. This is

simply based on the maximum observed reordering length

so far, and can be as large as 127. When a packet loss really

does happen, and the fast retransmit mechanism is not able

RS

Figure 1. Simple WMN topology.

to detect it, the duplicate acknowledgment threshold is reset

to three.

TCP-NCR is a pro-active scheme that extends the loss

detection phase to better determine if duplicate acknowledg-

ments are due to packet loss or packet reordering. The detec-

tion phase is extended to roughly one round-trip time, which

is accomplished by setting the duplicate acknowledgment

threshold to approximately one congestion window. There

are two versions of TCP-NCR: one aggressive version that

maintains the original transmission rate during the detection

phase and one careful version that halves the rate during the

detection phase.

IV. TCP PERFORMANCE IN A SIMPLE WMN TOPOLOGY

In this section, we evaluate and compare three different

TCP versions in a simple WMN topology. The reason to use

a simple synthetic topology is to isolate and understand the

different mechanisms that influence TCP performance. First,

as an experimental baseline we use a modified version of the

Linux TCP implementation that does not contain protection

against reordering (NewReno). Then, we evaluate the stan-

dard Linux TCP implementation (denoted as Linux) and the

aggressive version of the TCP-NCR algorithm (denoted as

NCR), and compare their performance to our baseline. All

evaluated TCP implementations use the NewReno conges-

tion control, as there are implementation incompatibilities

between TCP-NCR and CUBIC [12] in the used version of

the Linux kernel.

A. Simulation Setup

Figure 1 illustrates the topology that was used in the

experiment. As the paths between the sender and the re-

ceiver are of different lengths, the total delay of a packet

transmission depends on which path is used for forwarding.

Thus, excluding flow-based allocation, reordering is going

to be present.

We used four allocation strategies: flow-based allocation

(data+ack), where both data and acknowledgments of a

flow were fixed to single paths; flow-based data allocation

(data), where all TCP data packets of a flow were fixed to

a single path and acknowledgment packets were allocated

dynamically to different paths; flow-based acknowledgment

allocation (ack), where only the TCP acknowledgments of

a flow were fixed to a single path and data packets were

allocated dynamically to different paths; and packet-based

278

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1 2 3 4 5 6

A
v
e

ra
g

e
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

(B
y
te

s
/s

)

Competing Flows

Allocation strategy
data+ack

data
ack

packet

Figure 2. Average system throughput for NewReno.

allocation (packet), where both data and ack packets where

allocated dynamically. In the experiment the desired path

utilization was equal, which reduces the L2.5R forwarding

scheme used [3] to a round-robin scheme. For flow-level

allocation the path is determined by the first packet of a

new flow.

To conduct the experiments we used ns version 2.32 [13]

together with the network simulation cradle (NSC) version

0.5.2 [14], which enables the use of a real Linux TCP

implementation. The MAC/PHY layer was the default ns-

2 IEEE 802.11 MAC/PHY layer configured to simulate an

IEEE 802.11a network card using a PHY layer speed of

54 Mbit/s. All nodes were equipped with multiple radios,

configured to orthogonal channels. We varied the number

of TCP flows between 1 and 6, where each flow lasted for

about 300 seconds. Each experiment was repeated 30 times.

All graphs contain 95% confidence intervals, but these are

too small to be visible.

B. Results

Figure 2 shows the average system throughput (in

Bytes/s), for NewReno, as a function of the number of

competing flows and the different allocation strategies. There

are two distinct sections in Figure 2. When there are less

then three flows, (data+ack), (ack) and (data) cannot fully

utilize all three paths. When there are three or more flows, it

is possible to conduct flow-based allocation and still utilize

the underlying capacity fully. Consequently, (data+ack) and

(data) are able to achieve near optimal utilization of the

network. However, this is not possible for (packet) or (ack)

allocation as the maximum sustainable throughput is limited

by the effects of reordering.

Figure 3 shows the average system throughput (in Bytes/s)

for the two reordering mitigations evaluated. Figure 3(a),

shows the results for Linux, which performs almost identical

to NewReno when (data+ack) and (data) is used. However,

for (packet) Linux performs slightly better than NewReno.

Furthermore, when (ack) is used, Linux achieves notice-

ably higher throughput than NewReno. The reason for the

performance advantage is the built-in mitigation techniques

of Linux that are able to sustain better performance during

reordering.

