

SOMETIME¹

SOftware defined network-based

Available Bandwidth MEasuremenT In MONROE

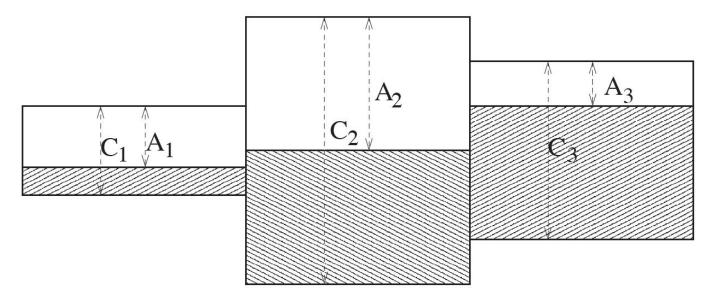
Network Traffic Measurement and Analysis conference (TMA) Dublin, Ireland, June 21-23, 2017

Giuseppe Aceto, Valerio Persico, Antonio Pescapè, Giorgio Ventre

{giuseppe.aceto, valerio.persico, pescape, giorgio}@unina.it Università degli Studi di Napoli "Federico II" (Italy) and NM2 S.r.I. (Italy)

¹ project is funded by 1st MONROE Open Call, funded from the European Union in the Horizon 2020 research and innovation programme under grant agreement No 644399, and art. 11 DM 593/2000 for NM2 srl.; opinions are of the authors.

Outline


- Motivation SOMETIME
- Enabling technologies
 - ABw estimation tools
 - SDN
 - Virtualization
 - MONROE
- Experimental results

- SOftware defined network-based Available
 Bandwidth MEasuremenT In MONROE
- ABw: highly sought-after metric
- SDN: flexible and standard approach
- MONROE: BroadBand Mobile testbed, leveraging virtualization (docker)

Different "network bandwidth" concepts:

- •(upper bound) IP-layer capacity
- (protocol independent) Available Bandwidth
- (TCP-specific) Bulk Transfer Capacity
- Capacity and ABw can be referred to a *link* or a *path*
- BTC is referred to a path

Bandwidth measurement at network layer: Capacity vs Available Bandwidth

- Network path: a sequence of "pipes" characterized by capacity and usage
 (links not belonging to the notb are not shown)
- (links not belonging to the path are not shown)
- Available Bandwidth (ABw) is the spare capacity
- Link with smallest capacity in the path is narrow link
- Link with smallest ABw in the path is tight link

Available Bandwidth - uses

- Measurement of bandwidth is important for adapting application traffic to the properties of the network
 - Streaming media applications: to adjust the transmission rate to the network bandwidth
 - Server selection: to find a server with an appropriate bandwidth connection to the client
 - Estimating the bandwidth-delay product: for use in TCP flow control
 - Overlay networks/ multi-homing: to route data over good-performing paths
 - Verification of Service Level Agreements (SLAs) between network customers and providers
 - Admission control for applications with bandwidth requirements

Available Bandwidth and wireless

- Measurement of available bandwidth is non trivial
 - Passive methods require **control** on all nodes on the path
 - Active methods

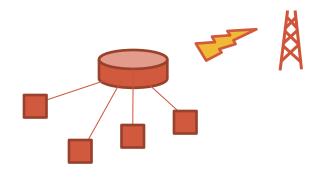
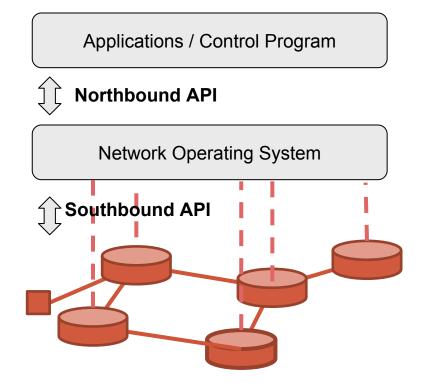

