
Routing payments on the Lightning Network
Giovanni Di Stasi, Stefano Avallone, Roberto Canonico, Giorgio Ventre

University Federico II of Napoli (Italy)
Email: {name.surname}@unina.it

Abstract—Bitcoin is a new digital currency created with the
aim of being decentralized, peer-to-peer, censorship-resistant,
borderless, scarce, fast and cheap to use. Since Bitcoin main
way of operating is based on broadcast communications, e.g.
all transactions of the currency reach all network peers, how
to achieve scalability is one of the most important concerns for
it to achieve wide usage. One of the proposals to improve its
scalability takes the form of the Lightning Network (LN) which
consists of an overlay network on top of the base Bitcoin layer.
Such an overlay allows to perform a new kind of off-blockchain
transactions, i.e. transactions not broadcast to the entire network,
that, differently from previous off-blockchain solutions, do not
require to put trust in any third entity.

Important open problems of the LN are i) defining how
payments should be routed and ii) establishing which fee policies
intermediate nodes should apply for forwarding payments. The
contributions of this work are twofold: we first propose a new,
more general, way for nodes to apply fees for forwarding pay-
ments which allows to keep the network balanced and improve
its performance in the long term. Secondly, we propose a new
multipath routing payment scheme, based on the atomic multi-
path payment method, which is able to significantly reduce the
fees paid by users, while being fast and also able to keep the
network balanced.

I. INTRODUCTION

Bitcoin is a new digital currency which is considered to
be decentralized, peer-to-peer, censorship-resistant, borderless
and scarce. The digital currency also aims at being fast and
cheap, but to fully reach such goals important scalability issues
must be addressed first. Bitcoin was invented by an unknown
programmer, or a group of programmers, under the name
Satoshi Nakamoto and released as open-source software in
2009 [8]. While Bitcoin with the capital B generally denotes
the overall system (composed by the peer-to-peer network and
the underlying protocol), bitcoins indicates the currency units
that are created and transferred on the Bitcoin network itself.

During the course of years, several different currencies
derived from Bitcoin have been devised and are now being
referred to as cryptocurrencies. Such currencies differ on some
parameters, e.g. the rate and amount of currency units issued,
or offer some additional features, e.g. privacy for transactions.
The ideas discussed in this work apply as well on most of the
released cryptocurrencies so far.

The Bitcoin architecture is based on a peer-to-peer net-
work that distributedly manages a public ledger called the
blockchain. The blockchain is where transactions are recorded
and new currency units are issued.

A problem of Bitcoin and, in general, of all cryptocurrencies
that are based on the blockchain, is scalability. Indeed, only a
limited number of transactions per second is achievable. The

limitation stems from the broadcast nature of communications
of the protocol, since every transaction has to reach every node
of the network. For such a reason, the higher the number of
transactions per second, the higher the bandwidth requirement
for nodes and, therefore, the more difficult it becomes to be
part of the network, as a full node, i.e. a node that downloads
and verifies all transactions. Other ways to participate are
possible, e.g. light client, but to run a full node is the only
way to being able to fully verify all the currency history and
get the greatest amount of security against attacks.

The maximum rate at which the Bitcoin blockchain can
process transactions, given the current network rules, is only a
few transactions per second, i.e. 3-7 (a precise number cannot
be stated since the transactions’ sizes vary). Such an amount of
transactions per second is orders of magnitude smaller of that
achievable by centralized payment processors such as VISA
or Paypal.

To increase such a figure, several proposals have been made.
The first and simplest is to simply remove the limit on the
blockchain growth. Bitcoin developers 1 and other important
Bitcoin stakeholders have, however, refused to perform such a
change in the protocol, for the reasons previously anticipated.
Given such a refusal to change the limit by the developers,
other currencies have been created with the precise aim of
creating a Bitcoin clone where the size of the blockchain could
grow at a higher rate, e.g. Bitcoin cash.

Another proposal, which follows a different approach, is
to deploy the Lightning Network (LN). The LN allows to
significantly increase the throughput of Bitcoin in term of
transactions, while keeping the bandwidth requirements low
and therefore the network more decentralized. The LN is an
overlay network on top of the Bitcoin network that allows to
perform a new form of off-chain 2 transactions that, being off-
chain, do not need to be broadcast on the network and recorded
in the blockchain. Differently from previous forms of off-chain
transactions, LN transactions do not require to put trust in
any third entity, so intermediate forwarding nodes cannot steal
funds. Indeed, payments on the LN follow a unicast path from
the sender to the destination traversing a series of LN nodes
which forward them.

The LN can be deployed on top of the Bitcoin network, as
it is today, without requiring any modifications to the base
Bitcoin layer. With respect to the LN, the blockchain acts
as a fund allocator and as an arbitrator, in case of dishonest

1Bitcoin developers are the ones that have commit access to the bitcoin
github repository.

