
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION 1

Efficient Storage and Processing of
High-Volume Network Monitoring Data

Giuseppe Aceto, Alessio Botta, Member, IEEE, Antonio Pescapé, Senior Member, IEEE,
and Cedric Westphal, Senior Member, IEEE

Abstract—Monitoring modern networks involves storing and
transferring huge amounts of data. To cope with this problem, in
this paper we propose a technique that allows to transform the
measurement data in a representation format meeting two main
objectives at the same time. Firstly, it allows to perform a number
of operations directly on the transformed data with a controlled
loss of accuracy, thanks to the mathematical framework it is
based on. Secondly, the new representation has a small memory
footprint, allowing to reduce the space needed for data storage
and the time needed for data transfer. To validate our technique,
we perform an analysis of its performance in terms of accuracy
and memory footprint. The results show that the transformed
data closely approximates the original data (within 5% relative
error) while achieving a compression ratio of 20%; storage
footprint can also be gradually reduced towards the one of
the state-of-the-art compression tools, such as bzip2, if higher
approximation is allowed. Finally, a sensibility analysis show
that technique allows to trade-off the accuracy on different input
fields so to accommodate for specific application needs, while a
scalability analysis indicates that the technique scales with input
size spanning up to three orders of magnitude.

Index Terms—Network monitoring, network measurements,
traffic analysis, monitoring data compression.

I. INTRODUCTION

TELECOM operators and their partners have to constantly
monitor the network for a number of tasks like billing,

management, provisioning, dimensioning, service offerings,
etc.. Tasks such as billing require the analysis of the data
in near real-time, while others are performed a posteriori
on historical data sets. For instance, network provisioning is
performed on a set of statistical indicators calculated over the
last months or years. For these tasks monitoring infrastructures
have been presented such as [2], relying on data reduction
techniques to keep the amount of data manageable. Similar
issues have been early addressed by the networking research
community, e.g. [3] but technology evolution has worsened
them, requiring more “aggressive” lossy approaches such as
adaptive shedding of input data [4]. On the other hand,
the availability of network monitoring data has allowed for
more complex analyses such as behavioral pattern mining [5],

Manuscript received December 13, 2011; revised June 29, 2012; accepted
January 4, 2013. The associate editor coordinating the review of this paper
and approving it for publication was J. Sventek.

Authors are listed in alphabetical order. G. Aceto, A. Botta, and A. Pescapé
are with the University of Napoli Federico II, Italy (e-mail: {giuseppe.aceto,
a.botta, pescape}@unina.it).

C. Westphal is with Huawei Innovation Center, USA (e-mail:
cedric.westphal@huawei.com). This work was partially conducted while he
was at Docomo Innovation in Palo Alto, CA. Preliminary results within this
framework have been presented in [1].

Digital Object Identifier 10.1109/TNSM.2013.13.110215

highly valuable for both content providers and communication
infrastructure managers.

These tasks often require to save the monitoring data; this
implies storing for a long time a huge amount of information.
For instance, a telecom operator willing to analyze service
access patterns could easily be confronted with large data
sets to be transmitted from monitoring points to processing
sites, and accumulated for several months. Another example
is provided by companies working in the field of Internet
advertisement (ads). They have to make decisions based upon
a high volume of data really fast to target ads and compute a
bid price for them. The placement decision relies on patterns
identified in the data logs (such as users with similar behavior
as the user to present with an ad embedded in the web page
he is looking at). The placement engines looks for a match
if the presented ads would be clicked on with some high-
enough likelihood. One possible solution resorts to state-of-
the-art compression algorithms, in order to keep the storage
footprint - and the transmission burden - manageable; but this
approach has the drawback of needing a decompression stage
(and then space for the uncompressed data) before any further
processing. Operating on a log of a large number of users
prohibit using compressed solution in real time, as the speed
to present the ads is the key performance factor.

In order to cope with this issue, we propose a technique
that (i) is efficient in space utilization, and (ii) provides
the possibility to perform a class of operations directly on
the compressed data. The technique we present trades off
accuracy for reduced memory footprint and computational
complexity for postprocessing, allowing for different levels of
approximation or compression, according to the needs of the
intended application. In a previous paper [1], we introduced
the basics of this technique and a preliminary evaluation of
its performance. In this paper we present the technique in de-
tails, including also various improvements we made recently.
Moreover, we perform an in-depth performance analysis in
terms of accuracy and memory footprint using different traces
from different network scenarios. The results show that the
transformed data closely approximates the original data while
the compression ratio is close to that of the state-of-the-art
compression tools, such as bzip2. Thanks to the new control
parameters introduced, we also perform an analysis of two
important aspects: sensitivity and scalability. The analysis
of the sensitivity to the input parameters shows that it is
possible to trade-off the accuracy on different input fields,
which allows to cope with the requirements of different kinds
of applications. The analysis performed varying the size of the
input data allows to assess the scalability of the technique to
input sizes spanning three orders of magnitude.

1932-4537/13/$31.00 c© 2013 IEEE

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

This paper is organized as follows. In Sec. II, we provide de-
tailed information about our technique.Its possible applications
are reported in Sec. III, illustrating a range of computations
allowed on the compressed format. Sec. IV contains a deep
experimental evaluation on different real data traces, captured
in different environments. An analysis of the scalability to the
log size and the sensitivity to the input parameters is reported
in Sec. V. Finally, we discuss the related work in Sec. VII
and draw conclusions in Sec. VIII.

II. THE TECHNIQUE

The technique we propose produces a spatially efficient
data representation that allows approximated computations in
network monitoring logs, with no need for decompression
stage. In order to ease the description of the technique, of
its characteristics, and the challenges it must deal with, we
consider a specific format of monitoring log, but the technique
can be applied to more complex monitoring data. The log
format considered, analogous to flow-level traffic traces such
as NetFlow ones [6], is constituted of records, each comprising
four fields: timestamp, source IP, destination URL, and load.
Each record represents a single HTTP session originated by a
source IP to retrieve the given URL1, and the amount of data
that has been exchanged. This format represents an example
of data commonly logged by operators.

To be able to perform computations directly on the rep-
resentation, we apply a technique which converts the log in
numerical matrices, where each row/column is a vector of
real numbers. As shown in Fig. 1, our technique comprises
two main phases. The first one is called pre-processing phase
(II.A in the figure), and provides as output a fully numeric
matrix representation of the original data. The second phase is
called factorization phase (II.B in the figure), and it transforms
the numeric matrix into a couple of sparse matrices which
approximate our original data, while having a smaller memory
footprint. In the following sections, we detail the two phases.
Fig. 1 shows a block diagram of all the phases and suphases,
using the same names as the related sections.

A. Preprocessing

1) Sessions splitting: When dealing with a continuous
stream of monitoring data, there is the necessity to split it
in parts (chunks) with a finite number of sessions in order
to apply the subsequent mapping and processing. This can
be performed in several ways, either by considering the
possibility to have overlapping between subsequent chunks or
forcing all of them to be disjoint, and allowing for fixed- or
varying-size chunks according to different stopping criteria.
The chunk size and the splitting policy affect i) the size of
each compact representation chunk; ii) the data visible to
the approximation algorithm, and thus both the compression
efficiency and the approximation error; iii) the scope of the
operations that can be performed directly on the representation
(see Sec. III), that can be applied intra-chunk and inter-chunks.
Moreover, according to the intended application, the splitting
can be performed before or after the URL filtering (described
in the following), with different consequences. For the

1We consider a general domain as a URL, without including arguments or
subpaths within a domain.

analysis conducted in this paper, a fixed split size parameter
is used to control the number of sessions allowed for each run
of the approximation algorithm; this processing is done before
the URL filtering. The split size parameter has been used for
the scalability analysis reported in Sec. V-B: as this parameter
controls the size of the input data and is considered in the
first stage of the preprocessing phase, it allows to assess the
scalability of the technique to the log size.

2) URL filtering: As in some applications singular events
may be of no importance, the proposed technique provides the
possibility to control the presence of HTTP sessions with rare
servers. This is done by means of a URL filtering threshold
parameter, defined as the minimum number of occurrences a
URL must exhibit in the log in order to be considered. Such
kind of filtering reduces the number of uniques URLs, but
also affects some sources (all sources communicating with
an under-the-threshold URL are discarded). As explained in
Sec. IV, we performed an analysis of the effects of the filtering
threshold, and the experiments reported in Sec. IV and Sec. V
consider the results of this analysis.

3) Label Coding: The values in the field URL (destination
URLs) are stored as a list of unique elements; URLs are ranked
by number of occurrences, and mapped to an integer equal to
their rank order: the higher the frequency, the higher the nu-
merical label assigned to them. In a typical encoding, a shorter
code is assigned to more frequent items. However, in our case,
small values might be changed to zero when attempting to
find a sparse representation and we would like to preserve
the values of the most frequently accessed items. Even if
source IPs could be represented as their numerical value, this
value conveys little meaning, and presents a strongly uneven
distribution. For this reason, we treat IPs as non-numerical
values to be processed similarly to URL field. Therefore the
values in the field source IP are stored as a list with unique
elements: the label corresponding to a source IP is given by
its position in the list, and referred to as srcID. The load field
is already numerical in nature: the value in bytes from the
log file is referred to as Bytes in the following. It is worth
noting that while the matrix factorization has to be performed
for each chunk of input data, the mapping processing can be
done once and updated incrementally, simply adding the new
codes (e.g. by means of a hashing function). This way the size
of mapping affects the total size of the representation within
a percentage that decreases with the growth of the number of
sessions, further improving the scalability of the technique.

