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Università di Napoli “Federico II”

4CEINGE-Biotecnologie Avanzate and SEMM (Italy)
{valeria.dargenio, salvator, lucio.pastore}@unina.it

Abstract—Continuous improvements on Next-Generation Se-
quencing approaches are providing a wealth of data for life
sciences, and massive application of ICT (Information and
Communication Technologies) to molecular research has become
essential for the progress of medical research. While several
software tools have been developed to assist in analysis, there
is still a lack of a focused and integrated solution for several of
specific research goals. One such goal is molecular diagnostics of
Breast Cancer (BC), the most common malignancy in females. In
this paper we present, describe, and evaluate experimentally—
on real data—part of a software pipeline we have designed,
and are implementing, specifically aimed at assisting in BC
diagnostics. The results show that the pipeline is effective in
assisting and enhancing BC diagnostics, and encourage towards
further automation.

Keywords: NGS, Breast Cancer, Software Pipeline, Auto-
mated Analysis, Feature Extraction.

I. INTRODUCTION

The last ten years have been featured by the rapid de-
velopment and diffusion of novel disruptive technologies that
have completely changed the way researchers think to molec-
ular research . These novel technologies, collectively called
“Next-Generation Sequencing” (NGS), have dramatically
increased the throughput of DNA sequencing, simultaneously
reducing its costs (see [13] for an introduction to the basic
concepts and the techniques, both traditional and NGS-based,
involved in molecular cancer diagnostics, and [20] for details
on the NGS techniques). In fact, while the first human genome
sequence took more than 10 years to be completed and cost
USD 3 billion, now, using NGS techniques, the whole genome
sequence (WGS) from a tissue sample and even from few cells
can be obtained in weeks or months at a much lower cost [32].
In addition, whole exome sequencing (WES), consisting in the
DNA sequences that are actually transcribed and translated,
is becoming a clinically relevant procedure that allows the
identification of causative mutations in patients with complex
clinical presentations. To date, several NGS-based strategies
have been used to improve molecular diagnostics of human
diseases [10], [28]. In particular, gene panels or WES analysis
have shown their potential since they allow the detection of
disease-related sequence variants through the analysis of large
genomic regions in a single run [28], [7].

The massive application of ICT to molecular research
has played a major role in this evolution, being eventually
included in the best practices for the sector. In fact, according
to [23] in their Guidelines for reproducibility (of research
on NGS data interpretation): “Accept that the computational
component is becoming an integral component of biomedical
research. As the life sciences are becoming increasingly data-
driven, there will be no escape from computation and data
handling.” Indeed several biomedical areas are developing their
specific pipelines to process NGS data (e.g. [14] in the field
of Metagenomics).

This scenario has led to the creation of CArDIGAN
(Cloud-bAsed Data mIning of clinically- and phenotypically-
relevant Genetic variants in breAst caNcer samples), a reseach
project of the University of Napoli Federico II in which biotech
and computer engineer researchers closely work together for
improving the molecular diagnostics of Breast Cancer (BC).
BC is the most common malignancy in females [22]. About
10% of all BCs fall within the so-called hereditary breast and
ovarian cancers (HBOCs), and can be related to a germline
predisposing-mutation in the high penetrance-genes BRCA1
[31] and BRCA2 [33]. BRCA1/BRCA2 germline mutations
escalate the risk of developing HBOCs by up to 20 fold
[22]. Therefore, testing for BRCA gene mutations is important
to improve the clinical management of the high-risk patients
and of their mutation carriers family members. However, only
a small fraction of at-risk patients carry mutations in these
genes. Consequently, familial BC may be caused by germline
mutations in other high-, moderate-, and low-penetrance cancer
genes [21]. NGS-based strategies could be useful to analyze
a large panel of candidate genes in order to identify BC-
predisposing mutations in high-risk families.