2Off-chain and off-blockchain are synonyms.

behavior or malfunctions of LN nodes. Additional advantages
of off-chain transactions, and therefore of the LN, as opposed
to merely increasing the blockchain growth rate, are their
almost immediate confirmation and very low fee, because
they are not included in the blockchain which takes several
minutes. While the LN approach seems promising, there still
are, though, important issues to be addressed before it can be
deployed and exploited to the the full extent. The first one is a
routing problem, i.e. defining how payments should be routed.
The routing problem is in turn dependent on how the LN nodes
apply the fees for processing payments. Currently, as defined
by the BOLT specifications [1], intermediate nodes apply a
fixed charge plus a proportional fee for forwarding a payment.
As a first contribution of this work, we show that such an
approach is not optimal in terms of guaranteeing the best
network performance and propose a new, more general way of
specifying fees. Such a new way allows to keep network links
more balanced and increase the network performance in the
long term. To specify what a balanced link is we must first say
that each link in the LN has funds assigned to its endpoints
whose amount at each endpoint can be changed to perform
payments. A balanced link is defined as a link where the over-
all funds allocated to it are equally distributed to its endpoints.
Indeed, when a link is balanced, it can perform payments
in both directions with equal probability and, potentially, can
stay open for longer times (without requiring the opening of
a new channel); moreover, in case that no information on the
allocation of funds to the endpoints of channels is disseminated
in the network, it is safer to assume for each channel that the
funds are equally split between its endpoints. As a second
contribution, we propose a new multipath payment routing
scheme, based on the Atomic Multipath Payments feature [2].
Such multipath payment routing scheme allows to significantly
decrease the network fees for users, while still keeping the
network balanced.

II. BITCOIN BASICS

As previously said, the Bitcoin technology is based on a
peer-to-peer network that allows users to exchange digital
tokens called bitcoins without the intervention of any financial
institution. Such tokens are exchanged through the broad-
casting of signed transactions which are distributedly verified
and recorded by the network in a public ledger called the
blockchain. The history of all transactions ever happened in
the network is stored on such ledger, in a transparent way.

The blockchain, as the name suggests, is composed by a set
of data structures called blocks organized in a chain structure.
The first block of the chain is called genesis block and is
hard-coded in the Bitcoin software. Each of the subsequent
blocks is linked to the previous one (the parent) by means of
an hash pointer, an integer value in the block header which
corresponds to the SHA-256 hash of the header of the previous
block. The blockchain structure assures that no block can
be deleted or modified in the middle of the chain without
requiring all the subsequent blocks to be modified as well.
Indeed, if a block were to be modified, the block pointing at

it would be invalid because of the invalid hash pointer and,
for the same reason, all the following blocks would be invalid
as well.

The process by which the blocks are created is called
mining. The name derives from the fact that such process
mimics the process of mining gold, as it is both cost-intensive
and allows the issuance of new currency (gold in a case and
bitcoins in the other). Indeed, each block of the blockchain
contains, by convention, a special transaction called coinbase
which assigns previously non existent bitcoins to the node that
created such block. The mining process will be described in
greater details in sec. II-B.

The blockchain is constructed according to a set of rules
referred to as consensus rules. Should a node try to issue a
block or a transaction not in conformity to such consensus
rules, the block or the transaction would be rejected by the
rest of the network. As long as the majority of nodes act
honestly, the mining process assures that the blockchain is
formed according to the consensus rules, as will be explained
in sec. II-B.

A. Block and transaction formats
Each block contains a set of transactions that has been

broadcast in the network by nodes. It is composed by an header
and a payload. The header contains the following fields:
• version version of the block format
• prev block the hash pointer to the previous block, i.e.

SHA256 hash of the previous block header
• merkle root The merkle root of the block, i.e. a SHA256

hash representing all the transactions included in this
block

• timestamp Timestamp of when the block was created
• nonce The nonce value used to generate this block (used

in the mining process)
• txn coint Number of transactions in this block set

always to zero
The payload of the block, instead, includes a set of (well-

formed) transactions. Transactions, with the exception of the
coinbase transaction, have the following format:
• Version no - the version of the transaction format
• In-counter - number of inputs of the transaction
• list-of-inputs - the inputs of the transaction
• Number of output - the number of outputs of the trans-

action
• list-of-outputs - the outputs of the transaction
• lock time - block height or timestamp after which the

transaction is final
An output is a (logical) container of bitcoins and is a

structure consisting of two fields: i) value, the number of
contained satoshis, which is the smallest unit of the currency
and is 1/109 of a bitcoin; ii) scriptPubKey, a script in the
Bitcoin scripting language which defines how value can be
spent, i.e. moved to a different output.

An input is a reference to an output. It consists of three
fields: Previous tx, the transaction id of the transaction con-
taining the referred output; index: the index of the output in the

referred transaction; scriptSig: a script in the Bitcoin scripting
language which is used, in conjunction with the scriptPubKey
of the referred output, to authorize the spending of the output.
In particular, the transaction is valid if the script obtained
by the concatenation of the scriptPubKey and the scriptSig
evalutes without errors.

As previously anticipated, the coinbase transaction has a
different format. In particular, such transaction, used to create
new currency tokens, includes a single fictitious input and has
one output which contain a number of satoshis as defined by
the protocol (more details in the following section).

B. Mining process

As previously stated, the mining process has the purpose of
constructing the blockchain according to the consensus rules.
The difficulty of the process has significantly increased over
the course of years and the mining process nowadays can
be performed efficiently only by means of highly specialized
ASIC (Application Specific Integrated Circuits) equipment.

The mining process works as follows. Any time a miner
receives a new transaction, it verifies and stores it in a local
memory area called mempool. The transaction is verified in the
following way. Apart from the obvious checks, e.g. In-counter
actually equal to the number of inputs in list-of-inputs, each
input is checked by constructing a script composed of the
scriptSig of the input and the scriptPubKey of the referenced
output. Such resulting script must evaluate to true for the
transaction to be valid. As a basic example, such script could
verify that the output associated to particular public key is
spent by the user that demonstrates the possession of the
corresponding private key.

