
Traffic Classification of Mobile Apps through
Multi-classification

Giuseppe Aceto1,2, Domenico Ciuonzo2, Antonio Montieri1, Antonio Pescapé1,2
1University of Napoli “Federico II” (Italy) and 2NM2 s.r.l. (Italy)

{giuseppe.aceto, antonio.montieri, pescape}@unina.it, ciuonzo@nm-2.com

Abstract—The wide spreading and growing usage of smart-
phones are deeply changing the kind of traffic that traverses
home and enterprise networks and the Internet. Tools that base
their functions on the knowledge of the application generating
the traffic (performance enhancement proxies, network monitors,
policy enforcement devices) imply traffic classification, and are
thus limited or impaired when dealing with the daily expanding
set of mobile apps. Besides the moving-target nature of mobile
apps traffic, the increasing adoption of encrypted protocols (TLS)
makes classification even more challenging, defeating established
approaches (DPI, statistical classifiers). In this paper we aim to
improve the classification performance of mobile apps classifiers
adopting a multi-classification approach, intelligently-combining
decisions from state-of-art classifiers proposed for mobile and en-
crypted traffic classification. Based on a dataset of users’ activity
collected by a mobile solutions provider, our results demonstrate
that classification performance can be improved according to all
considered metrics, up to +8.1% F-measure score with respect
to the best base classifier. Further room for improvements is also
evidenced by the ideal combiner performance (oracle).

Index Terms—traffic classification; mobile apps; Android apps;
iOS apps; encrypted traffic; information fusion; classification
combining; multi-classification.

I. INTRODUCTION

Tools like security and quality-of-service enforcement de-
vices and network monitors base their operations on the knowl-
edge of the application generating the traffic. The process of
associating (labeling) network traffic with specific applications
or application types is known as Traffic Classification (TC)
and has long-established application in several fields, backed
by wide scientific literature [1]. The global spread and growing
usage of smartphones is profoundly changing the kind of
traffic that traverses home and enterprise networks and the In-
ternet, as a consequence both the necessity and the difficulty of
TC of mobile traffic have become very high nowadays. Indeed,
in addition to the traditional drivers for TC, classification of
mobile apps traffic has the potential of providing extremely
valuable profiling information (to advertisers, insurance com-
panies, security agencies, or malicious parties) about users. On
the other hand, it certainly raises privacy issues, especially
in regards to recognition of context-sensitive apps (such as
health and dating ones). Unfortunately, TC comes with its
own challenges and requirements that are even exacerbated
in a mobile-traffic context, that is usually characterized by the
presence of a large number of apps to discriminate from and
an inadequate number of training samples per app. Moreover,
the increasing adoption of encrypted protocols (TLS) makes

classification even more challenging, defeating established
approaches.

Moving from earlier port-based methods, to those based
on payload inspection (termed Deep Packet Inspection meth-
ods, DPI [2]), approaches based on Machine Learning (ML)
classifiers are deemed the most appropriate, especially in this
context, since they suit also Encrypted Traffic (ET) analysis
[3, 4, 5, 6]. Although earlier results have been published on
this topic, the traffic of mobile apps is a moving target for
classifiers due to its dynamic evolution and mix. Thus mobile
TC constitutes an open and evolving research field.

In this paper, we aim to improve the classification per-
formance of mobile apps by adopting a multi-classification
system (MCS), that is intelligently-combining decisions from
state-of-art classifiers specifically devised for mobile- and ET
classification and currently considered the best approaches in
such context [3, 4, 6]. To the best of authors’ knowledge, this
investigation is performed in the mobile context for the first
time. The MCS framework has the potential of overcoming
the deficiencies of each single classifier (not improvable over
a certain bound, despite efforts in careful "tuning") and pro-
viding improved performance w.r.t. any of the base classifiers,
also allowing for modularity of classifiers selection in the
pool. For this reason, research has focused on MCSs in the
last years [7, 8, 9, 10]. Based on these considerations, five
types of combiners proposed in the literature [11, 12] are
here compared, each with different complexity and training set
requirements. Based on a dataset collected by a global mobile
solutions provider1 of true users’ activity, our preliminary
results show that MCS framework can improve classification
performance with respect to the best base classifiers considered
for the task. Specifically, F-measure can be improved by more
than +8% on the best base classifier, thus showing promising
results. Our results show that the presented approach is a viable
path to improve classification of mobile apps traffic and that
there is room for further research on combining algorithms
applied to this goal (with evidence of over +23% improvement
achievable by the ideal combiner).