(closed loop probe traffic injection and analysis)

exhibit trade-offs among

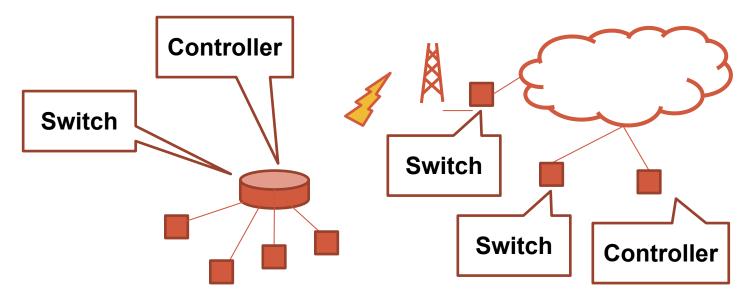
- Accuracy
- Intrusiveness
- Timeliness
- ... already in <u>wired</u> setups.
- Wireless scenarios introduce
 - further inaccuracy (dynamic capacity, scheduling, drops not only due to resource exhaustion)
 - high \$ensitiveness to generated volume of (probe) traffic

Notable Mobile Wireless scenarios

- Likely (further) diffusion of RAN link sharing scenarios
 - **Smartphone:** network access shared among multiple apps
 - Tethering: smartphone provides connectivity to a laptop, sharing the access
 - Mobile Hot-spot (Mi-Fi): 3G/4G connectivity to the Internet shared via WiFi to multiple devices
 - In-vehicle infotainment: vehicles hosting a local network of devices, sharing 3G/4G connectivity to the Internet

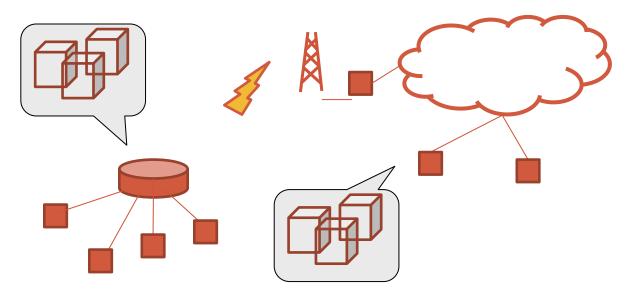


What SDN brings to the scenario


Flexibility

(controller: local/remote/hierarchical)

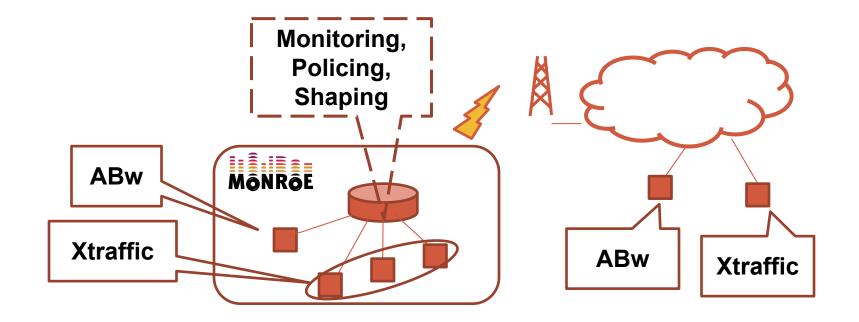
- Standardization: extensible to real scenarios, no point in using an ad-hoc solution
- Hot: active scientific research, ongoing evolution of standard


SDN and Mobile Wireless scenarios

- network local to the mobile node
- local controller (recommended)

- logically centralized control
- VLAN/Overlay
- private cloud
- datacenter
- managed servers

Virtualization


- Cloud Computing has widely spread virtualization technologies
 not considering virtualized endpoint in path measurement would result in unreasonable limitation of applicability
- virtualization allows unprecendented flexibility, support for easy horizontal scaling...
- ... but it also potential source of inaccuracy of ABw estimation tools

... hence:

- BBM testbed, experiments and measurements inside docker containers
- leveraging MONROE testbed we can deploy, test and tune ABw estimation tools, on <u>real BBM</u>
 - as in real life mobile communications, data quotas are a concern: research for tools and tuning for minimum intrusiveness

Notable Mobile Wireless scenarios, emulated in MONROE

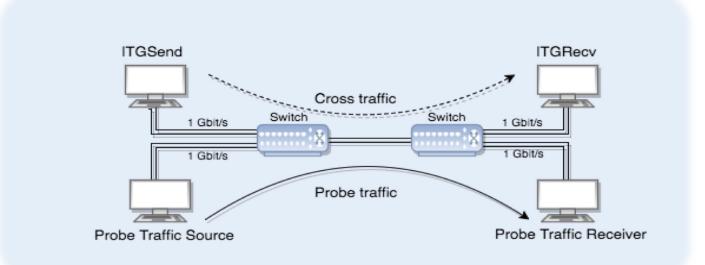
 ABw estimation, in presence of other applications that generate traffic, in virtualized nodes.