While the miner collects and verifies new transactions, it
also tries to forge a new block by picking a set of transactions
from the mempool that maximize its revenues. A component of
the revenues is the transactions fees. Because of the limited
block size, transactions that pay the higher fee per unit of
size are chosen. Apart from the transaction fees, another
component of the revenues is the block prize that is given
to the block creator. Indeed, each new block contains, by
consensus rules, a coinbase transaction that assigns to the
miner newly created bitcoins. The amount of bitcoins to be
assigned was 50 at the genesis block and has been halving
every 210.000 blocks (around 4 years). The halving is meant
to continue at the same rate until year 2140, when no new
bitcoins are meant to be created. At that point, 21 million of
bitcoins would exist.

To forge a valid block, the miner has to find a value for the
block nonce field such that the SHA-256 hash of the block
header is below a certain threshold. The threshold is computed
such that, in average, a new block is found by a miner every
10 minutes. The only known way to find the nonce is to
perform a brute-force search by trying different nonce values
until one that meets the condition is found. As the nonce field
has become too little for the purpose, i.e. all nonce values
were tried and no solution could be found, miners also started
to change the timestamp of the block, to try to come up with

a different SHA-256 block hash header. The process of brute-
force searching entails the consumption of energy for which
the miner is compensated by the fees and the new created
bitcoins.

When a miner is able to forge a new block, it has to
broadcasts it in the network in order for all the other nodes
to verify and store it in their local blockchains. All nodes
participate in the broadcasting of new blocks, not only miners.
While miners validate and perform the mining process to
extend the blockchain, full nodes just verify and forward valid
blocks, while they reject them if the consensus rules are not
met.

It may happen that more than a miner forge a new block
at approximately the same time. In such a case, all of such
miners would send their blocks to have them accepted by
the network. Other nodes and miners, though, would consider
only the first new block they receive. At that point, different
miners will start working on extending a different blockchain.
Eventually, though, one of competing blockchains will become
longer than the other, in terms of computing power required to
construct it, and, as for the consensus rules, will become the
only valid blockchain. Indeed, honest nodes working on the
shorter blockchains will have to discard such blockchains and
accept the longer one, on which, miners will work to extend.

C. Scalability issues of the blockchain

The Bitcoin network at the moment is able to process only
a few transactions per second, because of the limit imposed on
the rate of blockchain growth. Indeed, each new block added to
the blockchain cannot have a weight greater than 4 million, as
for the consensus rules [3]. Such a limit has been introduced to
ensure the decentralization of the network, defined in terms of
how easy it is for nodes with low bandwidth and computational
capacities to join the network and autonomously verify all the
transactions, i.e. join as a full-node.

As current transactional capability is not enough for the
Bitcoin currency to be adopted at large scale, proposals have
been made to overcome such a limit. One the proposals
consists in changing or eliminating altogether the limit on
block size. Such a proposal, though, is not encountering a
broad support from the Bitcoin stakeholders, such as the main
Bitcoin developers, because of fear of losing the decentraliza-
tion property of the network. To make such change even more
difficult, there is the fact that it would require a so-called hard
fork of the protocol, i.e. a fundamental change of the Bitcoin
protocol that is not backward compatible and requires all the
nodes to upgrade. Hard-forks are considered very risk because
if not all the nodes upgrade, the network splits in two parts
and two different currencies are created.

Another proposal consists in constructing another layer on
top of the Bitcoin protocol, following the general architectural
approach adopted in computer networks designs.

The Lightning network, described in the following section,
follows such an approach.

III. LIGHTNING NETWORK

The Lightning Network [9] is a layer-2 protocol constructed
on top of the current Bitcoin protocol. Such layer-2 protocol
allows the deployment of an overlay network where off-chain
payments can be made from node to node on a path of such
an overlay, without the need to put any trust on any of the
nodes of the path itself.

Such a protocol makes use of payment channels. A payment
channel is a logical connection between two Bitcoin peers
where multiple off-chain bitcoin transactions can be made.
Such transactions involves only such two entities and can
happen as fast as the network between them allows.

As far as the blockchain is concerned, only two transactions
need to be registered on it, i.e. the one that opens the channel
and another one that closes it. The transaction that opens the
channel is called Funding Transaction and causes the locking
of an amount of satoshis in it. Each of the two peers contributes
to part of such amount and such part constitutes the initial
balance of the peer that committed it.

Before actually broadcasting the Funding Transaction for
inclusion in the blockchain, each peer signs a Revokable
Committment Transactions (RCT) which allows the other
peer to unilaterally close the channel and get the amount it
committed back (to avoid the perennial lock of the funds in
the channel should the other peer become unresponsive).

When the Funding Transaction is actually broadcast and
confirmed by the network, the payment channel becomes
usable. At that point, the peers can modify the initial bal-
ances of the channel by creating new Revocable Commitment
Transactions which can be used to close the channel with a
different allocations of funds than the initial for the peers.

The creation of new RCTs, though, is not sufficient, as the
peers could still broadcast one of the old RCTs that close the
channel assigning the old balances. For that reason, the old
RCTs have to be revoked. Without going into all the details,
the old RCTs are revoked by exchanging temporary private
keys (or hash images, depending on the implementation) that
allow to have one of the peer immediately get all the bitcoins
of the channel should the other peer broadcast an old (revoked)
RCT.