In our recent and current work, such procedures imply
manual operation in several of the phases, that require highly
specific expertise in the domain of the analysis, thus are not
parallelizable without increasing personnel units and adopting
a strict labour partitioning schema. Further issues are related
to the heterogeneous nature of the datasets deriving from
the integration of genomic data and clinical information, and
the volume of data and the complexity of processing to
be performed on it. As such, the analysis procedure is not
scalable, and there are several potential bottlenecks for an



intensive and massively parallel application of the procedure,
limiting the research possibilities and barring the way to more
ambitious results. As a consequence, the search for genetic
causes of human diseases is now aiming at developing novel,
sensitive, accurate, and cost- and time-effective pipelines for
molecular diagnostics, and at elucidating mechanisms involved
in disease development in order to identify novel diagnostic,
prognostic, and therapeutic markers [29]. Advanced bioinfor-
matic techniques and tools are essential for the successful
application of NGS technology, and despite recent efforts
have been made in the attempt to answer this need [18], it
remains an open issue. Moreover, while several tool sets exist
to perform biomedical research (we refer to Sect.II for a list of
major ones), they are not integrated and engineered to provide
a complete solution (automated analysis pipeline) to get from
NGS data to information directly useful for diagnostics of BC.
The most advanced pipelines, such as the one presented in
[8], are often at the stage of conceptual frameworks, including
many non-automated steps with significant expert judgment
implied. This is detrimental both to the repeatability of the
experiments and to their reproducibility.

In this paper, we present part of the fully-automated
pipeline we have designed, and the experimental evaluation of
its resource usage. Also, we present an use case in which the
features obtained thanks to the proposed pipeline are used to
improve the molecular diagnosis of hereditary BC through the
automated analysis, visualization, and storage of NGS-derived
genomic data from HBOC patients and their correlation with
clinical phenotype and other diagnostic parameters. This will
allow to identify the clinically-relevant information that can
impact patients risk of developing cancers and that require
specific preventive interventions.

II. BACKGROUND

A. Molecular research in BC

The effectiveness and the importance of NGS-based ap-
proach for BC diagnostics is testified by a plethora of pub-
lications on this specific topic. We refer to [30] for a review
on how the analysis of genome sequencing data contributes to
BC classification (and thus definition of treatment) by revealing
insight into tumor heterogeneity. Other works (such as [34],
focused on microRNAs sequencing) have applied automated
annotation and statistical analysis to the sequence and mi-
croRNAs quantification, aiming to the search of noninvasive
markers for BC detection. Several statistical techniques have
been proposed to support automatic BC diagnostics: a recent
work [16] addresses the impact of three different methods
(Fisher’s Discriminant Ratio, two-tailed T-Test, and vector
norm) on the identification of genes potentially responsible
for BC, based on expression data.

B. Bioinformatic tools

The available bioinformatic tools for genomic research are
currently highly fragmented in toolsets, with many alternative
software components to perform the same type of processing
(or sequences of processing), each with specific pro and cons.
Integrated analysis environments have been proposed aiming
at easily accessing cloud computing services, such as [4],
specialized for metagenomic. Even in the case of integrated

High-Performance-Computing suites, designed for easy-of-use
on Cloud deployments, such as Cloud BioLinux [15] and
Galaxy [12], they do not provide single pipelines, but just
present a basic configuration of a wide set of tools and an
interface to deploy and execute them on cloud IaaS, some by
means of a command line, some by a web interface. We refer
to [9], [5] for a review of such suites.

In order to build an analysis pipeline several tools are
needed, each devoted to a very specific step or group of
steps. For each of these steps, there are several software tools
equivalent or overlapping in functionality. In the following
we describe briefly the most known ones, among which we
selected the components of the pipeline presented in this
paper, grouping them according to the processing step they
are devoted to.

1) Alignment: This step is the first in the analysis pipeline.
It takes as input a file containing strings of bases, result-
ing from the sequencing process, often represented in the
FASTQ file format. The Alignment process associates each
string to a position in the reference genome. The output of
this process is a mapping, represented in SAM (sequence align-
ment/map) or BAM (binary alignment/map)format. A survey
of tools to perform this process is compared in [19], including
Maq, Bowtie, SSAHA2, BWA, SOAP2, characterized by their
compatibility with the sequencing methods (due to supported
readings length), and their computation speed (ranging from
≈ 0.2 to ≈ 7 Gbp per CPU day). We have chosen BWA [17]
as alignment tool because it offers both the highest speed and
the widest support of sequencing platforms (Illumina, SOLiD,
and 454-Roche).