SOMETIME project roadmap

- A. Evaluation of publicly released **ABw estimation tools** for MBB test platform
- B. Evaluation of the impact of **HW and virtualization** on traffic-generation accuracy
- C. Evaluation of the impact of **SDN technologies** on traffic-generation accuracy
- Definition, setting, and evaluation of an SDN-enabled ABw D. COVERED BY THIS PRESENTATION estimation tool tailored for the MONROE measurement scenario
- E. Deployment on MONROE testbed

Comparing ABw-estimation tools in SDN

Tools-selection criteria


- availability of source code
- possibility to correctly compile it for Debian jessie (same as deployed on MONROE);
- enhancement technique adopted by each tool to improve accuracy and to mitigate intrusiveness

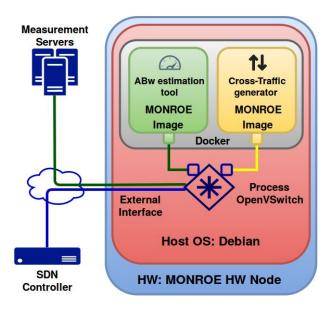
Selected Tools

- Pathload
- YAZ
- ASSOLO
- STAB

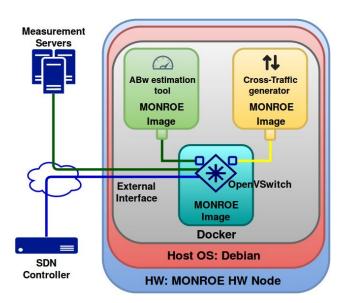
Comparing ABw-estimation tools in SDN

- Mininet Emulation environment
 - LXC (LinuX Containers) kernel-based virtualization, analogous to Docker (used in MONROE)
- Open VSwitch SDN switch implementation
- **D-ITG** to generate cross-traffic

Comparing ABw-estimation tools in SDN

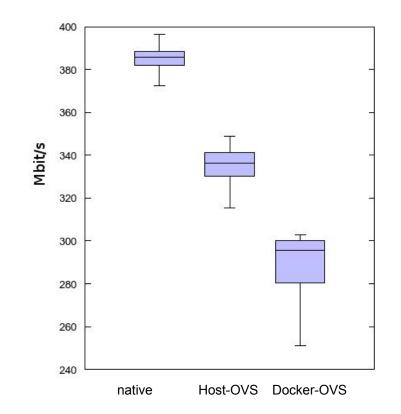

ΤοοΙ	Capacity [Mbps]	Cross-traffic [Mbps]	Estimation [Mbps]	Relative error
	3	1.5	2	33%
Pathload	5	1.5	2.5	-28%
	100	74	20	-23%
Yaz	10	4	2.4	-60%
Assolo	10	2	34	325%
	20	6	34	142%
	100	76	48	100%
STAB	5	1.5	3.7	50%
	10	4	4.7	-21%
	100	74	32.6	25%
	1000	74	118	-87%