The most interesting result is that for Linux (ack) per-

forms much better than (packet). The reason for this is that

the reordering mitigation scheme in Linux heavily relies on

receiving acknowledgments correctly. If an acknowledgment

is reordered and arrives too late, it may be discarded by

TCP. In such a situation, the possible reordering information

contained in the acknowledgment cannot be used by Linux.

Regardless, in absolute numbers Linux does only perform

slightly better than NewReno. There are several reasons

for this. First, as the duplicate acknowledgment threshold

is increased in response to detected reordering, it will

eventually become too large for lost packets to be fast

retransmitted. In such a situation, TCP is forced to wait

for a lengthy retransmission timeout (RTO). When the

RTO finally occurs, the threshold is reset to three, which

will make TCP vulnerable to unnecessary retransmissions

until the threshold has converged again. Second, when the

duplicate acknowledgment threshold is increased, TCP will

actually allow more reordering to happen, as compared to

NewReno, which hurts the performance. The reason why

more reordering occurs using mitigation techniques as Linux

or NCR, is that the reordering mitigation will help TCP

sustain a large congestion window. Thus, the important

observation here is that, when packets are allowed to be

reordered there will be more packets outstanding that can

be reordered.

There are several ways of illustrating the amount of re-

ordering in a particular scenario, including the percentage of

reordered packets and/or out-of-order arrivals. Such simple

metrics do, however, not contain enough information to

reveal both the amount of reordering occurrences and the

degree of reordering for each occurrence, i.e., the length

distribution of reordering events. As described previously,

the length of each reordering event is important as it reveals

whether TCP mistakes such an event as packet loss (for

lengths of three and more) or not. To obtain this informa-

tion, we use the reorder density (RD) metric [15], which

can be used to construct histograms describing the length

distribution of reordering events.

Figure 4 shows RD histograms for both NewReno and

Linux, when using (packet). It depicts the fraction of packets

arriving in-sequence (x = 0) and out-of-order (x 6= 0). The

negative x-values correspond to packets arriving too early

and the positive values correspond to packets arriving late.

As indicated by the histogram, about 40% of all packets had

no displacement and thus arrived in-order when NewReno

was used (Figure 4(a)). Furthermore, only a few percent of

all packets had displacements of three or more, limiting the

amount of unnecessary fast retransmissions.

279

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1 2 3 4 5 6

A
v
e

ra
g

e
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

(B
y
te

s
/s

)

Competing Flows

Allocation strategy
data+ack

data
ack

packet

(a) Linux

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1 2 3 4 5 6

A
v
e

ra
g

e
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

(B
y
te

s
/s

)

Competing Flows

Allocation strategy
data+ack

data
ack

packet

(b) NCR

Figure 3. Average system throughput for different reordering mitigation techniques.

Linux encounters much more reordering, as shown in

Figure 4(b). Only 15% of all packets are received in-

order. This is, as previously mentioned, a consequence of

Linux’s ability to sustain a larger congestion window during

reordering. This leads to more packets being in flight, which

in turn increases the amount of reordered packets.

Let us now consider the performance of NCR, which

is shown in Figure 3(b). As indicated by the graph, the

performance of NCR is very similar to that of NewReno. The

reason for NCR’s poor performance is related to the design

of the scheme. NCR is actually unable to grow the conges-

tion window sufficiently, if compared to Linux. There are

two reasons for this. The first is related to how NCR behaves

when it enters the extended loss detection phase. Actually,

it exits slow-start (the capacity probing phase of TCP)

whenever a duplicate acknowledgment arrives. This causes

NCR to require much longer time to probe the available

capacity of the underlying network, given that reordering

occurs in the beginning of the transmission. NCR is also

unable to increase the congestion window when receiving

acknowledgments that mark the end of one reordering event,

and at the same time the beginning of a new one. Therefore,

when reordering occurs frequently, NCR might force TCP to

have a small congestion window during the whole transfer.

This, in turn, causes the transmission rate to be constantly

low.

V. CHASKA METROPOLITAN NETWORK TOPOLOGY

In a real deployment, the topology and connection graph

limits the possibilities for multi-path, e.g. for paths located

in the edges of a sparsely connected network. Therefore, to

evaluate this mix of both multi- and single-path opportuni-

ties, we used a a larger and more realistic topology based

on a subset of a commercial WMN, deployed in the town

of Chaska Minnesota [16].