4) Normalization: The fields srcID, Bytes and URLcode are
scaled to [0, 1]. For srcID this is done by dividing the code
(ranking) by the total number of srcIDs. The same is done
for URLcode. Due to the high variance of values in Bytes
field, base-2 logarithm of the value is taken, and divided by
its maximum over the trace.

5) Weighting: According to the specific application of the
technique, different degrees of approximation can be tolerated
on the different fields: at this stage, it is possible to tune
the relative importance of the fields by multiplying each of
them by a weighting factor. Given an order for the fields, the
array of their weighting factors defines the weighting vector,
which constitutes an input parameter for the technique. This
parameter can be exploited for both the initial configuration,
and a per-chunk optimization. In the preliminary configuration

ACETO et al.: EFFICIENT STORAGE AND PROCESSING OF HIGH-VOLUME NETWORK MONITORING DATA 3

Fig. 1: Block diagram of the presented technique, with references to sections describing the steps.

phase, performed only once, the value of this parameter is to
be defined in order to adapt the technique to the specific input
data format (the nature of the different fields, their range, and
the approximation error tolerated). Given a sample chunk of
input data, an automated process to infer the convenient value
for the weighting vector can be envisioned: e.g. we can use
tools from the Operations Research field, using the requisites
on accuracy and compression efficiency as constraints or
as goal functions according to the intended application, or
machine learning techniques. This is left as a future work. If
the optimization is performed on a per-chunk basis, the local
structure of data can be exploited for fine-tuning, and better
overall performance is expected. A valuable property for this
optimization is that, differently from the session split process,
the weighting one does not affect the scope of computations
even if applied on a per-chunk basis (and thus with a different
value of the weight vector associated to different chunks).
In fact, as it will be clarified in Sec. II-B, thanks to the
mathematical properties of the factorization algorithm it is
possible to apply linear transforms (and reverse them) to
the compressed format as if they were applied to the input
data (with an approximation error); therefore multiplying the
original data by the weighting vector can be reversed in the
computations performed directly on the representation (for a
formal proof see Sec. III-A). An analysis of the effect of
weighting is reported in Sec. V-A.

6) Timestamp: The timestamps are considered implicitly
using the sequence number of the sessions, which allows to
not include them in the matrix described in the following.
We can easily calculate the maximum error we can have
with this approximation. Let Δ be the average inter-arrival
time of sessions within the observed time window τ . Thus,
Δ = τ/N where N is the number of sessions in the observed
time window and τ is the width of the time window, that is
affected by the split size parameter. The timestamp of entry k
is replaced by:

t̃k = t1 + (k − 1) ∗Δ
where t1 is the timestamp of the first session on the time
window. Let ai be the arrival time of session i + 1 with
respect to session i. If the number if session is high, ai can
be approximated with a Poisson distributed random variable
with mean E[a] = Δ (and thus variance Δ as well). The actual
arrival time for the k-th connection is thus t1+

∑k−1
i=1 ai. The

error in the timestamp is: ek =
∑k−1

i=1 ai − (k − 1)Δ. For the
central limit theorem, ek is distributed according to a normal
distribution N (0,

√
kΔ). Since Δ = τ/N and k ≤ N , the

error is upper bounded by N (0, τ/
√
N), and it goes to zero

as the number of connections grows within a time window τ .
Considering as a typical scenario the monitoring on a gateway
link, the system under consideration sees a number of sessions
easily in order of millions per hour, thus the assumption that
N is large is reasonable. In our ongoing work we are also
considering other representations for the timestamps.

7) Matrix format: As the last step of the preprocessing
phase we build P , which is an M × N matrix, representing
N sessions (with N equal to the split size parameter), each
of which with M dimensions, depending on the number of
fields (we described four fields in the input data format above,
but we could consider other flow parameters as well). In this
representation, each column of the input matrix is a vector
(srcID;URLcode;Bytes)T where the time is implicitly rep-
resented by column index, namely the ith column holds values
of the ith entry of the input file.

B. Factorization

In order to store P efficiently, we want to use a matrix
P̂ such that: P̂ approximates P , and P̂ = TC, where
T (M × K) and C(K × N) are two matrices with high
sparsity and thus requiring a small amount of memory for
their storage. K is a parameter that is optimized when T and
C are derived. K can be larger than M if this decreases the
number of non-zero components in C. As our objective is to
trade off computational complexity vs accuracy, we model our
approximation as the minimization problem:

min
T,C

||P − TC||22 + λ(||T ||0 + ||C||0) (1)

where ||.||0 is the �0 norm that counts the number of non-zero
elements of its argument, and λ is a Lagrangian multiplier
which is specified by the user (we call λ granularity parameter
because, as will be clear in the following, it controls the
approximation error). T is the pattern basis and C a matrix
of coefficients. Namely, a column vector p̂k from P̂ can be
expressed as a decomposition along the basis vectors ti in T :

p̂k =

K∑
i=1

ck(i)ti (2)

T can thus be used to identify patterns in P and answer queries
about patterns in the logged data. Note that since the optimiza-
tion problem (1) takes into account the number of non-zero
elements of T and C, it yields sparse results, thus reducing
the storage requirement and also the computational complexity
required by operations on the compressed representation. In
more details, to answer a specific query that can be put in
the form Y = PX , one can use P̂ instead of P and solve
Ŷ = P̂X = TCX . Remember that ||T ||0 and ||C||0 are
minimized by construction. Therefore, computing the product
CX requires at most ||C||0 multiplications of coefficients.
Similarly, computing Y = T (CX) requires no more than
||T ||0 multiplications. Thus, the complexity of answering a
query that can be put in the form Y = PX is equal to
||T ||0 + ||C||0 operations.

In order to compute T and C, we use the technique
proposed by Zujovic et al. [7] in the context of pattern
matching algorithms (applied to query-by-example image re-

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

trieval)2. Assuming that T and all the elements of C are given,
except ci(k). Following [7], the approximation modeled as (1)
becomes the minimization:

||pi −
∑
l �=k

ci(l)tl − ci(k)tk||22 + λ||ci(k)||0 (3)

Defining ei,k as the residual pi −
∑

l �=k ci(l)tl, the minimiza-
tion becomes:

min
ci(k)

||ei,k − ci(k)tk||22 + λ||ci(k)||0 (4)

The first term is minimized by finding ci(k) such that ci(k)tk
is the orthogonal projection of ei,k onto tk. The second term
takes value 0 or λ respectively if ci(k) is null or not. Solving
jointly yields:

ci(k) =

{
ei,kt

T
k

||tk||22 if |ei,ktTk |
||tk||22 >

√
λ

0 otherwise
(5)

Since finding ci(k) in (5) only involves P, T and ci(l), then
one can solve at the same time for the whole row cj(k),
j = 1, . . . ,M . This defines the row optimization procedure
opt row(C|k, T, P, λ) [7]. Solving the initial problem (1) then
becomes an iteration of this procedure, first applied on the
rows of C (opt row(C|k, T, P, λ)) then on the columns of T
(as (3) can be trivially mapped to a column optimization by
taking the transpose, i.e. solving opt row(T T |k, CT , PT , λ)).
This two-step iteration is repeated until convergence of the
matrices T and C, namely when the changes between two
iterations are smaller than some ε. This constitutes the pro-
cedure TC iterate(T,C|P, λ). The process is initiated with
T and C equal to zero. The optimization also finds the
proper value of K by looking at the largest eigenvalue
of E = P − TC and its associated eigenvector v. De-
fine u to be a M -dimensional vector of 1s. If applying
TC iterate(v, uT |E, λ) yields a non-zero value, then the
output of the procedure can be added as a new column in
T and a matching row in C, and K is thus incremented by
one. This constitutes the expand(T,C|P, λ) procedure. Both
procedures TC iterate(T,C|P, λ) and expand(T,C|P, λ)
are alternated until all K,T and C converge.

It is important to underline that the computations required
for all the other phases are negligible with respect to the ones
required for the factorization. Also, the other stages can be
performed on the fly, while for the factorization it is necessary
to have the complete log file before starting. The performance
of the factorization stage are analyzed in detail in Sec. VI.