2) Variant Calling: Variant calling is the identification, at
single base level, of each nucleotide present in the sequenced
reads respect to the genome sequence used as reference. It
allows the identification of all the positions in the tested
DNA sample that differ from the reference. Therefore, a high
accuracy is mandatory to avoid uncurrect variants calling due
to tecnical limitations. This step takes as input the set of the
aligned sequences and compares them with known sequences
(from the same reference genome used for alignmment) to
detect differences (variants). The output of this process is a
list of calls, whose format is standardized as VCF (Variant
Call File).

Several tools are available to perform this process, the
most popular and publicly available ones (namely: GATK
Unified Genotyper, VarScan, Pindel, SAMtools, Dindel, GATK
HaplotypeCaller, and Platypus) have been recently analyzed
and compared in [11]. The comparison criteria include comput-
ing time, number of indels called, and classification accuracy
metrics (against “gold standard” data). Platypus and Haplo-
typeCaller outperform other tools in most of the aspects, and
we have adopted HaplotypeCaller (included in the GATK set
of tools).

3) Annotation: The last step allows both variants filtering
and annotation. Variants filtering means the ability to obtain
a small set of variants starting from thousands of variants.
This procedure could involve, for example in our case study,
the comparison between normal and cancer data taking into
account the pattern of inheritance of the disease. Annotation
is the ability to associate to each variant specific information



(features) that characterize it and help in the assignment of
a biological significance (if present). This step requires a
VCF file from step 2 as input and produce a novel VCF
file including a new section with the annotation features.
An analysis and comparison of tools for variants annotation
has been presented in [24], including ANNOVAR, AnnTools,
NGS-SNP, SwattleSeq, snpEff, SVA, VARIANT, and VEP).
Common capabilities are: (i) reporting of a set of attributes
for the identified mutations, that help assessing the potential
impact of the mutation; (ii) linking to one or more public
databases of known mutations, referencing known studies on
the specific variant. Of the available tools we have chosen for
our pipeline snpEff, that supports annotations for INDELs (IN-
sertions/DELetions) and multiple-nucleotide polymorphisms in
addition to single-nucleotide polymorphisms (supported by
all tools). Moreover, snpEff classifies the effect of variant
according to the functional impact (high, moderate, low, and
modifier).

III. METHODOLOGY

A. Materials and methods

1) Patients enrollment and data gathering: Blood samples
and clinical data have been obtained from women attending the
Breast Unit of the “Istituto Nazionale dei Tumori - Fondazione
G. Pascale” of Naples. All participants have been fully in-
formed about the study and provided written informed consent
prior to samples collection. All patients have been clinically
approached: for everyone extensive family information has
been collected in order to verify the familial risk. In particular,
the patients enrolled for this gene-panel screening must have,
in addition to a strong familial history of cancers, at least
one of the following specific selection criteria: (i) BRCA1/2
negative mutation status (a part of a small subset of BRCA
mutation carriers will be specified in the following); (ii) young
age of BC onset (< 40 years); (iii) invasive and/or bilateral BC
(any age) and/or multiple organ cancers; (iv) invasive ovarian
cancer (any age). All the selected patients have been previously
screened for BRCA1/2 mutations in our lab during routine
diagnostic flow [6]. A subset of BRCA mutation carriers have
been selected as positive controls for methodology feasibility
assessment. In addition to personal and familial cancer history,
to evaluate factors that could influence BC risk, the following
information have been also collected for each patient: the
geographic area of birth and residence; the geographic area
of work and the kind of work; the kind of delivery; the kind
of feeding; the diet habits (i.e. vegan or vegetarian); presence
of food allergies; practice of physical activity; assumption
of drugs or probiotics; obesity and/or familiarity for obesity,
smoke, oral contraceptive use, pregnancies and abortions.

