

An experimental evaluation of the impact of heterogeneous scenarios and virtualization on the available bandwidth estimation tools

IEEE International Workshop on Measurement and Networking (M&N 2017) Napoli, Italy, September 28th 2017

<u>Giuseppe Aceto^{1,2}</u>, Fabio Palumbo¹, Valerio Persico^{1,2}, Antonio Pescapè^{1,2} {giuseppe.aceto, valerio.persico, pescape}@unina.it, fabio.palumbo@studenti.unina.it

¹Università degli Studi di Napoli "Federico II" and ²NM2 srl (Italy)

¹ project is funded by 1st MONROE Open Call, funded from the European Union in the Horizon 2020 research and innovation programme under grant agreement No 644399, and art. 11 DM 593/2000 for NM2 srl.; opinions are of the authors.

Bandwidth measurement at network layer: Capacity vs Available Bandwidth

- Network path: a sequence of "pipes" characterized by capacity and usage (links not belonging to the path are not shown)
- Available Bandwidth (Abw) is the spare capacity
- Link with smallest capacity in the path is narrow link
- Link with smallest ABw in the path is *tight* link

Available Bandwidth formal definition

- At any time, network link is either fully utilized (u=1) or not used (u=0)
- Average utilization from time $t-\alpha$ to t is given by

$$\overline{u}(t-\alpha,t) = \frac{1}{\alpha} \int_{t-\alpha}^{t} u(x) dx$$

- Let u_i be the average utilization of the *link i*Let C_i be the capacity of the *link i*
- Then the available bandwidth during that period is

$$A_i = (1 - \pi_i) C_i$$

The available bandwidth along the path is then $A = min_{i=1,2} \quad H A_i$

Available Bandwidth - Applications

- Measurement of bandwidth is important for applications that intend to adapt their behavior to the properties of the network
 - Streaming media applications: to adjust the transmission rate to the network bandwidth
 - Server selection: to find a server with an appropriate bandwidth connection to the client
 - Estimating the bandwidth-delay product : for use in TCP flow control
 - **Overlay networks**: to route data over good-performing paths
 - Verification of Service Level Agreements (SLAs) between network customers and providers

Notable Mobile Wireless scenarios

- Likely (further) diffusion of RAN link sharing scenarios
 - **Smartphone:** network access shared among multiple apps
 - Mobile Hot-spot (Mi-Fi): 3G/4G connectivity to the Internet shared via WiFi to multiple devices
 - In-vehicle infotainment: vehicles hosting a local network of devices, sharing 3G/4G connectivity to the Internet

ABw estimation using SDN in MONROE

- To account for interference with other applications, we investigate how to
 - add controlled cross traffic (Xtraffic)
 - monitor cross traffic and probe traffic

Experimental evaluation of the impact of heterogeneous scenarios on **ABw estimation tools**

Comparing ABw-estimation tools for SOMETIME

Tools selection criteria

- availability of source code
- correctly compiled for **Debian jessie** (same as deployed on MONROE);
- enhancement technique adopted by each tool to improve accuracy and to mitigate intrusiveness

Selected Tools

- Pathload
- YAZ
- ASSOLO
- Pathchirp

Experiment setup details (hosts)

	Node A (server)	Node B (server)	Node C (client)
CPU	l3-3200@3.3 GHz x 4	E5-2640 v2 @ 2.00GHz x 16	T4200@2.00GHz x 2
OS	Ubuntu 14.04.5 LTS 64 bit	Ubuntu 14.04.2 LTS 64 bit	Ubuntu 16.04 LTS 32 bit
Kernel	Linux 3.19.0-73-generic	Linux 3.13.0-24-generic	Linux 4.4.0-66-generic
RAM	4 GiB	16 GiB	2 GiB
NIC	Gigabit Ethernet Adapter	Gigabit Ethernet Adapter	Gigabit Ethernet Adapter Wireless Network Adapter

Heterogeneous setup scenarios taken into account

Measurement procedure

D-ITG generates cross-traffic between hosts

Multiple ABw estimations in each tool run (~20 depending on tool)

For each tool, 3 subsequent runs (interleaved with other tools)

Results in WIRED scenario

Pathload does not converge!

Pathload does converge!

Results in WIRELESS scenario

Pathload still does not converge!

Results in the VIRTUALIZED scenario (no Xtraffic)

pathchirp completely off-track (except for guest-guest tests)

ABw estimation tools: take-home messages

- Setup (wired, wireless, CPU freq) heavily affects tool accuracy (even base functionality)
- further investigation revealed that major issue was with traffic generation accuracy
- other issue is with auto-tuning mechanisms that do not always work

THANKS!

IEEE M&N - Napoli, September 28th 2017