III. APPLICATIONS

The technique proposed in this paper allows to answer a
range of queries directly working on the new representation
format. For instance, one can answer any max-k session query
to find the k largest sessions in the log file. This can be
solved by finding the k largest value of the 1 × N row of
P̂ that corresponds to the load. One can similarly find the
total usage of a specific srcID, by summing all values of
Bytes P̂ (3, i) for which P̂ (1, i) = srcID. The matrix C points
to which patterns in T the user calls upon. Thus similar

2The theoretical framework lies in the field of dictionary design for sparse
representation, and is derived from [8].

users have similar coefficient in C, and can be identified
by observing this sparse matrix. Conversely, the underlying
matrix of patterns T embeds some overall behavior of the
system and can be used to identify abnormal usage. In
particular, if after computing T over some period of time
Δ at regular intervals, one sees dramatic changes in the
composition of T , say minπ ||T (t2)−πT (t1)||2 > γ where π
is a column permutation and γ a threshold, then it might point
to some abnormal behavior in the system and call for some
investigation. It is worth noting that the split size parameter
(Sec. II-A1) affects both the set of users on which it is possible
to perform direct comparison for similar behavior (the ones
caught in the chunk), and the set of behaviors considered
characteristic of the system (ending in building up the T
matrix).

As a preliminary, we observe the following convergence
condition: we note that (1) contains two terms, which are the
�2 norm of the difference between P − TC , and the number
of non-zero terms in T and C multiplied by the Lagrangian λ.
From (5) we see that these two terms are of the same order of
magnitude: a non-zero component is added by the algorithm
only if the cost λ of adding this non-zero value to C or T is
made up by the reduction in the difference ||P − TC||22.

If the data in P corresponds to observations drawn from
an alphabet of K vectors v1, . . . , vK , then T will have KM
non-null components (namely the coordinates of the vectors
v1, ..., vK) and C will have N non-null components (namely,
N column vectors with a 1 in the position corresponding to
which of the vi is observed in the i-th row of P).

The second term of (1) can thus be approximated by
λ(MK +N), and the difference P − TC satisfies:

||P − TC||22 = ξ

||P − TC||22 + λ(||T ||0 + ||C||0) = ξ + λ(MK +N) (6)

where, according to the convergence condition described
above, ξ � λ(MK +N).

A. Linear queries

Since T and C are derived to minimize (1), we can write
P = TC+E, where E is a matrix representing the distortion
between P and its TC factorization. Any linear query on
the data which corresponds to a linear equation Y = PX
thus can be answered by Ỹ = TCX . The answer Ỹ will
differ from Y by EX , and thus the error will be less than
||EX || ≤ ||E||||X ||. Since E is a function of λ, one can assess
the accuracy of the answer based upon λ. In most practical
cases, E will be Gaussian distributed noise and one can assess
the probability that Ỹ provides a satisfactory answer using
estimation theory and (6).

B. Detection of new patterns

Assume again that the observed values in P are drawn from
an alphabet of K vectors v1, . . . , vK . We are interested in
detecting a change in the composition of the observed data,
which means that a new vector vK+1 would be inserted in
the mix. The vector vK+1 corresponds to a new or abnormal
behavior in the data. Assume that n of the vectors in P are
vK+1 and the remaining N − n are drawn from the normal
range of behavior v1, . . . , vK . We have to consider two cases.

ACETO et al.: EFFICIENT STORAGE AND PROCESSING OF HIGH-VOLUME NETWORK MONITORING DATA 5

In the first case, the algorithm accommodates the new pattern
without changing T , and in the second, it does by adding a
new pattern vector to T .

1) Constant-size T : In this scenario, T is still composed
of K patterns. With no loss of generality, we assume that
v1, . . . , vK remain the patterns in T and thus, vK+1 will be
expressed by the algorithm as a component in the hyperplane
defined by v1, . . . , vK and potentially an orthogonal compo-
nent eK+1. Assuming vK+1 = eK+1 +

∑K
j=1 ajvj , (1) yields

two terms: the first term ||P−TC||22 is increased by ||eK+1||22
by each one of the n new observations in P drawn from vK+1.
The second term λ(||T ||0+ ||C||0) is increased by λ(K−1)n
as each column in C now has to contain the (a1, . . . , aK)
coordinates instead of the single non-zero value pointing to
the observed vector vi. There are n such columns in C.

In this case, the appearance of the n new observa-
tions drawn from vK+1 increases the minimization objective
||P − TC||22 + λ(||T ||0 + ||C||0) such that:

||P − TC||22 + λ(||T ||0 + ||C||0) =
= ξ + λ(MK +N) + n

(||eK+1||22 + λ(K − 1)
)

(7)

2) Increased-size T : The second possible case is that the
appearance of the new observations triggers an increase in K ,
and a new pattern is added to the matrix T . In this case, the
minimization objective ||P −TC||22+λ(||T ||0+ ||C||0) is that
of (6) with K replaced by K + 1.

||P − TC||22 + λ(||T ||0 + ||C||0) =
= ξ + λ (M(K + 1) +N)

= ξ + λ(MK +N) + λM (8)

The minimization objective will choose between (7) and (8),
based on which objective is lower. Namely, it will choose the
second scenario if

n
(||eK+1||22 + λ(K − 1)

) ≥ λM (9)

This is satisfied for n ≥ M/(K−1) and thus a new pattern
will be easily detected by the increase in the dimension of the
matrix T for n ≥ M/(K−1). For the values of M and K we
consider, this means a new pattern would be detected almost
immediately under the assumption that the observations are
drawn from a finite alphabet.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of our technique, we have
considered its efficiency in terms of memory footprint reduc-
tion (Compression Ratio) and different consequences of the
approximation (Bytes error, ID error, URL error). For the
evaluation of the memory footprint, the compression ratio is
compared with the output of the general purpose compression
utility bzip2, employing the Burrows-Wheeler block sorting
text compression algorithm, and Huffman coding. The re-
ported results are obtained by varying the value of λ, that
controls the amount of distortion allowed in the approximated
factorization algorithm (the higher the value of λ, the higher
the tolerated approximation, but also the more sparsity in-
duced in the representation matrix): λ is varied in the set
{0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}. The
analysis are conducted with a fixed URL threshold. We

TABLE I: Characteristics of traffic traces.

LAB MAWI
sessions 26965 105310

duration (s) 3599 899
URLs 1771 5926
IDs 110 12129

performed an analysis of the effects of the filtering threshold,
and found that 5 is the maximum value for which the accuracy
is not significantly affected: all presented results refer to this
value of URL threshold. This value is used for the analysis
reported in the following sections.

A. Data set

We used two real traffic traces, one captured on August
2010 at the gateway of a research facility (named LAB),
and the other (named MAWI) captured on May 2010 on
“Samplepoint F”, a trans-oceanic link between Japan and
USA, from the MAWI project [9]. Both traces include only
packets with transport level port (either source or destination)
equal to 80 and provide anonymized source and destination
addresses. The characteristics of the two traces are reported in
Tab. I. The numbers reported in this table are related to traces
before filtering. We recall that the data set has the format of
a log file, each record of which represents a single HTTP
session, and constitutes of four fields: timestamp (in UNIX
epoch time, μs precision), source ID, destination URL, load
(in bytes).

B. Results

1) Compression Ratio: The total size of the data in the new
representation format (we also call it compressed version), as
well as the size of specific components, is compared against
the size of the original data. The considered quantities are:

• CCS: size in bytes of the Compressed Column Sparse
representation of the C matrix alone;

• Tot: sum of the size in bytes of: CCS, T matrix, bzip2-
compressed ordered list of URLs, and bzip2-compressed
ordered list of source IDs. These components, with a
few metadata (namely the four integers representing the
dimensions of the matrices and one float per field repre-
senting its scaling factor), are all we needed to rebuild
the original data (URL-filtered and approximated);

• bzip2flt: size in bytes of the URL-filtered and bzip2-
compressed version of the original data;

• bzip2full: size in bytes of the bzip2-compressed version
of the original data with no filtering;

• full: size in bytes of the original data with no filtering.
The CCS component is calculated in bits as:

nnz · (basesize+ �log2(cols)�) + �log2(nnz)� · (rows + 1)

where nnz is the number of non-zero elements of the matrix,
rows and cols are the dimensions of the matrix, and �·�
is the ceiling function. This value corresponds to the size
occupancy of a sparse matrix, represented as Compressed
Column Sparse (or Compressed Sparse Column [10]), where
indexes are binary coded, and each element is represented
with basesize bits. In the considered case, basesize is 32, rows
and cols are the dimensions of matrix C, respectively K and

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.001 0.01 0.1 1

C
om

pr
es

si
on

 R
at

io

λ

CCS/full
bzip2full/full
bzip2flt/full

Tot/full

(a) LAB trace

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.001 0.01 0.1 1

C
om

pr
es

si
on

 R
at

io

λ

CCS/full
bzip2full/full
bzip2flt/full

Tot/full

(b) MAWI trace
Fig. 2: Compression ratios.

N in the notation of the previous section. The matrix T is
represented as M ·K values of length basesize bits each.

Fig. 2a shows the compression ratio as a function of the
granularity parameter λ for the LAB trace. As expected,
increasing the approximation granularity, more sparsity is
found in the factor matrix C, and therefore the size occupancy
for CCS representation decreases, causing the size of total
representation to gracefully decrease.