2) Cancer-related gene panel screening: A custom panel of
84 cancer-related genes, including the entire coding regions,
100 bp in the intronic boundaries, the promoters and the 3’
UTRs of each selected gene, has been used to analyze the
BC patients enrolled for this study. This cancer-related gene
panel, already present in the host laboratory, is “in-house”
designed and has been validated for its analytic proficiency
by analyzing 24 samples. It contains about 2,300 primer pairs
that allow the simultaneous enrichment of 1,032,813 (the total
target) for each patient. The genes enclosed in this panel
are principally tumor suppressor genes, oncogenes, cell-cycle
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Fig. 1: Pipeline designed for the extraction of the features for the
diagnosis of inherited BC. Two main branches can be identified that
implement (i) extraction of the genetic features (left branch) and (ii)
extraction of the clinical features (right branch).

regulators, DNA repair sensors and effectors. BRCA1/2 have
been also included. A library has been obtained for each DNA
sample. Briefly, each genomic DNA has been sheared into
small fragments (average size=500 bp) and specific adaptors,
required for the following amplification and sequencing reac-
tions, have been ligated to the end of each fragment. During
this step we also added a specific barcode sequence, univocally
assigned to each DNA sample, to allow downstream samples
multiplexing. Then, the adapted fragments have been hy-
bridized to the capture probes. At the end of the hybridization
reaction, the enriched DNA fragments have been recovered
and amplified to obtain an enriched library/sample. Libraries
quality (Agilent 2100 BioAnalyzer) and quantity (picogreen
assay) have been carefully evaluated before to proceed to the
next steps. Equimolar amounts of several libraries have been
pooled before sequencing. Sequencing reactions have been
carried out using the MiSeq system (Illumina).



B. Pipeline design and implementation

In this section we detail the overall pipeline implemented
for the diagnosis of inherited BC. For each step in the pipeline,
we describe the inputs and the outputs together with their
formats. As shown in Fig. 1, two main branches can be
easily identified, namely the genetic feature extraction and
the clinical feature extraction procedures. These two branches
merge together at the step H, where their partial results are
combined.

Regarding the branch related to genetic feature extraction
we refer to section II-B for a description of the different phases
and alternate tools that implement them. The genetic feature
extraction procedure starts from the DNA sequencing (step
A) that produces the raw sequence data (either in FASTQ or
uBAM format). This data is then processed for the alignment
to a reference genome (step B). This step also involves some
data cleanup operations needed to make the data suitable for
analysis and implemented for correcting potential biases due to
technical issues. This step produces analysis-ready SAM/BAM
(hereafter simply BAM) files. To implement this step, the
pipeline adopts the BWA tool. The result of the reference
genome alignment feeds the variant calling procedure (step
C). This procedure is aimed at identifying the variants by com-
paring the results of the previous step to the reference genome.
In more details the variant calling procedure is composed of
a number of sub-steps described in the following. First, a se-
quence dictionary (step C.i) and an index are created from the
reference genome (step C.ii). These steps provide optimized
data structures required to the following analyses and allow
to improve their performance by enabling efficient random
access to arbitrary regions within the reference sequence. The
BAM file is then reordered (step C.iii) and information on
Read Groups (i.e. a set of reads that were generated from a
single run of a sequencing instrument [1]) is added or replaced
if needed (step C.iv). In detail, the implemented pipeline
leverages ReorderSam and AddOrReplaceReadGroups
facilities made available by picard [3] for this last pro-
cedure. Finally, the HaplotypeCaller tool, belonging to
the GATK suite [11], is run to extract the variants—Single
Nucleotide Polymorphisms (SNPs)—from the BAM file (step
C.v). HaplotypeCaller is a cutting edge solution for SNPs
and indels calling and comprises several advanced functional-
ities such as the reference confidence model (which enables
efficient and incremental variant discovery on large cohorts)
and special settings for SNPs and indel calling on RNAseq
data. At the end of the variant calling step, a file containing all
the identified variants is produced. It is formatted according the
Variant Calling Format (VCF) standard. This file reporting the
detected variants is then passed to the filtering and annotation
block (step D). This block is in charge of annotating the
variants, also predicting their effects on genes (such as amino
acid changes). To reach this goal, at this step the interaction
with a number of databases is required. These databases are
conveniently queried depending on considered species (homo
sapiens in this study) and reference genome releases (e.g.
GRCh38/hg38, GRCh37/hg19, etc.) [2]. The output of this
process is an annotated VCF file that matches each variant
to its effect (e.g., variation of the chromosome number, exon
loss, etc.) and putative impact (such as low, moderate, or
high). The variants are ordered by deleteriousness. This step
is primarily implemented through the SnpEff suite, whose