To recap, peers can create as many RCTs they want,
thus changing the balances of the channels and performing
payments. Many new Revocable Commitment Transactions
can be made, as long as the channel remains open.

When the peers decide to close the channel, they have to
agree on a final (non revocable) Commitment Transaction
that allocates the final balances of the channel to the two
peers. When the channel is closed in this way, both peers
can immediately spend the received bitcoins.

It is worth noting that all the transactions described in
this section are normal Bitcoin transaction, i.e. they are valid
and can be broadcast in the network in any moment. The
difference is that the peers do not need to do so, apart from the
Funding and the Commitment transactions; many Revocable
Commitment Transactions can be created, which represent

enforceable obligations among peers, but do not need to be
broadcast, if both peers are cooperative and honest.

As an example, suppose that a payment channel is created
where peers commit 0.5BTC each. Such committed amounts
are locked into the channel (so they cannot be spent elsewhere)
and represent the initial balances of the peers. Suppose, then,
that the first peer needed to transfer 0.1BTC to the second.
That can be done by creating RCTs that basically change
the balances in the channel by granting to the second node
0.6BTC and the first one that made the payment 0.4BTC.
As previously said, the Bitcoin network as a whole is not
aware of such change, but the RCTs represent an agreement
between the peers that can be enforced on the blockchain if
needed.

Suppose now that the second node wanted to transfer
0.05BTC to the first node. That could be done by the two
nodes agreeing on making new RCTs that assign as balances
0.45BTC to the first node and 0.055 to the second.

As the bitcoins locked in the channel can be in fact moved
in both directions, such channels are sometimes called bi-
directional payment channels.

The advantage of the payment channel is that many transfers
can be made between the two participants, without any cost
for the network as a whole. The disadvantage is that the
channel needs to be created and then closed (which requires
two Bitcoin transactions), which makes the use of the payment
channel feasible only when the involved entities plan to
perform many transactions among themselves. [7]

A. A network of payment channels

Payment channels can be used to perform many transfers
of bitcoins between two peers that have a channel in place
between them.

Suppose now that a node, denoted as A, wanted to transfer
0.1BTC to another node, denoted as C, but no channel existed
between them.

Suppose, moreover, that both nodes had a payment channel
open with node B. What they could do in that scenario is the
following: node A could transfer 0.1BTC to node B through
the payment channel it has with it, and, then, node B could
transfer 0.1BTC to node C (supposing, of course, that the
balance of A and B is enough, respectively, in the channels
to B and to C).

Things in theory work well if all nodes are honest and
cooperative, but in general that cannot be assumed to always be
the case. In the previous example, for instance, node B could
receive the value but not deliver it to C, therefore stealing it.

The Lightning Network protocol, as previously said, allows
not to have to put any trust on the intermediate nodes. Such
an important result has been achieved thanks to the definition
of a new type of transaction called Hashed Timelock Contract
(HTLC). An HTLC transaction is considered final only if the
recipient is able to demonstrate the knowledge of a password
in a certain timeframe, after which the transaction is canceled.
A multi-hop payment is made on the LN by performing
HTLCs transaction on the links of the path, all of them subject

to the knowing of the same password set by the sender, from
the first to the last. Every intermediate node waits to receive
an HTLC payment from the previous hop, before doing an
HTLC payment to the next hop.

Once the final recipient is reached, the sender reveals the
password to it. The final recipient, at that point, to finalize the
HTLC is obliged to disclose the password to the peer on the
last link, which, in turn, can use the password to make the
HTLC it received on the penultimate link final. In a similar
way, the HTLC can be made final on the last but two link,
and so on until the HTLC on the first link is made final.

To clarify things, let us make an example, in the same
scenario of the previous example. Node A transfers 0.1BTC
to node B in a HTLC, which, as previously said, require the
knowledge of the password to actually finalize the transfer.
Node B, then, can transfer 0.1BTC to node C in a HTLC
as well, by subordinating the finalization of the transfer to
the knowledge of the same password. Node B can do that as
the HTLC it received contains all the information necessary
to create a new HTLC subordinated to the same password.
When C receives the HTLC it can finalize it as it knows the
password (it is the one that created it in the first place and
communicated it privately to the sender A). For doing so, C
is obliged to disclose the password, so also B gets to know it
and therefore can finalize the transfer of 0.1BTC from A.

The aforementioned example supposes that the intermediate
nodes transfer exactly the same amount of bitcoins received
to the next node. In the general case, they will keep for
themselves a part as a fee for the gateway service they provide.
The original sender would have then to make a payment that
also include all the fees to be paid to intermediate nodes.

r b->a

r a->b

A B
C

D

E

a

c

r c->b

r b->c

Fig. 1. Network of payment channels

To make a more complete example, let us describe how a
payment of 0.1BTC from a to c could be made in the network
of Fig. 1. Such nodes are not directly connected through a
payment channel, but a path traversing gateways A, B and
C can be used (a can pay to A,A to B, and so on). Let us
suppose that all the nodes require a fixed fee of 0.001BTC
to relay the payment. In such a scenario, a, that we suppose
aware of both the path and the fee costs required by the nodes,
sends 0.103BTC to gateway A. Gateway A, after having
received the payment, sends 1.002BTC to B, equal to the
received amount less the fee. B in turn sends 0.101BTC to
C, which finally, sendls 1BTC to the destination c, fulfilling
the payment.