The paper is organized as follows. Sec. II discusses related
literature; Sec. III describes the considered MCS framework
for mobile TC; experimental results are reported in Sec. IV;
finally, Sec. V provides conclusions and future directions.

1Due to NDA with the provider we can not report its name, details of its
network, detailed information on the data set, nor release the data set.

II. STATE-OF-ART OF TECHNIQUES FOR MOBILE APPS
TRAFFIC CLASSIFICATION

TC of mobile apps has been object of huge interest by
several recent works, mainly based on ET assumption. Stöber
et al. [13] propose a scheme for fingerprinting devices by
learning their traffic patterns through background activities.
Based on 3G transmissions, bursts of data are considered to
evaluate statistical features. Then, using Support Vector Clas-
sifier (SVC) and K-Nearest Neighbors, a model of the traffic
to be fingerprinted is built, being capable of identifying similar
bursts. Results show that using ≈ 15 minutes of traffic testing
(based on 6 hours of training) leads to an accuracy ≥ 90%.
Wang et al. [14] propose a system for classifying app usage
over encrypted 802.11 traffic (reporting results for 13 iOS apps
from 8 distinct categories). Data frames are collected from
target apps by running them dynamically for 5 minutes and
training a Random Forest (RF) classifier with the proposed set
of features. The need for an accurate ground-truth labeling is
raised, highlighted by a counterintuitive behavior of some app
performance with the training time. AppScanner is proposed
in [6] as a framework for fingerprinting and identification of
mobile apps. The fingerprints are collected by running apps
automatically on an Android device and the network traces
are pre-processed (to remove background traffic and extract
features) to train an SVC and an RF. Statistical features are
collected on sets of packets defined through timing criteria
and destination IP address/port (see Sec. III-A). The results,
evaluated on 110 most popular apps from Google Play Store,
report 99% average accuracy in identifying single apps, and
up to 86.9% in classifying them, outperforming state-of-
art alternatives devised for the (conceptually-)similar website
fingerprinting issue [3, 4]. These latter methods are used also
by Alan and Kaur [15] to investigate whether Android apps can
be identified from their launch-time traffic using only TCP/IP
headers (i.e. sizes of the first 64 packets). They find that apps
can be identified with 88% accuracy when training and test sets
are collected on the same device. On the other hand, accuracy
drops significantly (up to 26% for the best classifier) when
the OS/vendor is different. State-of-art approaches [6, 16, 17]
considered in this work outperform those analyzed in [15] also
in terms of other performance metrics (see Sec. IV).

Other works aimed at identifying fine-grained user actions
within mobile app traffic. Conti et al. [18] recognizes specific
actions that users perform while running a certain app, based
on packet direction/size info. This is achieved through service
burst (see Sec. III-A) classification via RF approach, leading
to ≥ 95% accuracy for most of the considered actions within
a set of 7 Android apps. Netscope [5] performs a similar
task taking into account a set of 35 different activities (for
both iOS and Android devices), based on statistics originated
from IP headers. Assuming an eavesdropper on a Wi-Fi
network, it is shown that even a small portion of ET is
enough for a given app to be recognized. K-means clustering
is employed for elementary-behavior discovery and then an
SVC is trained/tested on activity-behaviors binary mapping,

showing performance that vary with the device being tested,
but reach 78.04% precision and 76.04% recall, on average.

Although not focused on mobile apps (though readily adapt-
able to this context), the work in [16] proposes a ML-based
multi-level framework to identify services running within
HTTPS connections without relying on specific header fields
prone to alteration. The evaluation, based on real traffic, shows
high identifiability of encrypted web services. Finally, Ton-
gaonkar [19] reviews challenges and techniques for mobile TC
and app identification. The presented approaches are mainly
based on signature generation and fingerprint extraction from
mobile traffic payloads and apps’ metadata, as well as from
3rd-party services (e.g., advertisement and profiling traffic).
Nevertheless, the problem of dissecting ET is there bypassed
by considering man-in-the-middle solutions, suitable only in
controlled environments such as enterprises.