output is also integrated with the information available in
other databases (e.g., dbSNP, ClinVar, etc.) to enhance the
available information base and add clinical information. At
step E a number of filtering operations can be applied, such to
properly reduce the information extracted and provide the right
level of detail needed for the analysis, also according to the
type of the successive procedure to be enforced (e.g., manual or
automated). The final result of this branch is a JSON-encoded
report of extracted genetic information.

For what concern the branch related to the extraction of
the clinical features, the pipeline leads the human operator
to obtain the vector of clinical features from the information
associated to each of the patients. To this aim, the pipeline
makes available a web-based interactive form that eases
the work of the user supporting her during the filling of
the expected data fields (step F). This web-based form is
though to support the operator in filling the data fields both
when gathering information during patient surveys and when
updating it offline. In addition, this module also checks and
validates the information inserted by the operator and encodes
the possible values. The output of this step is a JSON-encoded
file containing the raw clinical data. This clinical information
is then filtered and formatted in order to extract the clinical
features (step G).

At step H these clinical and the genetic features are merged
to generate the final feature report, containing the overall
view required that can be either used by the human operator
to formulate the diagnosis or processed by artificial intelligence
algorithms to automatically extract new knowledge from it. An
example for the final report is shown in Table I.

C. Post-pipeline procedure

When the tasks of the pipeline have been processed, molec-
ular biologists can carefully evaluate the content of the final
report. This allows to identify one or a small set of variants
probably related to the disease of interest and responsible for,
or contributing to patients clinical phenotype. This applies also
to the case study discussed herein. Usually, to identify a BC
predisposing mutation starting from a list of hundreds of high
quality annotated variants, some filters can be applied to the
final report table to prioritize and highlight those variants most
likely to be pathogenetic. First, it is possible to look for coding
or splicing affecting variants. Among these, the variants with
high impact and low frequency in the general population can be
filtered. If a pathogenetic effect has been already reported (also
with corresponding matches in the literature), the variant with
these features could be responsible for the clinical phenotype
(e.g., variant #3 listed in Tab. I). The subsequent correlation
both with clinical data and personal and familial history is
crucial to relate the genomic data to patients phenotype.

Based on the considerations reported above, we are con-
sidering to extend the pipeline integrating a Decision Support
System (DSS) such to also automate the diagnostic phase.

IV. DISCUSSION

Implementing the CArDIGAN approach, a number of ad-
vantages are achieved. The automation of the pipeline provides
benefits that are both functional and related to the performance.
In this section, we first describe the functional benefits the



TABLE I: A snippet of the final data report.

Variant ID chr pos Reference
Allele

Variant
Allele Impact Coding

Effect Frequency Patogenicity Already
seen in

#1 BRCA2 chr13 32915005 G C LOW synonymous variant 0.2564/1834 NO -
#2 BRIP1 chr17 59763465 T C LOW synonymous variant 0.4831/1834 NO -
#3 BARD1 chr2 215632255 C T HIGH missense variant 0.0356/1563 YES Vahteristo P et al.
#4 MSH6 chr2 48018081 A G LOW synonymous variant 0.3662/1834 NO -
#5 PMS2 chr7 6026988 G A MODERATE missense variant 0.467/1380 NO -

pipeline guarantees (Sec. IV-A); we then profile its perfor-
mance, also discussing the related implications (Sec. IV-B).