Fig. 2b shows the compression ratio as a function of the
granularity parameter λ for the MAWI trace. We can see a
behavior analogous to the one shown for the LAB trace, with
increasing sparsity found by higher values of λ. For λ = 0.001
the compression ratio Tot/full (i.e. the ratio between the total
occupancy of the representation and the size of the original log
file) is 0.21 for the LAB trace, and 0.27 for the MAWI trace,
while for λ = 1 it reaches the value 0.08 for the first trace,
and that of 0.1 for the second trace. The crossing point with
the reference line (reporting the compression ratio of bzip2,
namely bzip2full/full, i.e. the size of bzip2-compressed full
log file divided by the size of the original file) is found for
λ in-between 0.025 and 0.05 for the LAB trace, while for
the MAWI trace it found for λ in between 0.01 and 0.025.
This can be ascribed to the difference in the compression
ratio achieved by bzip2 in the two cases: for the LAB trace it
amounts to about 0.15 while for the MAWI trace is about 0.20.
A second reference line is also reported, namely bzip2flt/full,
representing the ratio between the size of the URL-filtered,
bzip2-compressed log and the size of the original log; for
both the traces the gap between the two reference lines is of
about 0.02, representing the relative gain in space for bzip2
compression due to the filtering step (described in Sec. II-A2).

The ratios considered for the evaluation of compression
efficiency, namely the size of CCS over the size of full log,
and total size of representation over the size of full log, are
separated by a gap that is constant with λ. The gap shows
different values for the considered traces, being about 0.005
for the LAB trace, and more than 0.01 for the MAWI trace.
This is consistent with the nature of such gap, deriving from
the size of mapping of IDs and URLs onto the codes used for
the representation (see Sec. II-A). The MAWI trace presents a
higher number of unique IDs and URLs, and thus an increased
gap between the size of the CCS representation and the total
occupancy of the processed data. As noted in Sect. II-A3, the
contribution of the mapping to the size of the representation
can be set apart as it can be done once and just incrementally

updated (with relatively negligible size increase), so for each
chunk only the CCS representation contributes.

2) Error on ID and URLs decoding: Error on URL de-
coding is calculated as the ratio of entries with mistaken
URLs versus the total number of entries. In order to calculate
this value, a reconstruction of the original log is performed,
using the approximated matrices and the index files. An URL
is “mistaken” when the approximated index value, after the
decoding, is closer to an index different from the original one.
The same procedure is performed on source IDs.

The percentage of mistaken URLs and IDs for the LAB
trace is shown in Fig. 3a. It can be seen that the errors
increase until λ = 0.01, for λ = 0.025 there is a plateau3, and
then the error reaches almost 1. This is due to the rescaling
phase that precedes the approximated matrix representation:
in order to uniform the value span among data of different
nature, the indexes are “compacted” so that for high values of
approximation granularity, the distance between consecutive
indexes becomes smaller than the allowed approximation
error, eventually causing the decoding fault.

The percentage of mistaken URLs and IDs for the MAWI
trace is shown in Fig. 3b. For the URLs we can observe
a behavior similar to the one shown by IDs and URLs of
the LAB trace: a quick raise from about 0.2 to almost 1,
but reached for lower values of λ. The error ratio on IDs is
significantly different, being close to 1 even for the smallest
values of λ. The reason for this undesired performance is
to be traced back to the number of unique IDs present in
the MAWI trace, summing up to 1766:it is expected that
when the representing codes are scaled between 0 and 1
the difference between adjacent codes becomes smaller than
the allowed approximation error controlled by λ, leading to
practical inability to decode. This problem can be overcome by
exploiting the weighting phase (see Sec. II-A5), that counters
the effect of scaling by multiplying a specific field by a
weighting factor. An example of this is reported in Sec. V-A,
where a weight is applied for the IDs field in order to improve
the accuracy of its approximation.

3For λ = 0.025 the error slightly decreases. We argue that this happens
because, for some approximation granularity values a slightly better sparse
representation is achievable, especially for small traces, because λ is similar
to a quantization parameter. Therefore, for small traces, the distribution
of the samples may have an impact on the performance of the technique
(i.e. changing the quantization intervals, samples may be closer to the borders
and therefore experiment a smaller quantization error). In fact, in the larger
trace (see Fig. 3b) this phenomenon does not happen.

ACETO et al.: EFFICIENT STORAGE AND PROCESSING OF HIGH-VOLUME NETWORK MONITORING DATA 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

Fr
ac

tio
n

of
 M

is
se

d
U

R
Ls

/ID
s

λ

missed URLs
missed IDs

(a) LAB trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

Fr
ac

tio
n

of
 M

is
se

d
U

R
Ls

/ID
s

λ

missed URLs
missed IDs

(b) MAWI trace

Fig. 3: Fraction of Incorrect URLs and IDs.

3) Error on Bytes field: We consider the Relative Error on
the Bytes field, defined as ‖x−x̂

x ‖, where x is the true value,
and x̂ is the approximated value, affected by approximation
error. The approximated value x̂ is reconstructed, for each
considered value of λ, by multiplying the matrices, rescaling
by the inverse of the normalization factors and the weighting
factors, and considering the Byte rows.

The extreme values, the quartiles and the mean of the
Relative Error are shown in Fig. 4a for the LAB trace. Due to
the wide variations of the Relative Error, the plot is in log-log
scale. For y-axis a minimum of 10−3 has been set, as minimum
values of relative error are always zero. We notice that the
75-percentile is always close to mean relative error (blue
solid line), which increases with increasing λ, approximately
varying as 10λ for values of λ in the decades [0.001, 0.1] and
lightly decreasing for λ in [0.25, 1].

The trend shown by the Relative Error for the MAWI trace
in Fig. 4b is analogous to the one exhibited by the LAB trace.
When λ has small values (in between 0.001 and 0.25) the
mean value is comparable to the values shown in the LAB
trace, while for larger λ values the error reaches an almost
constant value. The median in the MAWI trace performs
comparatively better with regards to the other trace, starting
at a much lower value (about 0.005 for λ = 0.001 instead of
0.01), and having smaller values for λ < 0.1. A reason for this
can be drawn by considering the notable error on IDs for the
same values of λ (see Fig. 3b): the new representation format
trades-off accuracy between these two fields. Such trade-off
is further analyzed in the sensitivity analysis performed in
Sec. V-A, where it is shown that the improvement of error on
Bytes field for small values of λ is reduced when accuracy on
IDs field is enhanced by employing a weighting factor.

C. Discussion

From the experimental evaluation we verified that the
technique is suitable for efficient space usage, as can be
seen in Fig. 2a and 2b, where for fine-grained approximation
(λ = 10−3) the resulting space occupation becomes 21%
of the space occupation of the original LAB trace and 27%
of the space occupation of the original MAWI trace, and
compression level equivalent to the one of bzip2 is reached,
for slightly coarser approximation (with λ equal to 0.06 and
0.02 for the LAB and MAWI traces respectively). This result,

confirmed for two significantly different traces in terms of
length and heterogeneity of IDs and URLs, is of notable value
compared to bzip2: our format does not require decoding in
order to perform a whole class of data mining and processing
operations, as opposed to bzip2 outcomes, that always need a
decompression phase (and space for the decompressed data).

In Fig. 4a we can see that on the LAB trace the average rela-
tive error increases less than linearly for λ ∈ {10−3, 25·10−3},
always close to the 75-percentile, while the median value is
notably smaller, and less than or close to 10% of the true value
even for coarse grained approximation. An analogous behavior
can be detected for the MAWI trace: by observing Fig. 4b
we find for the average a slow (in lin-log plot) increasing
for λ ∈ {10−3, 5 · 10−2}, closer to the 75-percentile for λ
up to around 0.025; the median is always notably lower, and
less than or close to the true value even for coarse grained
approximation. This shows how the large part is barely
affected, although some values can undergo a substantial and
increasing approximation.

As shown in Fig. 3a and 3b, the fields that are mostly
affected by approximation error are IDs and URLs, due to
their nature of identifiers: in this case the decoding is either
hit or miss, and “approximation” to the closer IDs is still
a miss. A way to reduce this impact is provided by the
tuning of the weighting factor, introduced in Sec. II-A5. In
Sec. V-A we analyze how the weighting factor can help
to mitigate the error on IDs and URLs fields and quantify
the impact on the other fields. In general, the choice of
allowed error, and thus, the setting of the control parameter
λ, is dependent on the application. Values of λ exceeding
0.1, even if introducing significant approximation error, and
higher variance for both traces (see Fig. 3a and 3b, 4a and
4b), achieve compression levels higher than the state-of-the-
art reference (Fig. 2a and 2b), still retaining the possibility
for direct processing without decompression. In applications
where the exact storage of the value is not needed (e.g. in
clustering), the graceful and controlled degrading of accuracy,
selectively distributed among different monitoring fields, could
be further exploited to gain even higher efficiency, as shown
in the following.