A. Simulation Setup

We used the same basic setup, allocation strategies and

TCP versions as in the previous simple experiment. The

topology used was, however, very different and is illustrated

in Figure 5. We also further relaxed the constraint of

orthogonal channels between nodes so that multiple nodes

might share channels. In total seven channels were used and

each node, except nodes B and C, was equipped with two

radios. The channels were assigned according to the FCRA

algorithm [3], mentioned in Section II, which considers the

expected utilization (flow-rate) of each link. The flow-rate of

each link was calculated to maximize the system throughput

for the given topology. The calculated utilization, of the

highest utilized links, is indicated in Figure 5. The thickness

of the lines illustrates the depicted load on each link when

traffic is sent between all end nodes (as in the cross-traffic

experiment listed below).

Furthermore, to account for different realistic network

scenarios, the following set of traffic profiles were evaluated:

• SC : A single client (C) served by one Internet gateway

(A).

• MC : Multiple clients (B, C and D) served by one

Internet gateway (A).

• CT : A cross-traffic experiment with flows between

A → C, B → D, C → B and D → B

B. Results

Figure 6 shows the system throughput for the SC scenario,

when three TCP flows are sent from node A to node C.

In the graph, the average throughput is plotted for each

combination of TCP version (Linux, NewReno, NCR) and

allocation strategy (data+ack, data, ack, packet). As shown

in the graph there is no benefit of using (packet), although

the topology contains numerous paths between sender and

recevier. The reason for this can be found in the topology;

as node C is connected with a single link to the network,

280

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

(a) NewReno

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

(b) Linux

Figure 4. Reordering density for packet-based routing.

A

B

C

D

Figure 5. Connection graph of the Chaska subset used for the experiment.

 0

 100000

 200000

 300000

 400000

 500000

 600000

Linux NewReno NCR

A
v
e

ra
g

e
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

(B
y
te

s
/s

)

Allocation strategy
data+ack

data
ack

packet

Figure 6. Average system throughput for SC with three flows; 3x(A → C),
using different versions of TCP and different allocation strategies.

there is limited benefit of using multi-path forwarding, as all

packets need to traverse the same last link. Actually, when

not using (data+ack) or (data) the performance is reduced; as

packets experiencing reordering have to travel longer paths

and still wait at the last hop. However, Linux and NCR are

 0

 100000

 200000

 300000

 400000

 500000

 600000

Linux NewReno NCR

A
v
e

ra
g

e
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

(B
y
te

s
/s

)

Allocation strategy
data+ack

data
ack

packet

Figure 7. Average system throughput for MC with three flows; A →

B, A → C and A → D, using different versions of TCP and different
allocation strategies.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

Linux NewReno NCR

A
v
e

ra
g

e
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

(B
y
te

s
/s

)

Allocation strategy
data+ack

data
ack

packet

Figure 8. Average system throughput for CT with four flows; A → C,
B → D, C → B and D → B using different versions of TCP and
different allocation strategies.

281

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

Linux NewReno NCR

A
v
e

ra
g

e
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

(B
y
te

s
/s

)

Allocation strategy
data+ack

data
ack

packet

Figure 9. Average system throughput for CT with 24 flows; 6x(A → C),
6x(B → D), 6x(C → B) and 6x(D → B), using different versions of
TCP and different allocation strategies.

more tolerant to reordering and can thus sustain a slightly

better throughput than NewReno.

When we simulated a gateway serving three different

clients (MC) one flow each, see Figure 7, the results were

very different from the SC experiment with three flows

between one sender and one receiver. Although the number

of flows is the same as in the former experiment, the relative

benefit of using (data+ack) and (data) allocation is greatly

reduced. When flows are destined to three different nodes,

there is a greater possibility for (beneficial) path diversity

than when flows are destined for only one host. Although

the benefit has decreased, it should be noted that it is still

beneficial to use (data+ack) or (data) in this experiment.