ABw estimation tools: recap

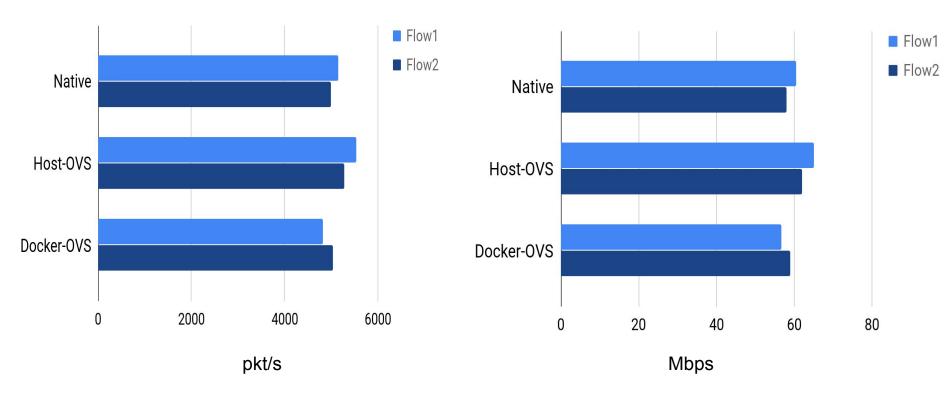

- ABw estimation tools perform poorly (or do not even produce an estimate) in virtualized environment
- further investigation revealed that major issue was with traffic generation accuracy
- other issue is with auto-tuning mechanisms that do not always work
- this led to investigation of generation accuracy in scenarios modeled by SOMETIME

Setups for packet generation limits

- Native (just OVS, no virtualization)
- Host-OVS
- Docker-OVS


Host-OVS Setup

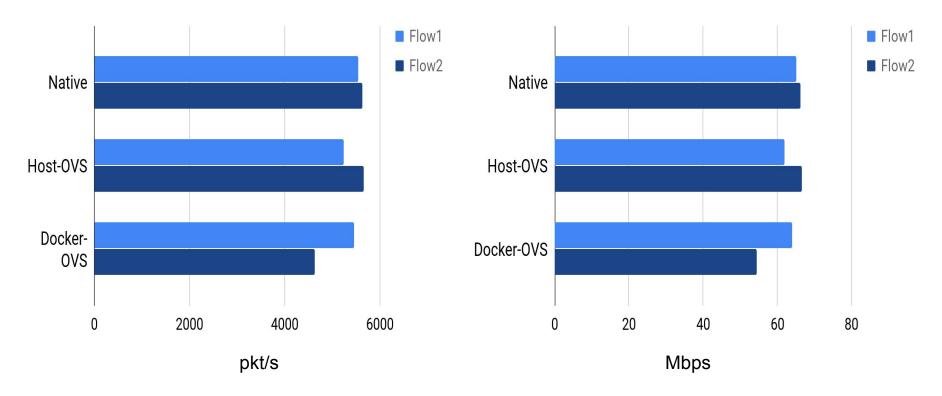
Docker-OVS Setup


Impact of virtualization on packet generation

- UDP upstream achievable throughput
- D-ITG used at maximum paket rate, size 1470B
- Notable discrepancy between the *required* bit rate and inter-packet time and *generated* ones (even for achievable rates)

Impact of SDN on fairness (1/2)

Packet rate (**CBR** traffic)



Bit rate (**CBR** traffic)

10s runs, results averaged over 100 runs

Impact of SDN on fairness (2/2)

Packet rate (**Poisson** traffic) Bit rate (**Poisson** traffic)

10s runs, results averaged over 100 runs

Preliminary on-field experiments

Sender-side results for MONROE testing nodes

			payload: 1B		payload: 1450B	
Node ID	Country	Operator	Bit rate [Mbps]	Packet rate [Kpkt/s]	Bit rate [Mbps]	Packet rate [Kpkt/s]
201	Norway	Telenor	3.13	19.56	137.51	11.85
248	Sweden	TelenorS	2.95	18.43	122.33	10.55
58	Spain	Voda ES	2.89	18.04	133.61	11.52
119	Italy	I WIND	3.16	19.73	122.68	10.58

 note: results are *generated* rates (received goodput is ~ 22Mbps at most)

Traffic generation tests: recap

- Rate generation is significantly lower than required (timing mechanisms need tuning).
- Generated data rates on NIC are enough to test ABw in 4G scenarios (also on deployed MONROE nodes).
- SDN (OVS) and virtualization (Docker) do apply a toll (up to ~23%) on UDP achievable throughput
- OVS affects fairness in sharing the outbound link (up to ~15% less byte throughput)

Next steps

- move ABwET testing from completely emulated testbed to physical testbed (OC1 Meeting)
- evaluate impact of SDN and virtualization at different sending rates in MONROE setup (OC1 Meeting)
- evaluate usage of SDN to shape traffic in MONROE setup (OC1 Meeting)
- implement more accurate ABw estimation tool (accounting for requested/generated rate difference, and context switch detection)
- inform the estimation tool with passive measurements

Questions and comments