III. TRAFFIC CLASSIFICATION AT WORK

In this section we introduce terms and concepts regarding
traffic objects, define the features extracted from observed
traffic and adopted for classification, describe the classification
algorithms (considered as base classifiers) and the fusion
techniques adopted for their combination.

A. Traffic View

A common TC object is the biflow, defined as a sequence
of packets sharing the values of the 5-ple (transport proto-
col, source IP address, source transport port, destination IP
address, destination transport port), where source and desti-
nation can be swapped [1]. On the other hand, in this paper,
network traffic is decomposed into service bursts, leveraging
the notions introduced in [13] and [6, 18] for mobile-phone
identification and mobile-app classification, respectively. More
specifically, a burst [13] is defined as a sequence of packets
having an inter-packet time smaller than a given threshold
(named burst threshold, here set to 1 second as suggested in
[6]), irrespective of their source or destination addresses, as
well as of the biflow they belong to. Accordingly, a service
burst (SB) is then a set of packets, within a single burst, that
belongs to biflows sharing the same transport protocol, desti-
nation IP address, and destination port number.2 We remark
that this notion has been used previously in [6, 18] under the
name of flow. However, in order to avoid any ambiguity with
the common and established definition of flow [1], we will
refer to the decomposition used in [6, 18] as a SB.

B. Statistical Features

For the purpose of traffic classification, we will consider
features which are either related or extracted (by statistical
means) from the vector of packet lengths. For each SB,
three packet series are considered: (i) incoming packets only,
(ii) outgoing packets only, and (iii) bidirectional traffic.

2The direction of a biflow is defined according to its first packet: the packet
source (destination) is chosen as source (destination) for the whole biflow.
Criteria and heuristics for biflow start and end can be defined for both TCP
and UDP, and in general a TCP biflow does not necessarily match with a
TCP session (see [1]).

The following features can be identified for each of these
series [6]:
• vector of packet lengths with sign indicating direction;
• minimum, maximum, mean, median, absolute deviation,

standard deviation, variance, skew, and kurtosis;
• percentiles (from 10% to 90%, with 10% increments).

Additionally, for the incoming and outgoing packet series
taken as a whole, the joint histogram of packet lengths in
both directions can be considered [3, 4].

Finally, in the following, the set of M features adopted by
each classifier will be generically indicated with f1, . . . , fM
(or collectively as f ,

[
f1 · · · fM

]T
) and the set of

classes (apps) as Ω , {c1, . . . cL}.

C. Classification Algorithms adopted as Base Classifiers

In this section we list the state-of-art approaches adopted
as base classifiers. We briefly describe their main properties
and the motivations that guided us to their choice. For all of
them we have carefully reproduced the exact implementation
and executed them with the same parameters as described in
the respective works, to which we refer for further details.
Lib_NB: In Liberatore and Levine [4], two classifiers

were proposed, one based on the Jaccard similarity index and
another based on the well-known Naïve Bayes (NB) learning
technique. It was observed that the NB enjoys attractive
performance and increased robustness than the Jaccard-based
classifier, if IP packets are padded; therefore we consider
NB-based approach as a base classifier (Lib_NB). The NB
assumes class-conditional independence of the features f
(being not the case for real-world problems but working well
in practice) and evaluates the probability that an unlabeled
test instance represented by fT belongs to each class ci,
i.e. the posterior probability P (ci|fT) through the Bayes’
theorem P (ci|fT) ∝ P (ci)

∏M
m=1 P (fT,m|ci), where "∝"

denotes proportionality. Each term P (ci) denotes the (prior)
probability that a generic sample from the dataset will belong
to ci and is estimated from the training set population, while
each PDF P (fm|ci) is estimated through a (Gaussian-) kernel
density estimation. The fine-grained feature there employed is
the joint histogram of packet lengths in both incoming and
outgoing directions.
Her_Pure, Her_TF, and Her_Cos: The study by Her-

rmann et al. [3] proposed the use of a Multinomial NB (MNB)
classifier, adopting the same set of features as Lib_NB [4],
but differing in the building assumption. Indeed, the MNB
classifier treats the fms as frequencies of a certain value
of a categorical random variable and compares the sample
histogram of each test instance with the aggregated histogram
of all training instances per class. Then, the evaluation of
the conditional PMF P (fT |ci) is different from Lib_NB and
equals P (fT |ci) ∝