Concluding, in contrast with lossless schemes such as bzip2,
our technique allows to trade-off accuracy with storage space
and processing time (as the amount of data stored increases).
For this reason, we cannot say in advance what is the best

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1

B
yt

es
 R

el
at

iv
e

Er
ro

r

λ

Bytes RE quartiles
Bytes Mean RE

(a) LAB trace

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1

B
yt

es
 R

el
at

iv
e

Er
ro

r

λ

Bytes RE quartiles
Bytes Mean RE

(b) MAWI trace

Fig. 4: Relative Error on Bytes: box plot shows minimum, 1st and 3rd quartile, and median; the line connects mean values.

operating condition (in terms of the different parameters that
can be tuned), because it depends on the cost of an error, a
false alarm, or failure in detecting an event. Some applications
(e.g. operators identifying classes of behavior and thus the
need for QoS guarantees for a number of users or services)
can be more incline to tolerate losses in accuracy in order to
have less data to store and analyze. Some others (e.g. billing)
require data to be accurate, and will have to accommodate for
more storage space and processing time for it. The control
parameters of the technique have specifically been introduced
to accommodate such different needs.

V. SENSITIVITY AND SCALABILITY ANALYSIS

The technique we present can be tuned for specific appli-
cations or optimized for specific data characteristics. Besides
the main parameter, λ, that deeply affects all the performance
indexes of the technique and that has been analyzed and
discussed in the previous sections, other secondary control
parameters are of interest, namely the weighting vector (see
Sec. II-A5) and the number of entries to be read from the
input log file. This last parameter, being a control on the size
of the input data, can also be used to perform a scalability
analysis, as done in Sec. V-B. All the following analysis has
been performed on the largest trace (MAWI).

A. Sensitivity to weighting factors

In this section we analyze the sensitivity of the technique
to the weighting factors. More specifically, the purpose of
introducing the weighting factors in the technique (i.e. al-
lowing for a trade-off between accuracy on a specified field
and compression efficiency or accuracy on other fields) is
validated. We performed tests with several different weighting
vectors. In the following, we report the most interesting results
we obtained. In Fig. 5, the ratio of missed IDs and missed
URLs is compared for two different weighting settings. In
this figure, we indicate with a triple w = (wids, wurls, wbytes)
the values of the weighting factors respectively of source ID
codes, URL codes and Bytes value. We compare the results
obtained with w = (1, 1, 1), i.e. no selective weighting, and
w = (5, 1, 1), i.e. multiplying by a weight of 5 the IDs field.
Note that the results obtained with w = (1, 1, 1) are the same
as those reported in Fig. 3. From Fig. 5 it can be seen that
the decoding error on IDs is about 0.08 when the weighting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

Fr
ac

tio
n

of
 M

is
se

d
U

R
Ls

/ID
s

λ

w=5,1,1 missed URLs
w=5,1,1 missed IDs

w=1,1,1 missed URLs
w=1,1,1 missed IDs

Fig. 5: Sensitivity to weighting factor: decoding error ratio for
w=1,1,1 and w=5,1,1 with varying λ.

factor is equal to 5 and λ = 0.001, while in case of no
weighting it was extremely high even for such fine-grained
approximation. Moreover, it remains smaller than or close to
0.30 for λ < 0.01.

The trade-off for the accuracy improvement is evaluated
in terms of loss of accuracy on the other fields (whose
weighting factor is unchanged in the tests) and on the overall
compression efficiency. Firstly we recall that for the IDs field,
the improvement is verified for all the values of λ, with an
enhancement that gradually becomes negligible for λ > 0.1.
For the URLs field, we detect a small improvement for values
of λ ≤ 0.01, which becomes negligible for λ > 0.025. The
reason for this behavior is discussed in the end of this section.
A non monotonic behavior can be seen for the effect on the
Bytes field, reported in Fig. 6. The mean value is only affected
for λ > 0.1. For the median value, a small improvement (less
than 0.01) for λ ∈ [0.001, 0.005] can be observed.

In order to have an overall picture of the impact of weight-
ing on all the fields, we report in Fig. 7 the differences
between the errors on the fields for w = (5, 1, 1) and the
ones for w = (1, 1, 1) (the more negative the difference,
the better the effect of weighting). The relative error on
Bytes (BytesRE), being a different kind of error (relative error
instead of decoding error ratios), is reported on the secondary
y axis, and due to high variability, a logarithmic scale is

ACETO et al.: EFFICIENT STORAGE AND PROCESSING OF HIGH-VOLUME NETWORK MONITORING DATA 9

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1

B
yt

es
 R

el
at

iv
e

Er
ro

r

λ

w=5,1,1 Bytes Median RE
w=5,1,1 Bytes Mean RE

w=1,1,1 Bytes Median RE
w=1,1,1 Bytes Mean RE

Fig. 6: Sensitivity to weighting factor: Relative Error on Bytes
for w=1,1,1 and w=5,1,1 with varying λ.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.001 0.01 0.1 1
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

D
iff

er
en

ce
 w

=5
,1

,1
 -

w
=1

,1
,1

λ

URLs ratio
IDs ratio

Bytes RE Mean (log)
- (Bytes RE Mean) (log)

Fig. 7: Sensitivity to weighting factor: Differences between
errors for w=5,1,1 and for w=1,1,1. The variations for bytes
Relative Error are on logarithmic scale on the right y axis:
negative values are separately reported with the sign changed.

used. Negative values are negated and drawn with a different
symbol. The graph highlights that for λ > 0.1, the weighting
has no more relevant effect on the accuracy of both IDs and
URLs fields, while it adversely affects the accuracy for the
Bytes field. Moreover, the mean of relative error on Bytes field
for λ ∈ [0.01, 0.025] shows a fluctuation of less than 0.08
between positive and negative variations. It is also noteworthy
and unintuitive that for values of λ comprised in between
0.001 and 0.05 all the differences are negative, meaning that
the errors decreased for all the fields: this is discussed in the
end of the section.

The effect of the weighting factor on the overall compres-
sion efficiency is reported in Fig. 8, that is analogous to
Fig. 2b to which we refer for the definitions of the index.
As shown, there is actually a trade-off with accuracy, as the
lines relative to w = (5, 1, 1) are always above the ones
relative to w = (1, 1, 1), meaning that a loss of compression
efficiency happens for all values of λ. More specifically, the
most significant effect is found in the interval λ ∈ [0.01, 0.1],
where a decrease of compression of about 0.04 is detected.
Outside this interval, the effects of weighting are almost
constant with λ and small (less than 0.01). This shows also
that, for λ warying in wide ranges, weighting does not heavily
impact on the compression efficiency while still significantly
improves the accuracy.

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.001 0.01 0.1 1

C
om

pr
es

si
on

 R
at

io

λ

w=5,1,1 CCS/full
w=5,1,1 Tot/full

w=1,1,1 CCS/full
w=1,1,1 Tot/full

bzip2full/full
bzip2flt/full

Fig. 8: Sensitivity to weighting factor: compression efficiency
for w=1,1,1 and w=5,1,1 with varying λ.

The fact that for some values of λ the accuracy increases
also for non-weighted fields (i.e. weight = 1) can be explained
as follows. Increasing the weight (i.e. weight > 1) of a field
has the (desired) effect of distributing the values of such field
on a larger interval (i.e. spacing out the original values of this
field). This implies that the approximation granularity (λ) is
smaller with respect to the values of such field, and therefore,
the approximation error can also be smaller. However, there
is also another effect: the distribution of the values of one of
the fields changes, leading the technique to find a different
factorization for all the fields, which can also have different
(better or worse) performance with respect to the original
one. Clearly, this phenomenon becomes less evident on larger
traces, as shown in Fig. 3b.

The whole sensitivity analysis shows that the weighting is
largely beneficial for wide intervals of λ. The choice of the
weighting vector is tightly related to the specific application
scenario. In this paper we wanted to show the applicability
of the technique to network monitoring data in a general
case. Further analysis and optimization is left for specific case
studies, that are out of the scope of this paper.

B. Scalability analysis

In order to evaluate the performance of the proposed tech-
nique in terms of compression and approximation error for a
varying number of sessions, and to test the sensitivity of the
performance on the split size parameter (see Sec. II-A1), we
considered the largest trace (MAWI) and tested the technique
on an increasing number of sessions. Throughout this eval-
uation we adopted a weighting vector w = (5, 3, 1), chosen
in order to have a better balance of errors between the IDs
and URLs fields, without aiming at a specific application.
Similar considerations can be done with the other values of
the weighting vector. The results are reported in Fig. 9, 10
and 11 where the number of sessions remaining after filtering
is reported on the x-axis. Tab. II reports the relation between
the number of sessions allowed-in and the resulting number of
sessions after filtering (see Sec. II-A2 for details). As regards
the effect of filtering on considered traffic volume, we verified
that the sessions selected from the full trace (accounting for
∼ 30% of the total number of URLs) sum up to ∼ 84% of the
whole traffic volume.