To evaluate possible effects of cross-traffic, we ran ex-

periments with single flows going between nodes A → C,

B → D, C → B and D → B (CT experiment). The results

are shown in Figure 8. Consistent with previous results

using this topology, (data+ack) and (data) achieves the best

performance. Interestingly, the average system throughput

have almost doubled, compared to the SC and MC experi-

ments. The reason for this is twofold. When traffic is flowing

in both directions to multiple hosts, the network resources

can be utilized more efficiently, due to the spatial diversity

combined with the benefit of having multiple orthogonal

channels. In addition, flow C → B has few hops, thus

resulting in large throughput gains.

We also increased the number of flows between each node

pair in the CT experiment from 1 to 6, making the total

amount of flows 24. The results, shown in Figure 9, indicate

that (ack) and (packet) are slightly better than (data+ack)

and (data). With a large amount of TCP flows sharing the

same network capacity, the number of outstanding packets

for each flow is much smaller than if there are only a few

TCP flows. As we discussed in section IV, when a TCP

flow has few outstanding packets there is little possibility

for reordering. Therefore, the (negative) impact of packet

reordering will be less when the number of flows increases.

Furthermore, as discussed earlier, flow-based allocation pins

a flow to a certain path. When a large number of flows

are served, this can lead to areas in the network where

many flows pass through seen as thick lines in Figure 5,

creating shared bottlenecks that might hamper performance.

However, with (packet) and (ack), such areas will not be

created to the same extent, as the amount of traffic that

is pinned to a certain path is less and for the majority of

the traffic the forwarding decisions are based on the current

network status. This problem may be partly ameliorated for

(data+ack) and (data) by periodically reassessing the paths

to which the flows are assigned.

VI. RELATED WORK

In addition to the mitigation techniques evaluated in

this paper, several others have been proposed. Blanton and

Allman [6] have suggested and evaluated a purely reactive

mitigation scheme that simply restores the congestion state

whenever a retransmission is deemed as unnecessary. Pro-

active schemes include e.g. TCP for Persistent Reordering

(TCP-PR) [7], where duplicate acknowledgments are not

used to detect packet loss which makes it more robust

to reordering. Schemes where both reactive and pro-active

components are used include, for instance, Reordering-

Robust TCP (RR-TCP) [9] where the duplicate acknowl-

edgment threshold is adjusted dynamically. Apart from the

evaluations found in the papers describing these mitigations,

there have been some independent studies [1], [17], [18]. In

[18], the authors show that packet reordering mitigations can

improve performance if reordering is the only impairment.

When packets are also lost in the network, the performance

quickly deteriorates. This is consistent with our findings, as

the experiments in the Chaska topology did not reveal a

significant performance difference between using a reorder-

ing mitigation technique or not. Furthermore, [1] also finds

reordered acknowledgments to be a problem for mitigation

techniques, as it disrupts the natural feedback loop of TCP.

In this work, we consider a general multi-path routing

protocol that requires only minor knowledge about the upper

layers, i.e., flow information. In [19], the authors have

implemented and evaluated a system called Horizon where

the lower layers are tailored to support TCP traffic. As a

system approach, Horizon achieves good results; however,

due to the use of non-standard headers, middle-boxes could

be a problem. Furthermore, as the approach focuses on a

scenario where all nodes are located within a single WMN,

it is not clear what effects the proposal would have when

the sender (or receiver) is located in a wired network.

VII. CONCLUSIONS

In this paper, we have evaluated TCP performance using

different multi-path traffic allocation strategies, sometimes

282

called routing. To get the benefit of load-balancing the traffic

over multiple paths while trying to avoid the drawback of

packet reordering, we used TCP versions robust to reorder-

ing. The Linux TCP implementation, with built-in reordering

robustness, was able to benefit from allocation decisions on

a per-packet basis in a simple topology with a single flow.

In all other tested settings, TCP throughput was equal or

higher with flow-based allocation. The reason for this was

simply the lack of paths that were not limited by shared

bottlenecks and other areas of interference. In a WMN,

with multiple paths of different delay characteristics, packet-

based allocation can create a large amount of reordering.

When facing this large amount of reordering, the TCP

implementations with reordering robustness did not perform

optimally, especially when both reordering and packet loss

occurred at the same time.

We are currently evaluating more complex topologies and

traffic patterns. Furthermore, as our current evaluation is

limited to single path TCP, our future work will also evaluate

multi-path transport layer protocols, e.g. MPTCP [20].