IV. PROBLEM FORMULATION

We consider a network G made of nodes connected through
Poon-Dryja payment channels (just channels in the following)
[9]. We denote as N the set of LN nodes, the channel between
nodes u ∈ N and v ∈ N as (u, v) (or simply as u, v when it
is clear from the context) and the set of all channels as E.

We suppose all the channels to have been already created
and to have funds (bitcoins) allocated to their endpoints. We
denote the funds (balance) of node u in the channel u, v as
ru,v and as rv,u the funds of y on the same channel.

Such amounts vary, of course, as previously stated, when
payments are made. In particular, when a payment is made
from u to v, the funds of the first decrease while the funds
of the second increase (of the same amount). A payment of
value P can be made from u to v only if ru,v ≥ P and from
v to u only if rv,u ≥ P .

We define as the imbalance of the channel u ↔ v the
value |ru,v − rv,u|. Low values of the imbalance imply that
payments can be made in general in both directions, while, at
the opposite, a high imbalance implies that payments can be
generally made only in one direction.

We recall that payments can be made from a payer to a
payee that are not directly connected through a channel. In
the following we denote the intermediate nodes as gateways,
to distinguish them from the payer and the payee.

In such a case, the payment flows through a series of nodes,
much like an IP packet, if a feasible path with enough funds
on each link is present; each of such nodes sends to the next
gateway the amount of bitcoins received, apart from a small
part kept as a fee. For such a reason, the initial payment made
by the payer must be greater than the amount meant to be
received by the payee, since it has to take into account all the
fees to be paid during the trip. When a payment is performed
on a payment channel, both the sender and the receiver can
request a fee on the payment.

We denote as fs
u,v(P) the fee charged by gateway u for a

payment of amount P on the payment channel between u and
v and as fr

u,v(P) the fee charged by gateway v for the same
payment. The first can be seen as a sending fee, while the
second as a receiving fee. The presence of a receiving fee can
be motivated by the necessity to declare it as negative so as to
foster the reception of payments on that channel and reduce
its imbalance.

We denote as fu,v(P) the sum of the sending and receiving
fees. In order to reduce the amount of messages exchanged
on the network, only the total fee can be advertised by node
u, after it requested the information on the receiving fee to its
peer.

Suppose, in the network of the figure, that a payment of
value P reaches c through the path a−A−B − C − c. The
following four fees (f0, f1, f2 and f3) are, therefore, due on
the four traversed channels: f0 = fa→A(S), f1 = fA,B(S −
f0) and f2 = fB,C(S−f1−f0) and f3 = fC,c(S−f1−f2−f0)
where S is the initial payment made by a that has to be equal
to P + f1 + f2 + f3.

While in this example only one path is used to deliver the
payment, in general more paths can be used by splitting the
amount on them, e.g. also the A,D,E and C path could be
used. Such a strategy can be convenient in the case there is no
single path that alone can transfer the entire amount or when,
by splitting the payment on more paths, it is possible to reduce
the total amount of fees paid.

V. FEE FUNCTIONS

Currently, according to the BOLT [1], LN nodes can an-
nounce the fees they apply in terms of a base (always applied
and independent on the payment size) plus a proportional part
(to the amount to be transferred). As previously anticipated, we
consider such a choice not flexible and general enough to reach
certain goals such as the keeping of network links balanced
(as the tests will show). Therefore, we propose a new way of
specifying the fees which consists on making them continuous
piecewise linear functions of the amount to be transferred. As
an example, consider the function of Fig. 2.

0 1 2 3 4
0.1

0.105

0.11

0.115

0.12

0.125

0.13

Fe
e

(m
BT

C
)

Bitcoin transferred (mBTC)

Fig. 2. Example of fee function

The applied fee, according to the figure, consists of
0.1mBTC, plus an amount that depends on the payment to
be made and increases at different slopes (0.01 and 0.02) and
until a maximum fee of 0.13mBTC.

Such fee function can be easily announced on the network
by sending only a (relative) small number of values. Such val-
ues are the base fee b, a series of optional couples m(i), p(i),
where the first specifies a slope and the second up to which
payment value that slope holds; and, finally, the last slope m.

Such a way of specifying fees allows, as particular cases,
to specify the following fee policies:
i) fixed fee: by declaring as b the wanted fixed fee, no couples,
and m as zero;
ii) proportional fee: by declaring b = 0, no couples, and m as
the wanted proportional slope;
iii) proportional fee plus a base fee: as for ii), by specifying

a b different from zero;
iv) proportional with cap: by declaring b = 0, m(0) as
the proportional fee, p(0) the value of the payment that
corresponds to the maximum fee and m as zero.

In the following section, we show how a particular fee
function, among the ones possible with this scheme, is able to
reach certain goals, e.g. the balancing of channels.

A. A fee function that fosters the balancing of channels

Currently, according to BOLT specifications, the path (or
paths) taken by each payment is (are) decided by the node
that initiate it, i.e. the payer. It is reasonable to assume that
such a choice is made with the aim of minimizing, as much
as possible, the cumulative amount of fees paid.

LN nodes can influence such a decision by means of the
fees they announce (a payment channel that requires a lower
fee is going to be selected more than a payment channel that
requires a higher fee).

An important network wide objective for the LN could be
the maximization of the acceptance ratio of payments. On
that regard, we suppose that payments arrive dynamically and,
depending on the state of the LN, can be either successfully
performed or fail. In general, we can assume the probability to
find one or more paths from a payer to the payee to be higher
the more the links of the LN network are balanced. Indeed,
when links are balance is more easy to find a path that has
enough funds to reach the intended destination.