A. Functional assessment

First, the complete automation allows to deal with input
data of larger orders of magnitude: thousands of patients can
be analyzed considering hundreds of heterogeneous features
extracted from either the sequencing of tens of genes or
rich clinical information. This approach is therefore able to
guarantee a broader picture over the BC, easing the the
diagnosis and potentially providing additional useful hints.

Secondly, the aspects the approach focuses on are related
to different facets, thus leading to features with different
semantics and allowing to disclose relations among factors that
would not stem out when common procedures are adopted.

Finally, the automation of the process guarantees the com-
plete repeatability of the overall process—such to foster further
experimental replications—and sensitively reduces the proba-
bility of introducing human errors into the processing chain.
Moreover, where a set of choices is available (e.g., specific
parameters needed to customize a step of the analysis) the
proposed approach allows to follow multiple paths in parallel,
thus relieving the operator from the burden of prematurely
taking any decision.

B. Performance assessment

All the above functional advantages being given, in the
following we provide an assessment of the performance of the
pipeline we have implemented. This operation is useful for
profiling the automated process from the computational angle
and possibly identifying any performance bottleneck to the
elaboration.

To this aim, an experimental campaign has been performed
as detailed in the following. We are interested in analyzing
the performance of the pipeline from step C.i to step D that
are supposed to be the most critical. The evaluation was
run leveraging a machine with the characteristics reported in
Tab. IIa. Three different BAM files were randomly selected
based on the their size and were considered as inputs, as
reported in Tab. IIb. These input files having different sizes
allowed us to also evaluate the impact of the dimension of the
input onto the performance.

Fig. 2 reports the execution time in seconds for each step
taken into account on varying inputs. The results show how
the greater the size of the input is, the longer the pipeline
takes for accomplishing all the tasks. In particular a +115%
variation of the sizes of the inputs in terms of reads (from
Small to Large) leads to an increase in the processing time of
20% (from 785 s to 935 s). For some of the steps (e.g., C.i and
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Fig. 2: Execution time for each step on varying BAM files. The
execution time required by steps C.iii, C.iv, and C.v is impacted by
the size of the BAM file provided as input.

C.ii), no major discrepancy in terms of elaboration time was
observed. Otherwise, the execution time for steps C.iii, C.iv,
and C.v is dramatically impacted by the size of the input.

Fig. 3 shows how computing resource overhead varies at
different steps. We considered both CPU and memory usage as
parameters of interest. No more than computational capability
equivalent to 2.5 CPUs is required, on average. In Fig. 3a
is shown how CPU usage varies across different steps. As
reported, step C.iii (245%) is the one generating the major
overhead for the CPU. No major discrepancy is generated
when analyzing BAM files of different sizes in most of the
cases. Results for steps C.i and C.iv changed for different

TABLE II: Experimental evaluation details.

(a) Hardware characteristics.

CPU Intel(R) Core(TM) i7-
4710MQ CPU @ 2.50GHz

Memory 12GB
Disk Buffered disk reads:

107.01 MB/sec; cached
reads:11183.27 MB/sec

(b) BAM files.

id #Reads #Alignements Dimension
(MB)

Small 577034 553823 33.8
Medium 752880 721918 40.8

Large 1240777 1191643 64.9
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Fig. 3: Resource overhead in terms of CPU and memory usage at
different steps.

inputs, although no dependence from the size is observed.
Notably, in these cases Large BAM files show the lowest
CPU overhead. For what concerns the memory usage, the most
burdensome step is C.v where more than 4GB are required for
the variant extraction of the Large BAM file.
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Fig. 4: Execution time for each step when varying the number of
cores. No performance enhancement has been observed when running
the pipeline on more than 4 cores.

Finally, we investigated how the current implementation
of the pipeline is able to benefit from multi-core (or multi-
processor) architectures. To this aim, when executing the
pipeline we forced the tools at each step to run over a
limited number of cores (i.e. 1, 2, 4, and 8). As shown
in Fig. 4, better performance in terms of execution time is
achieved when executing the pipeline on CPU architectures
leveraging multiple CPUs. When moving from 1 to 8 cores
the time needed to execute the tasks composing the pipeline is
reduced by 10%. However, there is no evidence of performance
enhancement when running the pipeline on more than 4 cores.
In conclusion, leveraging multi-core architectures with up to
4 cores leads to a clear performance improvement. This result
is due to the limited number of steps, whose performance is
impacted by the number of cores available.