∏M
m=1(ρm) fT,m where ρm denotes the

probability of sampling the mth feature. This implementation
is referred to as Her_Pure in our analysis. The MNB
classifier was also employed in [3] with: (i) Term Frequency
(TF) and (ii) Inverse Document Frequency (IDF) transfor-

mations (both with or without cosine normalization).3 The
variants adopting TF transformation without and with cosine
normalization have been also compared in [6] and are referred
in our analysis to as Her_TF and Her_Cos, respectively.
Tay_RF and Tay_SVC: In Taylor et al. [6], four (resp.

two) approaches for mobile-app traffic classification (resp.
identification) were proposed, leveraging both an SVC and
an RF. An SVC is a supervised model that represents the
training samples as points in a feature (vector) space. The aim
of the training phase is to find a set of hyperplanes, dividing
this space, which provides the best class separation. Then,
during the classification phase, the SVC simply classifies new
points according to the portion of space they fall into. On
the other hand, an RF is an ensemble classification method
taking advantage of several decision trees built at training time
in order to form a stronger classifier. An RF combines the
ideas of “bootstrap aggregating” (bagging) and random-feature
selection to construct a collection of trees with controlled
variance, thus avoiding over-training. In [6], these classifiers
were fed with either (i) raw vectors of packet lengths or (ii)
statistical features, with the latter approach leading to the best
classifier (RF with statistical features). For this reason, we
consider both RF (Tay_RF) and SVC (Tay_SVC) based on
the set of 40 statistical features extracted and selected as in [6].
CART: Several works performed TC by means of decision

trees (e.g., C4.5, C5.0, and their variants) [7, 16, 17]. In this
paper, we leverage Classification And Regression Tree (CART),
a very similar variant of the C4.5 algorithm, constructing
binary trees exploiting the features and thresholds that ensure
the maximum information gain at each node and allowing
to perform both classification and regression tasks (i.e. with
categorical and numerical target variables, respectively).

D. Classifier Fusion Techniques
Different classifier fusion rules have been proposed in the

literature [7, 11]. In this study, we will focus on those based
on Type 1 classifiers (i.e. those that output only the predicted
class), implying the least requirements for designers [11].

Before proceeding, we recall the definition of confusion
matrix [11]. Specifically, the (i, j)th entry of the confusion
matrix of kth classifier Ek, denoted with eKi,j , represents
P (d̂k = cj |ci), i.e. the probability of the kth classifier of
deciding for jth class when the ith class is being observed.
Clearly, the matrices Ek (and the priors P (ci) employed by
combiners) are typically estimated using a set of data (namely,
a validation set) different from both the training and the test
sets. In this study, we will consider the following combiners
(whose decision will be generically denoted with d̂0):

1) Majority Voting (MV): the guess class is the one voted
by the relative majority of the classifiers.4

3Exploiting the raw occurrence frequencies, the decisions of the MNB
classifier are biased towards classes which contain many packets and/or
packets with high frequencies. These issues are alleviated by means of the
TF and IDF transformation, respectively [3].

4Ties are broken by using ekii, i.e. the vote of each classifier is weighted
by the number representing the confidence degree of that classifier when it
assigns a sample to the class it is voting for [7].

2) Weighted Majority Voting (WMV): the vote of each clas-
sifier is weighted by its relative confidence. The com-
biner output is d̂0 , arg maxi∈Ω

{
fi +

∑
k∈Ii

+
wk

}
,

where Ii+ denotes the subset of classifiers having decided
for ith class, fi ,

[
logP (ci) + |Ii+| · log(L− 1)

]
, and

wk , log(pk/(1 − pk)), where pk denotes the (esti-
mated) accuracy of kth classifier [12].

3) Naïve Bayes (NB): the guess class is the one which
maximizes the a posteriori probability P (ci|d̂1, . . . , d̂K)
based on conditional independence of classifiers, that is
d̂0 , arg maxi∈Ω P (ci)

{∏K
k=1 P (d̂k|ci)

}
.