ACKNOWLEDGMENT

This research is supported by grant YR2009-7003 from

Stiftelsen för internationalisering av högre utbildning och

forskning (STINT).

REFERENCES

[1] K.-C. Leung, V. O. K. Li, and D. Yang, “An overview of
packet reordering in transmission control protocol (TCP):
Problems, solutions, and challenges,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 4, April 2007.

[2] S. Bhandarkar, A. L. N. Reddy, M. Allman, and E. Blanton,
“Improving the robustness of TCP to non-congestion events,”
Internet RFCs, ISSN 2070-1721, RFC 4653, August 2006.

[3] S. Avallone, I. Akyildiz, and G. Ventre, “A channel and rate
assignment algorithm and a layer-2.5 forwarding paradigm
for multi-radio wireless mesh networks,” IEEE/ACM Trans-
actions on Networking, vol. 17, no. 1, February 2009.

[4] J. C. R. Bennett, C. Partridge, and N. Shectman, “Packet
reordering is not pathological network behavior,” IEEE/ACM
Transactions on Networking, vol. 7, no. 6, December 1999.

[5] M. Allman, V. Paxson, and E. Blanton, “TCP congestion con-
trol,” Internet RFCs, ISSN 2070-1721, RFC 5681, September
2009.

[6] E. Blanton and M. Allman, “On making TCP more robust to
packet reordering,” ACM SIGCOMM Computer Communica-
tion Review, vol. 32, no. 1, January 2002.

[7] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka,
“A new TCP for persistent packet reordering,” IEEE/ACM
Transactions on Networking, vol. 14, no. 2, April 2006.

[8] Linux Kernel Organization Inc, “The Linux kernel archives,”
1997, http://www.kernel.org [accessed 2012.05.16].

[9] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A
reordering-robust TCP with DSACK,” in Proceedings of the
11th IEEE International Conference on Networking Protocols
(ICNP), Atlanta, USA, November 2003.

[10] E. Blanton and M. Allman, “Using TCP duplicate selective
acknowledgement (DSACKs) and stream control transmission
protocol (SCTP) duplicate transmission sequence numbers
(TSNs) to detect spurious retransmissions,” Internet RFCs,
ISSN 2070-1721, RFC 3708, February 2004.

[11] V. Jacobson, R. Braden, and D. Borman, “TCP extensions
for high performance,” Internet RFCs, ISSN 2070-1721, RFC
1323, May 1992.

[12] S. Ha, I. Ree, and L. Xu, “CUBIC: a new TCP-friendly
high-speed TCP variant,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 5, July 2008.

[13] S. McCanne, S. Floyd, K. Fall, K. Varadhan et al., “The
network simulator – ns-2,” 1995, http://isi.edu/nsnam/ns/ [ac-
cessed 2012.05.16].

[14] S. Jansen and A. McGregor, “Simulation with real world
network stacks,” in Proceedings of the 37th Winter Simulation
Conference (WSC), Orlando, USA, December 2005.

[15] A. Jayasumana, N. Piratla, T. Banka, A. Bare, and R. Whitner,
“Improved packet reordering metrics,” Internet RFCs, ISSN

2070-1721, RFC 5236, June 2008.

[16] Chaska.net, “Residential high speed wireless Internet access,”
2011, http://www.chaska.net, [accessed 2012.05.16].

[17] J. Feng, Z. Ouyang, L. Xu, and B. Ramamurthy, “Packet
reordering in high-speed networks and its impact on high-
speed TCP variants,” Elsevier Computer Communications,
vol. 32, no. 1, January 2009.

[18] D. Yang, K.-C. Leung, and V. O. K. Li, “Simulation-
based comparisons of solutions for TCP packet reordering
in wireless networks,” in Proceedings of the IEEE Wireless
Communications & Networking Conference (WCNC), Hong
Kong, March 2007.

[19] B. Radunović, C. Gkantsidis, D. Gunawardena, and P. Key,
“Horizon: balancing TCP over multiple paths in wireless
mesh network,” in Proceedings of the 14th ACM international
conference on Mobile computing and networking (MobiCom),
San Francisco, USA, September 2008.

[20] A. Ford, C. Raiciu, M. Handley, S. Barré, and J. Iyengar,
“Architectural guidelines for multipath TCP development,”
Internet RFCs, ISSN 2070-1721, RFC 6182, March 2011.

283