The above analysis is also dictated by the need to migrate
some portions of the proposed architecture onto the cloud

according to the CArDIGAN view. Indeed, the results of the
analysis provide an overall characterization of the computing
effort required by the pipeline, that is of the utmost importance
to properly configure the cloud environment in terms of leased
resources (i.e. CPU, memory, disk, etc.) such to obtain the
desired performance level and reduce leasing costs [25], [26],
[27].

V. CONCLUSION

Motivated by the wide availability of NGS-based methods
and tools, we have investigated their application to improve
Breast Cancer molecular diagnostics, and found that there is
a lack of a solution that is fully automated. This has impact
on the extensiveness of analysis that can be performed in a
given time, and on the reproducibility and repeatability of the
process, that in our previous and current research activities
still involves manual intervention and expert judgment. In
this paper we have presented part of a software pipeline we
have designed and are implementing, specifically aimed at
assisting in BC diagnostics. After an overview of the molecular
diagnostic process and the involved phases and tools, we have
described our pipeline implementation, and we have validated
it using real data (both genetic and clinical). The functional
assessment of the pipeline has shown its usefulness in speeding
up the work of the researchers while providing at the same
time more structured information, compared with the previous
(operator-intensive and partially subjective) procedure. More-
over we have conducted a performance assessment of the
pipeline, detailing the contribution of each component while
varying key operational parameters, namely: the dimension of
the genetic dataset that is fed to the pipeline, and the number
of CPUs dedicated to the processing. The resource usage has
been assessed in terms of CPU percentage, RAM occupation,
and time to complete the task. These assessment parameters
inform on the hardware and service requirements to run the
pipeline, either on-premises or as Cloud instances. The results
show that the pipeline is effective in assisting and enhancing
BC diagnostic and encourage towards further automation.

Ongoing and future work is aimed at further expanding
the pipeline adding automation of the current post-pipeline
analysis, and expanded feature extraction and analysis tasks.
Moreover the deployment on cloud services will be assessed
and automated for the parallelizable and computing-intensive
phases of the pipeline.
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monitoring public-cloud networks. In 2016 IEEE 2nd International Fo-
rum on Research and Technologies for Society and Industry Leveraging
a better tomorrow (RTSI) (IEEE RTSI 2016), Bologna, Italy, Sept. 2016.

[28] V. Precone, V. Del Monaco, M. V. Esposito, F. D. E. De Palma,
A. Ruocco, F. Salvatore, and V. D’Argenio. Cracking the code of human
diseases using next-generation sequencing: Applications, challenges,
and perspectives. BioMed research international, 2015, 2015.

[29] J. A. Reuter, D. V. Spacek, and M. P. Snyder. High-throughput
sequencing technologies. Molecular cell, 58(4):586–597, 2015.

[30] H. G. Russnes, N. Navin, J. Hicks, and A.-L. Borresen-Dale. Insight into
the heterogeneity of breast cancer through next-generation sequencing.
The Journal of clinical investigation, 121(10):3810–3818, 2011.

[31] M. H. Skolnick et al. A strong candidate for the breast and ovarian
cancer susceptibility gene brca1. Science, 266(5172):66–71, 1994.

[32] A. von Bubnoff. Next-generation sequencing: the race is on. Cell,
132(5):721–723, 2008.

[33] R. Wooster, G. Bignell, J. Lancaster, S. Swift, S. Seal, J. Mangion,
N. Collins, S. Gregory, C. Gumbs, G. Micklem, et al. Identification of
the breast cancer susceptibility gene brca2. Nature, 378(6559):789–792,
1995.

[34] Q. Wu, Z. Lu, H. Li, J. Lu, L. Guo, and Q. Ge. Next-generation
sequencing of micrornas for breast cancer detection. BioMed Research
International, 2011, 2011.