4) Behavior-Knowledge Space method (BKS): this ap-
proach removes the conditional independence assump-
tion of NB combiner via multinomial counting on the
joint classifiers’ space d̂1, . . . , d̂K [20]. More specifi-
cally, the validation set is used to estimate the a posteri-
ori probability P (ci|d̂) for each ci and for each value of
d̂ (the space complexity is thus O(LK), which requires
a large validation set for training). This in turn allows
labeling each possible value of d̂ with the most likely
class (according to arg maxi P (ci|d̂)) and constructing
a look-up (BKS) table. Then, during the testing phase,
each new d̂T provides an index to retrieve from BKS
table the estimated class d̂0.5

5) WERnecke’s method (WER): WER constructs the same
table as BKS but, to reduce over-fitting, considers the
95% confidence intervals of the frequencies in each unit
[11]. If there is overlap among the intervals, there is no
dominating class for labeling the test instance d̂T . In this
case, the “least wrong” classifier among the K members
of the pool is identified (based on confusion matrices)
and authorized to assign the class to that unit.6

For a complete comparison, we will consider also an ORAcle
combiner (ORA), i.e. an ideal upper bound on the performance
corresponding to a combiner correctly classifying a test sample
if at least one of the base classifiers provides the correct
decision.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

The proposed MCS is tested on real-traffic traces, provided
by an international mobile solutions provider and generated
from a total of 49 apps (resp. 45) on Android (resp. iOS)
devices, run separately. Accordingly, ground truth is obtained
by labeling each trace with the generating application. More-
over, these traces have been provided already anonymized
and cleaned from background traffic, in order to reflect only
relevant application traffic.7 Network traffic is processed using

5Ties are resolved by using a MV (with random tie-breaking) between the
elements of d̂T [11].

6To calculate the 95% confidence intervals we adopt the normal approxi-
mation of the Binomial distribution [11].

7Furthermore, we underline that we do not cleanse traffic traces from TCP
retransmissions, as we have observed that this does not affect classification
performance in a substantial way.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

E
C

D
F

Number of samples per app

Android without SMOTE
Android 30-percentile SMOTE
Android 40-percentile SMOTE
Android 50-percentile SMOTE

iOS without SMOTE
iOS 30-percentile SMOTE
iOS 40-percentile SMOTE
iOS 50-percentile SMOTE

Figure 1: ECDFs of the number of samples per app for Android
and iOS datasets before and after SMOTE application with
different thresholds.

the approach introduced in Sec. III-B. The minimum SB
length considered in this paper is 7 (as suggested in [6]),
since it is the shortest sequence of packets representing a
meaningful data transfer which includes a TCP handshake and
an HTTP request/response with corresponding ACKs. Then,
after burstification, we obtained about 29670 (resp. 24714)
labeled SBs composing our dataset.

Additionally, due to severe imbalance in the number of
instances for each app (this is especially true for the least
observed ones, see Fig. 1, reporting the empirical CDF of
the number of SBs per app), an oversampling procedure has
been applied to the dataset. More specifically, we applied the
Synthetic Minority Oversampling TEchnique (SMOTE) [21]
to apps with a number of SBs less than 30th percentile of
the distribution in Fig. 1, in order to obtain a reasonable
number of samples per app. SMOTE is one of the most popular
approaches for data-based class-minority oversampling. We
remark also that the results obtained with different percent-
ages of SMOTE (e.g., corresponding to the 40th and 50th

percentiles) have shown no discrepant relative performance
among the classifiers/combiners considered in what follows,
thus underlining the stability of the considered dataset. Finally,
after applying SMOTE, we obtained 30680 (resp. 25465)
SBs composing our dataset, with the least populated classes
composed by 155 (resp. 152) SBs.

B. Classification Results

In this section, we show results pertaining to experiments on
the dataset described in Sec. IV-A, obtained by application of
the proposed MCS (see Sec. III). Our comparison will be based
on the following performance measures [11]: overall accuracy,
precision, and recall. Since the latter two are defined on a
per-app (per-class) basis, we will employ their arithmetically
averaged (viz. macro) versions. Additionally, we will consider
the F-measure (F , (2 · prec · rec)/(prec + rec)), so as
to account for both the effects of precision (prec) and
recall (rec) in a concise fashion. Furthermore, we will also
consider confusion matrices of classifiers (resp. combiners) to
provide their complete performance “picture” and identify the
most frequent misclassification patterns. Finally, the consid-
ered setup will employ a random training-validation-test set
splitting (with corresponding percentages 50%−25%−25%).