Therefore, in order to foster the balancing of channels, we
propose the use of a particular fee function, which we denote
as OptimizedFees and described as follows. Such fee function
consists in applying a fixed charge, as in the normal case, to
account for the communication cost on the channel, plus a
variable part which depends on the size of the payment to be
made. Such variable part has two slopes, a low slope and a
high, i.e. steeper, slope. The low slope is applied for the part
of the payment that decreases the imbalance of the channel,
i.e. half of the amount of the payment channel imbalance. The
high slope for the remaining part of the payment.

In details, if we denote as T a payment to be made on the
channel between a and b the fee fa,b(T) is calculated as in
Alg. 1.

Imb = |ra,b − rb,a| ;
if ra,b > rb,a then

if T > Imb/2 then
fa,b(T) = b+(Imb/2)∗slow+(T−Imb/2)∗shigh
;

else
fa,b(T) = b+ T ∗ slow ;

end
else

fa,b(T) = b+ T ∗ shigh ;
end

Algorithm 1: OptimizedFees: algorithm for fee calculation
that fosters channel balancing.

where b is the base fee, slow and shigh are two coefficients
with shigh > slow.

The rationale behind this fee function is to make it conve-
nient to perform the payment (or just a part of it, in a multipath
approach) on channels while at the same time balancing them,
while making it less convenient to perform the payment on
imbalanced channels while at the same time increasing such
an imbalance.

Such a fee function could result by an agreement between
the sending and the receiving nodes of the channel with the
aim of allowing the incorporation of a negative fee by the
receiver which is not seen by the whole network. Indeed, in
such a case, the low slope is just the difference between the
high slope, i.e. the fee applied by the sending node, and the
aforementioned negative fee applied by the receiving node, up
to a certain payment value. The result is a fee function similar
to OptimizedFees which can be exactly OptimizedFees if the
negative fee is applied up to the payment value that would
perfectly balance the channel.

As seen in the simulation section, OptimizedFees allows to
significantly increase the network balance in the long term.

VI. ROUTING OF PAYMENTS ON THE LN

Payments on the LN are performed, as previously stated, on
a path (or paths) chosen by the payer with the primary objec-
tive of minimizing the paid fees and a secondary objective to
keep the path (or paths) as short as possible3.

In this section we discuss different algorithms for calculat-
ing such paths. The approaches we discuss are both singlepath
and multipath and both exact and approximate.

As far as singlepath approaches are concerned, an exact
algorithm exists that finds the path that globally minimizes
the fees paid. Such an algorithm, a variation of the Dijkstra
algorithm, is described in [4]. It can be applied when the fees
are specified as a base plus a proportional part, as of now, but
also in the case where the fee function has the general form
described in the previous section, i.e. continuous piecewise
linear.

The smallest amount of fees can be obtained with multipath
approaches, though. Indeed, multipath approaches have the
ability to split the payment in smaller payments and perform
each of such smaller payments on a path that has the capacity
and requires the lowest amount of fees. To the best of our
knowledge, multipath algorithms for the LN have not been
studied or proposed yet.

Therefore, we set as an objective to study the multipath case.
To that purpose, we first define an optimization problem where
the payment is treated as a flow that can be freely allocated on
all the LN links between the payer and the payee, given the
capacity constraints of links. The problem has the following
objective function, which aims at minimizing the amount paid
by the payer (and therefore the fees):

3The more the links on a path, the greater the probability of the payment
failing at a certain hop, which causes the locking of the funds for a certain
time. We do not focus on the problem of path length on this work.

g =
∑

x∈N |(s,x)∈E

Ts,x (1)

where s is the payer and Tx,y is, in general, the amount
(flow) of payment going from x to y.

The problem has the following constraints:

∑
x∈N |(x,y)∈E

Tx,y =
∑

x∈N |(y,x)∈E

(Ty,x + fy,x(Ty,x)),∀y ∈ N

(2)

Tx,y ≤ rx,y,∀(x, y) ∈ E (3)∑
x∈N |(s,x)∈E

Ts,x−
∑

(x,y)∈E

fx,y(Tx,y) =
∑

x∈N |(x,d)∈E

Tx,d = P

(4)
where N is the set of nodes, d is the payee and P is

the amount to be paid; fx,y(T)) is the fee function which
expresses the fee to be paid to make a payment on the link
x, y for the payment T . The constraints have the following
meaning: cos. 2 is a flow constraint that expresses the fact
that the amount of payments entering a node y is equal to the
amount of payments originating from that node plus the fees
required in ingress to make them;
cos. 3 is a capacity constraint that expresses the fact that the
sum of payments flowing through a channel must not exceed
the residual funds of the channel in the payment direction.;
cos. 4 is a couple of constraints that express the fact that a
payment of cumulative value P must arrive at the destination
d after has started from a source s.

We suppose, for generality, that the fee function f has
the general form described in Sec. V. The fact that such
fee function contains a fixed fee for each link makes the
optimization problem NP-hard [5]. Such a problem can be
solved, however, by means of the branch and bound technique
4. This way of solving the problem, however, cannot be
employed on the live network because of its computational
intractability. Nonetheless, its resolution is useful to provide
lower bounds (theoretical optimum solutions) to evaluate the
solutions given by the multipath heuristic that we describe in
the following section.

A. A multipath heuristic for payments on the LN

Given the computational intractability of the exact reso-
lution of the multipath routing problem, in this section we
describe a multipath heuristic to payments in the LN that is
both fast and able to provide good solutions in terms of the
paid fees.