The variation of compression ratio is plotted against a
varying number of sessions in Fig. 9a, 9b and 9c for λ equal

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

TABLE II: Number of sessions before and after filtering

After filtering
Sessions Sessions URLs IDs

1000 580 24 340
2500 1423 62 623
5000 3310 76 1133
10000 7486 167 1787
25000 21334 496 3228
50000 45136 1060 5398

100000 93649 1766 11245

 0.1

 0.15

 0.2

 0.25

 1000 10000 100000

C
om

pr
es

si
on

 R
at

io

Number of sessions

Tot/full
CCS/full

bzip2flt/full

(a) λ=0.001

 0.1

 0.15

 0.2

 0.25

 1000 10000 100000

C
om

pr
es

si
on

 R
at

io

Number of sessions

Tot/full
CCS/full

bzip2flt/full

(b) λ=0.01

 0.1

 0.15

 0.2

 0.25

 1000 10000 100000

C
om

pr
es

si
on

 R
at

io

Number of sessions

Tot/full
CCS/full

bzip2flt/full

(c) λ=0.1

Fig. 9: Scalability analysis: compression ratios

to 0.001, 0.01 and 0.1 respectively. The reported values are
a suitable subset of the ones defined for Fig. 2b to which we
refer for the description of the index. It can be noted that the
ratio bzip2flt over the full size of original log is independent
from λ, so its line (with the ’*’ symbol) is the same for
the three plots, and is used as a reference. All the reported
ratios (namely CCS representation, bzip2 compression and
whole representation) show an increasing trend for increasing
number of sessions. Considering the plots in the sequence of
increasing λ, the compression efficiency of our technique gets
closer to the one of bzip2. For smaller number of sessions the

CCS component is below bzip2, and the span of sessions for
which this is true increases with increasing λ: the crossing
point ranges from about 1500 sessions for λ = 0.001 up to
70000 sessions for λ = 0.1. For λ = 0.1 the compression
efficiency of our technique becomes better than that of bzip2.
This behavior is consistent on all the sessions and allows to
generalize the results discussed in the previous section to a
number of sessions spanning on three orders of magnitude.
It also clearly indicates that the split size parameter (see
Sec. II-A1) can be used to control the compression efficiency
of the whole technique or, conversely, that it is possible to
derive the optimal value of this parameter given a compression
target. Fig. 9 shows also that for small λ the growth speed
decreases with the number of sessions. For larger λ, the
growth speed becomes smaller and smaller and stabilizes for
large number of sessions. It is important to notice that the
plot related to the CCS/full component (the green x in the
figure), which is the fastest growing one, is limited by the one
related to Tot/full, because Tot comprises CCS, as reported in
the comment above. Therefore, Tot/full can be seen as upper
bound to Tot/full.

The effect of the increasing number of sessions on the
ratio of missed URLs and IDs is plotted in Fig. 10a, 10b,
and 10c for λ equal to 0.001, 0.01 and 0.1 respectively. For
all the values of λ, the increase of the numbers of sessions
causes a growth of the missed ratio for both the IDs and URLs
fields. More specifically for λ equal to 0.001 the effect is
not relevant for numbers of sessions ranging from 500 up to
7486: at this level of approximation granularity, both IDs
and URLs are correctly decoded. Increasing the number of
sessions, both ratios slightly increase but always remain under
0.1. The ratios gracefully raise (in a semilog plot) for IDs from
about 0.1 when the number of sessions is equal to 580, up to
0.8 when the number of sessions is equal to 93649. A similar
but smoother behavior is shown by the error on the URLs
field, with values close to 0 and to 0.6 respectively. For λ
equal to 0.01 the ratios gracefully raise for IDs from about
0.1, when the number of sessions is equal to 580, up to 0.8,
when the number of sessions is equal to 93649. A similar but
smoother behavior is shown by the error on the URLs field,
with values close to 0 and to 0.6 respectively. For λ equal to
0.1 the missed ratio starts at about 0.6 for IDs and at about
0.25 for URLs, then they cross when the number of sessions
is equal to 2500, and for 3000 or more sessions, the ratios
show a very similar trend, smoothly getting close to 0.85.

In general, the increase in the number of sessions leads to
an increase of the number of unique IDs and unique URLs that
have to be coded and “packed” in the [0, 1] interval, decreasing
the gap between two consecutive codes. When λ = 0.001
the accuracy is almost insensitive to the number of sessions.
This allows to tune the split size parameter according to other
targets (e.g. improving compression). In the case of λ = 0.01,
the step-wise look of IDs ratio opposed to the smooth one
of URLs can be explained by the fact that its coding gap
is smaller than the one relative to URLs, and the error is
kept smaller thanks to the higher weighting factor. In this
case the use of weighting vector can be most effective, if
the number of sessions is also taken into account. Finally it
should be considered that such behavior is to be tracked back
to the discreet nature of ID and URL codes. This constitutes

ACETO et al.: EFFICIENT STORAGE AND PROCESSING OF HIGH-VOLUME NETWORK MONITORING DATA 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000

Fr
ac

tio
n

of
 M

is
se

d
U

R
Ls

/ID
s

Number of sessions

missed URLs
missed IDs

(a) λ=0.001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000

Fr
ac

tio
n

of
 M

is
se

d
U

R
Ls

/ID
s

Number of sessions

missed URLs
missed IDs

(b) λ=0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000

Fr
ac

tio
n

of
 M

is
se

d
U

R
Ls

/ID
s

Number of sessions

missed URLs
missed IDs

(c) λ=0.1

Fig. 10: Scalability analysis: missed IDs and URLs

a generic model for similar discrete fields, a representation
choice for non-numerical fields in general.

The scalability results for Bytes field are reported in
Fig. 11a, 11b, 11c for λ equal to 0.001, 0.01 and 0.1
respectively. For λ = 0.001, while the mean value is always
smaller than 0.05, the quartiles oscillate around the value 0.01
for a number of sessions lower than 7486 and are smaller
than 0.01 for increasing session number. As this corresponds
to an increase in the missing ratio of IDs and URLs, we can
explain this behavior as a trade-off in accuracy among these
fields. Considering λ = 0.01, the quartiles show much more
consistency across the sessions span, with the median slowly
increasing from 0.05 up to 0.1 when the number of sessions is
smaller than 10000, showing a plateau and then rising to 0.2
for the whole number of sessions available. The mean value is
smaller than the 3rd quartile. For λ = 0.1 a strong consistency
is shown by all the quartiles, being almost constant for all the
numbers of sessions; while the mean value shows a small
decreasing trend from 0.9 to 0.5.

Notably, for each considered value of λ, the mean value

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000

B
yt

es
 R

el
at

iv
e

Er
ro

r

Number of sessions

Bytes RE quartiles
Bytes Mean RE

(a) λ=0.001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000

B
yt

es
 R

el
at

iv
e

Er
ro

r
Number of sessions

Bytes RE quartiles
Bytes Mean RE

(b) λ=0.01

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000

B
yt

es
 R

el
at

iv
e

Er
ro

r

Number of sessions

Bytes RE quartiles
Bytes Mean RE

(c) λ=0.1

Fig. 11: Scalability analysis: relative error on Bytes

of the relative error is almost constant on the whole span of
session numbers, which is about three orders of magnitude.
Considering a given number of sessions, relative errors on
bytes increase with increasing values of λ, thus generalizing
the analysis performed in former work [1]. The small sen-
sitiveness of the mean of the relative error on bytes to the
number of sessions allows the use of the split size parameter
to freely control other parameters for the aim of optimizing
other targets (i.e. the compression efficiency or the decoding
efficiency on non-numerical fields). This analysis shows that
the technique is scalable, especially from the point of view of
the relative error on numerical fields.

VI. PERFORMANCE COMPARISON

As explained in Sec. II, the factorization stage (see Fig. 1) is
the one most demanding in terms of computational resources,
and the time required by the other stages is negligible with re-
spect to this one. In this section we compare the time required

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

TABLE III: Time required by our technique and bzip2, aver-
aged on 10 runs.

Sessions Our technique/bzip2 Our technique/bunzip2
2500 3.6 9.5
5000 3.0 10.1
10000 3.1 11.1
25000 2.6 11.3
50000 3.4 10.3

100000 3.7 7.8

for factorizing versus bzip2 compression and decompression
durations, using log files containing an increasing number
of sessions. This is to show the benefits that our technique
can provide in a real world scenario. The experiment has
been performed on a workstation equipped with quad-core
Intel R© Xeon R© E5540 2.53 GHz CPU, with 16 GB RAM.
For this experiment, we used λ = 0.025 and w = (5, 3, 1).
As for the memory occupation, we verified that bzip2 has
an asymptotic behavior, limiting its maximum occupancy to
about 30 MByte. The current implementation of our technique,
instead, loads the entire matrix in memory. However, looking
at the algorithm (Sec. II-B) we can see that it processes the
matrix iteratively row by row. Therefore, we could severely
limit the memory occupancy loading one row at a time. We
left optimizations as future work.