Table I: Performance of state-of-art classifiers considering Android (iOS) traffic.

Classifier Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART ORA

Accuracy 48.2 (45.8) 58.8 (56.0) 59.1 (58.9) 31.1 (29.8) 64.5 (62.2) 28.5 (26.5) 51.0 (45.7) 83.5 (82.3)
Macro Precision 48.2 (48.3) 73.5 (70.0) 74.3 (69.0) 61.5 (50.5) 64.2 (63.0) 35.1 (38.1) 41.3 (36.8) -

Macro Recall 47.9 (44.3) 46.1 (42.1) 45.7 (45.2) 36.2 (31.9) 54.0 (51.3) 13.2 (12.7) 40.0 (36.5) 76.9 (75.1)
Macro F-Measure 48.2 (47.5) 65.7 (61.8) 66.1 (62.4) 53.9 (45.2) 61.8 (60.3) 26.4 (27.2) 41.0 (36.8) -

Table II: Performance of combiners and Maximum Improvement Over Best Classifier (MIOBC), considering Android (iOS) traffic.

Combiner MV WMV NB BKS WER ORA MIOBC

Accuracy 63.0 (61.3) 63.5 (61.3) 67.9 (64.8) 67.7 (64.5) 65.2 (62.6) 83.5 (82.3) +3.4 (+2.6)
Macro Precision 80.2 (75.6) 79.9 (75.8) 72.5 (70.1) 74.0 (69.1) 64.6 (62.7) - +5.9 (+5.8)

Macro Recall 51.6 (48.4) 51.4 (47.7) 59.3 (55.6) 57.6 (53.5) 54.7 (52.0) 76.9 (75.1) +5.3 (+4.3)
Macro F-Measure 72.2 (68.0) 71.9 (67.9) 69.4 (66.6) 70.0 (65.3) 62.3 (60.2) - +6.1 (+5.6)

Table III: F-measure of combiners and Maximum Improvement Over Best Classifier (MIOBC), as function of the pool of selected classifiers
considering Android (iOS) traffic. Highlighted values: maximum per pool, maximum per combiner, overall maximum.

Pool of classifiers Combiners

Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART MV WMV NB BKS WER MIOBC

X X X X X X X 72.2 (68.0) 71.9 (67.9) 69.4 (66.6) 70.1 (65.1) 62.3 (60.2) +6.1 (+5.6)
X X X X X X 71.6 (66.6) 71.5 (67.1) 69.6 (67.4) 68.7 (64.0) 62.7 (59.9) +5.5 (+5.0)
X X X X X 69.6 (65.2) 69.5 (66.0) 70.0 (66.6) 66.7 (62.8) 63.6 (61.1) +3.9 (+4.2)

X X X X 70.5 (66.3) 70.5 (65.9) 71.7 (68.0) 65.0 (59.9) 63.0 (61.1) +5.6 (+5.6)
X X X 72.8 (69.6) 72.1 (70.5) 70.0 (68.8) 63.3 (57.3) 63.0 (61.2) +6.7 (+8.1)
X X 67.0 (65.1) 67.2 (64.2) 67.9 (65.5) 64.0 (60.3) 63.1 (60.9) +1.8 (+3.1)

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
c
tu

a
l
C

la
s
s
 R

a
n

k

Predicted Class Rank

(a) Best combiner (NB).

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
c
tu

a
l
C

la
s
s
 R

a
n

k

Predicted Class Rank

(b) Best base classifier (Tay_RF).