The heuristic consists of k steps, with k being a parameter
which represents the maximum amount of paths that can be
used simultaneously for the payment.

The algorithm works as follows. In the first of the k steps,
the best singlepath for the entire payment is evaluated by
means of the available exact singlepath algorithm. The path

4After it has easily been restated as a mixed-integer linear problem.

and the amount of fees are recorded, to be later compared
with other solutions. In the second step, the best single path is
evaluated for only half of the payment (P/2, where P is the
original payment). If such best path is found, it is recorded
along with the required fees and its links are removed from
the graph. Then, a new best singlepath is looked for, again
for a P/2 payment. If found, the resulting path and required
fees are recorded as well. At this point, we have two link-
disjoint paths, each carrying a P/2 payment and we proceed
with an optimization step. Such step aims at modifying the
amount allocated to each of the two paths, while keeping the
paths fixed and the sum of the two payments equal to P . Such
optimization problem can be made linear, given the following
modifications (the second of which consists on relaxing the
original problem): i) the base fees is not considered, as they
are fixed given that the paths are fixed (they can be added at
the end); ii) constraints on the payment values on the links of
the used paths are added so that they remain in the linear range
of their fee functions (that, we recall, are continuous piecewise
linear). The solution of such optimization step, which is at least
as best as the original solution, is recorded, together with the
required fees.

The third and following steps are as the previous. Indeed,
if we are at step i, the original payment P is split in i
payments each of P/i value. i best single paths are then
looked for (removing the links of each of the new paths when
each of them is found). Once the i paths have been found,
the optimization step is performed, as previously described,
to change the allocation on each of the paths from P/i to
different values that improve the overall solution.

When all the k steps are performed, the solutions obtained at
the different step (for i there going from 1 to k) are compared
and the best one is chosen (in terms of fees).

We note that at each step the procedure can fail, because it is
not possible to find one of the needed best singlepaths. In such
a case, the algorithm goes to the next step. Indeed, we note
that while step i can fail, step i+1 can succeed, e.g. there are
no two link-disjoint singlepath solutions each carrying a P/2
payment but there is a three link-disjoint singlepaths solution
each carrying a P/3 payment.

The computational complexity of the algorithm is as follow.
For each step i, i best single paths are searched, which has
a complexity of a O(i ∗ |N |2), where N is the number of
LN nodes. As i is goes from 1 to k, the complexity becomes
O((k + 1)/k|N |2). We need, however, to also consider the k
optimization steps. At each optimization step i, at worst 2i

solution points need to be verified, because for each of the i
paths, at most two possible values for the payment can give
the optimal solution. For the k steps, we have that the amount
of solutions to be verified is less than k ∗2k. Overall, we then
have a complexity which is O((k+1)/k|N |2+k ∗2k), which
considering the fact that k does not depend on the problem
size (and is moreover a small number), gives us a complexity,
in the worst case, of a O(|N |2).

VII. SIMULATION STUDIES

A. Evaluation of the OptimizedFees policy

The first simulation study has the objective of demonstrating
the advantage of the proposped fee policy (OptimizedFees) for
LN nodes, which leverages the new way of specifying the fees
that we propose.

To evaluate such an advantage, we use as metric, as pre-
viously anticipated, the network imbalance of the LN. The
network imbalance is defined as the ratio between the sum of
the imbalances of all the channels to the sum of all the LN
funds. Such a measure represents the percentage of network
funds that are allocated on just one endpoint of channels.
As previously introduced, a balanced channel offers several
advantages, such as the ability to perform payments with equal
probability and sizes in both directions on each link and the
possibility to keep the channel open for longer times.

We realized a simulator for the LN that we make available
at [10]. Such a simulator is able to simulate the network at the
LN protocol level. The simulated LN topology can be given as
input or generated on the fly according to specific parameters,
such as, e.g., the number of nodes, the number of sources and
destinations, the probability of existence of a link between
to nodes, etc. For our simulations, we used a LN topology
with the following characteristics. The number of nodes were
200. Channels were created between each couple of nodes
with a probability of about 3%. Funds were initially allocated
to channels according to an uniform distribution having as
limits 0.01 and 0.05 btc. Payments submitted to the network
were generated according to a Poisson process with average
interval between payments of 1s and a value obtained from a
Gaussian distribution having different averages (and a variance
of 0.0012). Sources and destinations of such payments were
chosen randomly between all network nodes. We note here
that such a choice (of having all nodes as potential sources or
destinations) makes it less important for the routing algorithm
to try to balance the network as payments naturally flow on all
links on both directions and therefore tend to balance out the
links. As far as the routing algorithm is concerned, we used
the (exact) singlepath algorithm (at this point we just want to
evaluate the effect of the OptimizedFees).

In Fig. 3 we show the overall imbalance during time (as
payments were processed) for different configurations. Such
configurations differ for i) the average value of payments,
which is expressed as percentage of the average funds of
channels (reported as number in the labels); ii) the fee policy
applied, which can be the LN default, fixed fee plus a
proportional part (1 satoshi as base plus 30 millisatoshis for
each 1000 millisatoshis transfered), and the OptimizedFees,
identified with the OF in the label (with 1 satoshi as base, 10
and 30 for each 1000 satoshis transferred for, respectively, the
slow and shigh regions).