Tab. III reports the ratio between the time required by our
technique and that required by bzip2 to compress the log file
and bunzip2 to uncompress it. As we can see, our technique
takes 2.6 → 3.7 times more than bzip2 and 7.8 → 11.3 times
more than bunzip2 for the same number of sessions. However,
it is important to recall that bzip2 requires decompressing
the log file each and every time an analysis is required. For
example, if we operate with bzip2/bunzip2 on a log file with
100000 entries, we will need about 1/4 of the time required by
our technique to compress the file and about 1/8 of such time
for decompressing the file each time we have to perform an
analysis. This means that our technique becomes convenient
in terms of time if the logs have to be analyzed at least 6
times during their lifetime. Besides, it is important to note
that using bzip2/bunzip2 we also need a large storage space
always free for decompressing the file before the analysis,
and this can be prohibitive in case of very large log files.
Finally, please note that the prototype code implementing our
technique is a straightforward C realization of the algorithm,
has no optimizations for memory and disk access, and is single
threaded. Higher benefits are expected after the optimization
of the code, which is out of the scope of this paper.

VII. RELATED WORK

Several different approaches have been proposed to cope
with the issues related to storing and processing huge amounts
of data coming from network monitoring activities. An infor-
mation theoretic framework is presented in [11], that within a
network model, analyzes the information content of flow-level
captures (using NetFlow-like format, which is analogous to the
log file format we considered). By means of this modeling the
authors derive the bounds for lossless compression of network
traffic traces, resulting in about 20% theoretical compression
ratio for the format they considered. [12] describes an off-
line methodology complementing to sampling approaches for

the reduction of data trace sizes while preserving mean,
standard deviation and temporal structures (such as long range
dependency and scaling behavior). It uses entropy to reduce
the amount of data that has to be processed by traffic analysis
tools. Entropy is used as input for an approach that ensures
that sensible information needed to get an appropriate model
of the network traffic is still present. Packets not needed for
an appropriate model are dropped.

The problem of developing concise representations suitable
for processing huge amount of data has been deeply analyzed
by the Knowledge Discovery and Data Mining community.
An example of efficient representation allowing for nearest-
neighbour search is iSAX, presented in [13], where an indexing
technique akin to extensible hashing is introduced for time
series data. Though iSAX is not aimed at lossy compression
and considers homogeneous data series, this technique and
similar indexing ones could be adopted in the preprocessing
stages to improve the overall performance of our technique.

Facing huge amounts of monitoring data, a possible strategy
to enhance the performance of storing and processing is to
apply lossless compression algorithms to a suitably prepro-
cessed version of the data. An example of this approach can
be found in [14], where a technique is presented that aims at
compression improvement by reordering on high dimension
data. By organizing data in data matrices in which each row is
an occurrence of a multi-field values. The technique applies an
optimization algorithm that changes row ordering to maximize
the compression by differential predictive coding. The authors
show that the optimal reordering leads to a Gaussian distribu-
tion for the prediction error in each column: in such a case
the optimization algorithm is reduced to solving a Traveling
Salesman Problem (TSP). The data matrix is allocated in a
binary tree structure, and to allow application of the ordering
algorithm on large data tables, a fast recursive partitioning
TSP heuristics is used that has O(NlogN) time and O(N) space
complexity. The O(N) space complexity does not allow to use
this approach in data-stream scenarios, but could be considered
for a multi-stage procedure, or applied to fixed-windowed
time span, with expectable reduction in effectiveness. The
authors report that the method is effective on moderately-
large to large tables with intrinsic dimensionality below 20
and with attributes represented with low to moderate precision.
Higher benefits may be obtained on data tables with correlated
attributes and heterogeneous attribute types.

A similar approach, implying a preprocessing stage whose
output is fed to a general-purpose compressor, is adopted in
[15], where the input data shows a common basic format:
ASCII text encoding, structured as a Character Separated
Values database. The authors present a multi-layered approach,
where the general-purpose compression algorithm (third stage)
is prepended with a string substitution stage on subsequent
couples of lines (resembling the backward reference coding of
LZ77 [16]); they also exploit ASCII codes unused in the text
(e.g. unprintable ones) as control characters for the decoding
algorithm. Common approaches share a common scheme. The
first stage transforms the input in a form more suitable for the
compressor, in order to exploit the known structure.

Another example of compression gain obtained by prepro-
cessing input data can be found in [17], where the input data
is constituted of log files of mail servers. A dictionary-based

ACETO et al.: EFFICIENT STORAGE AND PROCESSING OF HIGH-VOLUME NETWORK MONITORING DATA 13

word replacement phase is performed before applying different
lossless compression algorithms and the compression gain is
evaluated. Improvements of up to 56 percent in compression
time and up to 32 percent in compression ratio are reported.
When input data has know structure, an ad-hoc preprocessing
can be done: for URL storage and retrieval, in [18] a compres-
sion scheme is proposed based on AVL trees, a balanced binary
tree algorithm that is reported [19], [20] to perform better than
red-black trees for lookup-intensive applications. The paper
is focused on URL compression and retrieval algorithms for
web caches, search engines ad web crawlers. The algorithm
is applied to a database of 1.3 ∗ 106 unique URLs obtaining,
with average URL length of 55bytes, a reduction in space
occupancy of 50% (both store and retrieval online) or 64%
(just retrieval online, the case of search engines).

When on the one hand the huge amount of data to be
stored and processed is an issue, and on the other hand, some
loss of information is acceptable, a trade-off can be applied
using lossy compression schemes. In [21] a multi-scale
approach is adopted in a system, called Streaming Warehouse
System, able to process in realtime huge amounts of data,
store them, and perform queries on saved data in a reasonable
time. A notable characteristic of the presented system is the
ability to reply to statistical queries (trend, histograms and
correlation) by accessing the compressed version of data, with
no need of an intermediate decompression stage. The system
implements a multi-scale approach dividing the input time-
series in 3 components, with different time and frequency
characteristics; each is separately represented with approxi-
mations that introduce error (low-pass filtering and sampling,
below-threshold clipping, Johnson-Lindenstrauss compressive
random projection), achieving data reduction larger than 91%.
They also demonstrate that histograms and correlations can
be approximated by using the “compressed” data (this is done
with known error bounds under some assumptions on the input
signal). The paper does not address multi-dimensional data and
does not consider correlations among different dimensions.

It is worth noting that all the cited works but [21], [13] either
propose a compression algorithm/scheme or a preprocessing
stage aimed at improving the compression of the original data:
in both categories they gain space efficiency but still have to
decompress the data in order to perform any computation on
them. In the case of [15], [17], a comparison is possible with
our experimental results for the space occupancy, as the input
data format they consider can be used in principle also for
our input data, and they both refer to plain bzip2 outcome as
we do. The other works only refer to the original size, and
consider data types that constitute a subset of ours, therefore a
quantitative comparison of the results is not directly possible.

VIII. CONCLUSION

With the growth of the telecommunication networks and of
their user base, the need for efficiently collecting, transferring,
processing and storing network monitoring data continuously
poses new challenges. We presented a technique that stores
high-volume network monitoring data in a representation
format that satisfies two main objectives at the same time:
the efficient utilization of storage space, and the possibility
to perform a number of operations in a computationally
convenient way and directly on the transformed data. These

properties are traded-off with a controlled loss of accuracy.
We explained in detail the different phases composing out
technique and the various input parameters, which allow to
fine-tune the achievable performance according to different
kinds of applications. We also conducted a in-deep evaluation
of the technique using data from two different operational
networks. The experimental evaluation showed that a com-
pression ratio down to about 20 percent of the original size
can be achieved with relative error in the order of 5 percent
of the true value (for the numerical fields). With a more
aggressive approximation, compression levels larger than that
of bzip2 are reached while preserving the property of being
directly searchable and processable. In this case, the accuracy
of some non-numerical fields may become quite low. This
operating conditions may be used by applications not requiring
exact decoding of the original values of these fields. An
example is the detection of classes of behavior, e.g. identifying
different categories of usage for a number of users (IDs)
or a number of services (URLs), which can be used by an
operator for QoS/QoE management (using a quasi-static view)
or for anomaly detection (using a dynamic view), as reported
in Sec. III. The analysis of the sensitivity and scalability
also provided interesting results. Properly using a weighting
vector allows to trade-off the accuracy on different fields of
the input data, accommodating the requirements of different
applications. The technique shows also interesting scaling
properties with sizes of the input data spanning three orders of
magnitude: we observed that, especially for numerical fields,
the performance are slightly affected when the size of the input
log ranges from 500 to ∼100, 000 sessions.

The experiments showed also space for further improve-
ments: an optimized choice of the precision of the matrix
elements (in terms of amount of bits for each field) would
easily improve the compression ratio. Our ongoing work is
focused on researching optimizations reducing the memory
footprint of CCS representation by lowering the precision of
values in the C matrix from 32 to 16 bit.

Current work is also focused on evaluating the trade-off in
accuracy vs compression in relation to different precisions of
matrix element representation, and on evaluating the accuracy
obtainable after the data-mining operations, in relation to
different use cases. Finally, we extend and apply the proposed
technique to monitoring data from traffic analysis and charac-
terization [22] and quality of service parameters [23].