1 = QQ 2 = SayHi 3 = GooglePlay
4 = eBay 5 = HotSpot 6 = 6Rooms
7 = PureVPN 8 = QQReader 9 = PaltalkScene
10 = HidemanVPN 11 = Anghami 12 = BaiDu
13 = Google+ 14 = Hooq 15 = Repubblica
16 = 80sMovie 17 = Narutom 18 = IFengNews
19 = GoogleMap 20 = PrivateTunnelVPN 21 = GoogleAllo
22 = MeinO2 23 = QianXunYingShi 24 = Palringo
25 = Hangouts 26 = GroupMe 27 = Crackle
28 = LRR 29 = InterVoip 30 = NetTalk
31 = EFood 32 = RaidCall 33 = Go90
34 = FSecureVPN 35 = NileFM 36 = Shadowsocks
37 = Ryanair 38 = Sogou 39 = Guvera
40 = SmartVoip 41 = 9YinZhenJing 42 = Minecraft
43 = 360Security 44 = GooglePhotos 45 = GoogleCast
46 = Hidemyass 47 = FrostWire 48 = Mobily
49 = RiyadBank

 0.1 1 10 100

(c) Scale (%) and labels.

Figure 2: Confusion matrices of best combiner (a) and best classifier (b). Note that the labels (c) are ranked according to decreasing
abundance of samples and the logarithmic scale (c) is used to evidence small errors.

First, in Tab. I, we report the performance of all the
classifiers considered in Sec. III-C, in terms of the these
measures. Also, for completeness, we report the accuracy and
recall achieved by the ORA.8 First Tay_RF, Her_Cos and
Her_TF achieve the highest performance w.r.t. the considered
measures, thus qualitatively agreeing with the results in [6].
Nonetheless, as apparent from ORA results, the best accuracy
(resp. recall) of the base classifiers can be virtually improved
by means of the proposed MCS up to 19.0% (resp. 22.9%) for
Android and up to 20.1% (resp. 23.8%) for iOS, respectively.
These results confirm the appeal of adopted fusion techniques.

To this end, in Tab. II we show (and compare) the perfor-
mance of the considered 5 combiners. Additionally, to assess
the improvement achieved by combining techniques we have

8Precision (and consequently F-measure) for the ORA cannot be evaluated
since its error patterns are not defined [7].

reported in the column MIOBC the maximum improvement
over the best classifier for each metric. Overall, the set of
combiners is always able to provide an improvement, ranging
from +2.6% (accuracy on iOS traffic) to (+6.1%) (F-measure
on Android traffic), by means of diversity principle, represent-
ing the milestone for adoption of classifier fusion techniques.
However, different approaches result best according to differ-
ent performance metrics. Specifically, NB is able to provide a
good improvement with respect to the best base classifier for
accuracy and recall. Differently, MV and WMV result appealing
because of the remarkable improvement in terms of precision
and F-measure over the best base classifier (between +5.6%
and +6.1%). Interestingly, MV, WMV, and NB collectively
provide the highest performance; this is explained as they are
less prone to over-fitting (and have less training requirements)
and, last but not least, they also enjoy lower complexity (w.r.t.

WER and BKS). The comparison of confusion matrices of NB
(Fig. 2a) and Tay_RF (Fig. 2b) also reveals a homogeneously-
reduced occurrence of misclassification patterns.

Finally, in Tab. III we preliminarily investigate the effect
of subset selection on the F-measure of the 5 combiners to
improve performance further (possibly reducing complexity).
Having different optimization criteria (combiners), we adopt
an heuristic approach informed by diversity of classification
methods and iteratively removing the worst performing clas-
sifier. From inspection of results, it is apparent that subsets
considered are helpful in (slightly) improving the perfor-
mance of all combiners (and, equally important, to reduce
complexity), by a judicious selection of the base classifiers,
except for BKS, which does not generally benefit from subset
selection. Interestingly, the best performance is achieved by
combiners which employ a reduced set of base classifiers.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We tackled TC of mobile apps by means of a MCS,
employing 5 well-known combining methods in conjunction
with a pool of 7 state-of-art classifiers specific or suitable for
mobile traffic. The evaluation of combining techniques has
been performed on an actual dataset describing traffic from 49
(resp. 45) apps in Android (resp. iOS) devices. Results have
shown improvements of the performance by MCS over the
best base classifier up to 8.1% in terms of F-measure. Also the
ORA and the (preliminary) subset selection performance have
underlined that there is room for further improvement toward
optimal (low-complexity) combination of the base classifiers.
Future directions will include: (i) a deeper analysis with an
enlarged pool, (ii) advanced fusion techniques possibly based
on Type 2-3 (rank- and measurement-level) classifiers [11],
(iii) an intelligent pool subset selection, (iv) the evaluation
of the sampling impact [22], and (v) the implementation of
classifiers and combination techniques in TIE [8].