The results show that, when the average values of payments
increases, the network imbalance increases as well, as ex-
pected. In particular, for an average of 50%, the imbalance can
get as high as 30% (Exp50 sp). The results show, moreover,

that the proposed fee policy is able to significantly decrease the
tendency of the network to become imbalanced. In particular,
for payment of average size of 20% of channels’ average fund
sizes (Exp20 and Exp20 OF), the reduction of the imbalance
is of about 49% (0.126 versus 0.249), while for payments of
10% (Exp10 and Exp10 OF) of channels’ average size the
reduction is of about 22% (0.229 vs 0.295).

0 20000 40000 60000 80000 100000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

N
et

wo
rk

 im
ba

la
nc

e

Exp10

Exp20

Exp50

Exp10_OF

Exp20_OF

Exp50_OF

Fig. 3. Network imbalance for different fee policies and different average
values of payments.

B. Evaluation of the multipath routing heuristic

The second set of simulations has the aim of evaluating
the multipath routing scheme we propose. The simulations
were performed with the same parameters as the previous
simulations. In Fig. 5, the average fee for both the proposed
multipath heuristic and the singlepath exact algorithm are
shown. As can be seen from the figure, by adopting the
proposed multipath heuristic a significant reduction in fees
can be achieved.

0 2000 4000 6000 8000 10000
0

5e+07

1e+08

1.5e+08

2e+08

Time (s)

Av
er

ag
e

fe
e

(m
illi

sa
to

sh
is

)

Exp10_Heuristic
Exp10_Singlepath
Exp20_Heuristic
Exp20_Singlepath
Exp50_Heuristic
Exp50_Singlepath

Fig. 4. Comparison among the proposed multipath approach and the sin-
glepath exact algorithm.

C. Evaluation of the multipath routing heuristic against the
exact algorithm

The third set of simulations has the aim of evaluating
how good the results given by the multipath routing heuristic
is in comparison with an algorithm that gives the optimal
solutions (as described in Sec. VI). The simulations were done
with LNSim simulator which, in case of the exact resolution,

leverages the open source tool gplk [6] able to solve the
problem applying the interior point method.

We must note here that differently from the multipath
heuristic, which splits the original payment on several com-
pletely distinct smaller payments (because of the way the
Atomic Multipath Payment method works), the multipath
exact algorithm treats the payment as an end-to-end flow
(which can then be split and reassembled at each node), giving
even better solutions. Such a choice is meant to give the
absolute best theoretical results in terms of fee that can be
achieved on the network to use them to evaluate the proposed
multipath heuristic.

The simulations were performed on the same scenarios of
the previous simulations, but with different average values for
the payments (from 10% to 50% of the payment channels
average funds, in increments of 5%). The results, averaged
over the different simulations, show that in the long term the
fees obtained with the multipath heuristic are only 1/3 greater
than the ones obtained with the exact multipath algorithm.
Such a difference can be partly explained by the fact that
the multipath heuristic, as previously stated, cannot treat the
payment as an end-to-end splittable flow, but only as different
separate payments.

0 500 1000 1500 2000 2500 3000
0

1e+07

2e+07

3e+07

4e+07

5e+07

Time (s)

Av
er

ag
e

fe
es

 (m
illi

sa
to

sh
is

)

ExactAlg

Heuristic

Fig. 5. Comparison among the proposed multipath heuristic and the exact
algorithm.

VIII. CONCLUSIONS AND FUTURE WORKS

The lightning network approach to scalability is promising
but important aspects of the technology need to improve before
it can be widely and proficiently adopted. Indeed, the routing
problem is a particular tricky one. On that regard, in this work
we propose a new multipath routing heuristic for the LN which
is able to significantly reduce the fees paid by the user. As
the fees applied by nodes influences the routing decisions, we
also addressed such aspect. In particular we propose a new
fee policy that allows to keep network links balanced, which
is beneficial for the functioning of the LN network in the long

term as, e.g. allows to keep payment channels open for longer
times. As future work, we plan to study the scenario where
the knowledge of the network is only partial, i.e. no complete
view of the current balances or no complete knowledge of the
fees applied on the channels. We, moreover, plan to extend
the proposed multipath routing scheme to account for the
possibility of automatically opening new channels between
nodes not directly connected, in case such a choice improved
some network wide or node operating variable.

REFERENCES

[1] Basis of Lightning Technology. https://github.com/lightningnetwork/
lightning-rfc/blob/master/00-introduction.md, 2017. [Online; accessed
23-March-2018].

[2] Atomic Multipath Payments. https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-February/015708.html, 2018. [Online; accessed 23-
March-2018].

[3] Block weight. https://en.bitcoinwiki.org/wiki/Block weight, 2018. [On-
line; accessed 23-March-2018].

[4] F. Engelmann, H. Kopp, F. Kargl, F. Glaser, and C. Weinhardt. Towards
an economic analysis of routing in payment channel networks. In Pro-
ceedings of the 1st Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers, page 2. ACM, 2017.

[5] D. S. Hochbaum and A. Segev. Analysis of a flow problem with fixed
charges. Networks, 19(3):291–312, 1989.

[6] A. Makhorin. Glpk (gnu linear programming kit). http://www. gnu.
org/software/glpk/, 2008.

[7] P. McCorry, M. Möser, S. F. Shahandashti, and F. Hao. Towards bitcoin
payment networks.

[8] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[9] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-

chain instant payments. Technical report, Technical Report (draft).
https://lightning. network, 2015.

[10] G. D. Stasi. Lightning network simulator. https://github.com/gdistasi/
LNSim, 2017.