ACKNOWLEDGMENT

The research has been partially funded by PLATINO
(PON01 01007), by MIUR and by “Un sistema elettronico
di elaborazione in tempo reale per lestrazione di informazioni
da video ad alta risoluzione, alto frame rate e basso rapporto
segnale rumore” project of the F.A.R.O. programme. Part of
the research has been performed during a summer internship
at Docomo Innovation in Palo Alto, CA by Mr. G. Aceto.

REFERENCES

[1] G. Aceto, A. Botta, A. Pescapé, and C. Westphal, “An efficient storage
technique for network monitoring data,” in 2011 IEEE International
Workshop on Measurements & Networking.

[2] S. Agrawal, C. N. Kanthi, K. V. M. Naidu, J. Ramamirtham, R. Rastogi,
S. Satkin, and A. Srinivasan, “Monitoring infrastructure for converged
networks and services,” Bell Labs Technical J., vol. 12, no. 2, pp. 63–77,
2007.

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

[3] M. Peuhkuri, “A method to compress and anonymize packet traces,” in
Proc. 2001 ACM Internet Measurement Workshop, pp. 257–261.

[4] P. B. Ros, G. Iannaccone, J. S. Cuxart, D. A. López, and J. S. Pareta,
“Load shedding in network monitoring applications,” in Proc. 2007
USENIX Annual Technical Conference.

[5] M. Munk, J. Kapusta, and P. Svec, “Data preprocessing evaluation for
web log mining: reconstruction of activities of a web visitor,” Procedia
Computer Science, vol. 1, no. 1, pp. 2273–2280, 2010.

[6] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes, “Cisco systems
netflow services export version 9,” RFC 3954, Oct. 2004, Tech. Rep.

[7] J. Zujovic and O. G. Guleryuz, “Complexity regularized pattern match-
ing,” in Proc. 2009 IEEE International Conference on Image Processing.

[8] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD and its non-
negative variant for dictionary design,” Wavelets XI, vol. 5914, no. 1,
2005.

[9] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the WIDE
project,” in Proc. 2000 USENIX Annual Technical Conference.

[10] Y. Saad, “SPARSKIT: a basic tool kit for sparse matrix computations,”
Research Institute for Advanced Computer Science, NASA Ames Re-
search Center, Moffett Field, CA, Tech. Rep. RIACS-90-20, 1990.

[11] Y. Liu, D. Towsley, T. Ye, and J. Bolot, “An information-theoretic
approach to network monitoring and measurement,” in 2005 IMC.

[12] A. Pescapé, “Entropy-based reduction of traffic data,” IEEE Commun.
Lett., vol. 11, no. 2, pp. 191–193, Feb. 2007.

[13] J. Shieh and E. J. Keogh, “iSAX: indexing and mining terabyte sized
time series,” in KDD, Y. Li, B. Liu, and S. Sarawagi, editors. ACM,
2008, pp. 623–631.

[14] S. Vucetic, “A fast algorithm for lossless compression of data tables by
reordering,” 2006 Data Compression Conference, vol. 0, pp. 469+.

[15] P. Skibiński and J. Swacha, “Fast and efficient log file compression,” in
Proc. CEUR Workshop, 2007 East-European Conference on Advances
in Databases and Information Systems.

[16] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343,
May 1977.

[17] F. Otten, B. Irwin, and H. Thinyane, “Evaluating text preprocessing to
improve compression on maillogs,” in Proc. 2009 ACM SAICSIT, pp.
44–53.

[18] K. K. Arsa and S. Sanguanpong, “In-memory URL compression,” in
Proc. 2001 National Computer Science and Engineering Conference,
pp. 425–428.

[19] B. Pfaff, “Performance analysis of BSTs in system software,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 32, no. 1, pp. 410–
411, 2004.

[20] M. AdelsonVelskii and E. Landis, An Algorithm for the Organization of
Information. Defense Technical Information Center, 1963.

[21] G. Reeves, J. Liu, S. Nath, and F. Zhao, “Managing massive time series
streams with multi-scale compressed trickles,” Proc. VLDB Endow.,
vol. 2, no. 1, pp. 97–108, 2009.

[22] A. Dainotti, A. Pescapè, and G. Ventre, “A packet-level characterization
of network traffic,” in Proc. 2006 CAMAD, pp. 38–45.

[23] R. Karrer, I. Matyasovszki, A. Botta, and A. Pescapè, “Experimental
evaluation and characterization of the magnets wireless backbone,” in
Proc. 2006 WINTECH, pp. 26–33.

Giuseppe Aceto is a third year Ph.D. student
in Electronic and Telecommunications Engineering
at the Department of Biomedic, Electronic and
Telecommunication Engineering of University of
Napoli Federico II, where he received his MS degree
in Telecommunication Engineering in 2008, defend-
ing a thesis about a unified platform for available
bandwidth estimation in heterogeneous IP networks.
Giuseppe Aceto is working in the field of Network
monitoring and measurement with focus on internet
outages and censorship.

Alessio Botta is a postdoc at the Department of
Computer Engineering and Systems of the Univer-
sity of Napoli Federico II (Italy). He graduated
in Telecommunications Engineering (M.S.) and ob-
tained the Ph.D. in Computer Engineering and Sys-
tems, both at University of Napoli Federico II. His
research interests are in the area of networking and,
in particular, in the area of network performance
measurement and improvement, with a specic fo-
cus on wireless and heterogeneous systems. Alessio
Botta has coauthored more than 40 international

journal (IEEE Communications Magazine, IEEE TRANSACTIONS ON PAR-
ALLEL AND DISTRIBUTED SYSTEMS, Elsevier Computer Networks, etc.)
and conference (IEEE Globecom, IEEE ICC, IEEE ISCC, etc.) publications.
He has served and serves several technical program committees of several
international conferences (IEEE Globecom, IEEE ICC, etc.) and he acts as
reviewer for different international conferences (IEEE Infocom, etc.) and
journals (IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE Network,
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, etc.) in the area of
networking. In 2010 he was awarded with the best local paper award at IEEE
ISCC 2010. Alessio Botta has served and serves as independent reviewer of
research and implementation project proposals for the Romanian government.

Antonio Pescapé is an Assistant Professor at the
Department of Computer Engineering and Systems
of the University of Napoli Federico II (Italy) and
Honorary Visiting Senior Research Fellow at the
School of Computing, Informatics and Media of the
University of Bradford (UK). He received the M.S.
Laurea Degree in Computer Engineering and the
Ph.D. in Computer Engineering and Systems, both at
University of Napoli Federico II. Antonio Pescapé
teaches courses in Computer Networks, Computer
Architectures, Programming, and Multimedia and

he has also supervised and graduated more than 100 among BS, MS, and
Ph.D. students. His research interests are in the networking field with focus
on Internet Monitoring, Measurements and Management and on Network
Security. Antonio Pescapé has co-authored over 130 journal (Communica-
tions of the ACM, IEEE Communications Magazine, JSAC, IEEE Wireless
Communications Magazine, IEEE Network, etc.) and conference (SIGCOMM,
IMC, PAM, Globecom, ICC, etc.) publications and he is co-author of several
patents pending. He has served and serves as workshops and conferences
Chair and on more than 90 technical program committees of IEEE and ACM
conferences. He has served as Editorial Board Member of IEEE SURVEYS
AND TUTORIALS (2008-2011) and was guest editor for the special issue of
Computer Networks on “Traffic classification and its applications to modern
networks”. For his research activities he has received several awards. He is
a Senior Member of the IEEE. Antonio Pescapé has served and serves as
independent reviewer/evaluator of research and implementation projects and
project proposals co-funded by the Sweden government, several Italian local
governments, Italian Ministry for University and Research (MIUR) and Italian
Ministry of Economic Development (MISE).

Cedric Westphal is a Principal Research Archi-
tect with Huawei Innovations working on future
network architectures, both for wired and wire-
less networks. His current focus is on Information
Centric Networks. He also has been an adjunct
assistant professor with the University of California,
Santa Cruz since 2009. Prior to Huawei, he was
with DOCOMO Innovations from 2007-2011 in
the Networking Architecture Group. His work at
DOCOMO has covered several topics, all related
to next generation network architectures: scalable

routing, network virtualization and reliability, using social networks for traffic
offloading, etc. Prior to that, he was at Nokia Research Center from 2000 to
2006. He received a MSEE in 1995 from Ecole Centrale Paris, and a MS
(1995) and Ph.D. (2000) in EE from the University of California, Los Angeles.
Cedric Westphal has co-authored over fifty journal and conference papers,
including several best paper awards; and been awarded twenty patents. He has
been an area editor for the ACM/IEEE TRANSACTIONS ON NETWORKING
since 2009, an assistant editor for (Elsevier) Computer Networks journal, and
a guest editor for Ad Hoc Networks journal. He has served as a reviewer for
the NSF, GENI, the EU FP7, and other funding agencies; he has co-chaired
the program committee of several conferences, including IEEE ICC (NGN
symposium). He is a senior member of the IEEE.