REFERENCES

[1] A. Dainotti, A. Pescapé, and K. C. Claffy, “Issues and
future directions in traffic classification,” IEEE Network,
vol. 26, no. 1, pp. 35–40, 2012.

[2] G. Aceto, A. Dainotti, W. De Donato, and A. Pescapé,
“PortLoad: taking the best of two worlds in traffic
classification,” in IEEE INFOCOM’10, pp. 1–5.

[3] D. Herrmann, R. Wendolsky, and H. Federrath, “Website
fingerprinting: attacking popular privacy enhancing tech-
nologies with the multinomial Naïve-Bayes classifier,” in
Proc. of the ACM CCSW’09, pp. 31–42.

[4] M. Liberatore and B. N. Levine, “Inferring the source of
encrypted HTTP connections,” in Proc. of the 13th ACM
CCS’09, pp. 255–263.

[5] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon,
Q. Zhang, X. Zhang, D. Xu, and J. Qian, “Eavesdrop-
ping on fine-grained user activities within smartphone
apps over encrypted network traffic,” in Proc. USENIX
WOOT’16.

[6] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic,
“Appscanner: Automatic fingerprinting of smartphone

apps from encrypted network traffic,” in IEEE Eu-
roS&P’16, pp. 439–454.

[7] A. Dainotti, A. Pescapé, and C. Sansone, “Early classifi-
cation of network traffic through multi-classification,” in
TMA’11. Springer, pp. 122–135.

[8] W. De Donato, A. Pescapé, and A. Dainotti, “Traffic
identification engine: an open platform for traffic classi-
fication,” IEEE Network, vol. 28, no. 2, pp. 56–64, 2014.

[9] H. He, C. Che, F. Ma, J. Zhang, and X. Luo, “Traffic
classification using en-semble learning and co-training,”
in WSEAS Proc. of the 8th AIC’08, pp. 458–463.

[10] G. Szabo, I. Szabo, and D. Orincsay, “Accurate traffic
classification,” in IEEE WoWMoM’07, pp. 1–8.

[11] L. I. Kuncheva, Combining pattern classifiers: methods
and algorithms. John Wiley & Sons, 2004.

[12] L. I. Kuncheva and J. J. Rodríguez, “A weighted voting
framework for classifiers ensembles,” Knowledge and
Information Systems, vol. 38, no. 2, pp. 259–275, 2014.

[13] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic,
“Who do you sync you are? smartphone fingerprinting
via application behaviour,” in Proc. of the 6th ACM
WISEC’13, pp. 7–12.

[14] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know
what you did on your smartphone: Inferring app usage
over encrypted data traffic,” in IEEE CNS’15.

[15] H. F. Alan and J. Kaur, “Can android applications be
identified using only tcp/ip headers of their launch time
traffic?” in Proceedings of the 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks.
ACM, 2016, pp. 61–66.

[16] W. M. Shbair, T. Cholez, J. Francois, and I. Chrisment,
“A multi-level framework to identify HTTPS services,”
in IEEE/IFIP NOMS’16, April, pp. 240–248.

[17] T. Bakhshi and B. Ghita, “On internet traffic classifica-
tion: A two-phased machine learning approach,” Journal
of Computer Networks and Communications, 2016.

[18] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde,
“Analyzing android encrypted network traffic to identify
user actions,” IEEE Trans. Inf. Forensics Secur., vol. 11,
no. 1, pp. 114–125, 2016.

[19] A. Tongaonkar, “A look at the mobile app identification
landscape,” IEEE Internet Computing, vol. 20, no. 4, pp.
9–15, July 2016.

[20] Y. S. Huang and C. Y. Suen, “A method of combining
multiple experts for the recognition of unconstrained
handwritten numerals,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 17, no. 1, pp. 90–94, 1995.

[21] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “Synthetic minority over-sampling
technique,” Journal of Artificial Intelligence Research,
vol. 16, pp. 321–357, 2002.

[22] D. Tammaro, S. Valenti, D. Rossi, and A. Pescapé,
“Exploiting packet-sampling measurements for traffic
characterization and classification,” International Journal
of Network Management, vol. 22, no. 6, 2012.

