
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 1

Mobile Encrypted Traffic Classification
Using Deep Learning: Experimental Evaluation,

Lessons Learned, and Challenges
Giuseppe Aceto, Domenico Ciuonzo, Senior Member, IEEE, Antonio Montieri,

and Antonio Pescapé, Senior Member, IEEE

Abstract—The massive adoption of hand-held devices has led
to the explosion of mobile traffic volumes traversing home and
enterprise networks, as well as the Internet. Traffic Classification
(TC), i.e. the set of procedures for inferring (mobile) applica-
tions generating such traffic, has become nowadays the enabler
for highly-valuable profiling information (with certain privacy
downsides), other than being the workhorse for service differ-
entiation/blocking. Nonetheless, the design of accurate classifiers
is exacerbated by the raising adoption of encrypted protocols
(such as TLS), hindering the suitability of (effective) deep packet
inspection approaches. Also, the fast-expanding set of apps and
the moving-target nature of mobile traffic makes design solutions
with usual machine learning, based on manually- and expert-
originated features, outdated and unable to keep the pace. For
these reasons Deep Learning (DL) is here proposed, for the first
time, as a viable strategy to design practical mobile traffic classi-
fiers based on automatically-extracted features, able to cope with
encrypted traffic, and reflecting their complex traffic patterns. To
this end, different state-of-the-art DL techniques from (standard)
TC are here reproduced, dissected (highlighting critical choices),
and set into a systematic framework for comparison, including
also a performance evaluation workbench. The latter outcome,
although declined in the mobile context, has the applicability
appeal to the wider umbrella of encrypted TC tasks. Finally,
the performance of these DL classifiers is critically investigated
based on an exhaustive experimental validation (based on three
mobile datasets of real human users’ activity), highlighting the
related pitfalls, design guidelines, and challenges.

Index Terms—traffic classification; mobile apps; Android apps;
iOS apps; encrypted traffic; deep learning; automatic feature
extraction.

I. INTRODUCTION

VARIOUS tools, such as security/quality-of-service en-
forcement devices and network monitors, rely on the

knowledge of the application generating the traffic and thus are
limited (or impaired) when this requirement is not completely
satisfied. The process of associating network traffic with
specific applications is known as Traffic Classification (TC)
and has a long-established application in several fields [1].
Notwithstanding, TC is challenged by the massive diffusion
of handheld devices (as supported by recent evaluations in

Manuscript received 24th May 2018; revised 25th September 2018 and
31th January 2019.
Giuseppe Aceto and Antonio Pescapé are with the University of
Napoli Federico II (Italy) and with NM2 s.r.l. (Italy). E-mail:
{giuseppe.aceto,pescape}@unina.it.
Domenico Ciuonzo and Antonio Montieri are with
the University of Napoli Federico II (Italy). E-mail:
{domenico.ciuonzo,antonio.montieri}@unina.it.

Internet usage [2]), which is revolutionizing the nature and
the composition of traffic traversing home and enterprise net-
works and connecting contents and services over the Internet.
Thus, the necessity and the difficulty of mobile TC have
both become consistently high nowadays, fueled (other than
common drivers for TC) by valuable profiling information (e.g.
to advertisers, insurance companies, and security agencies)
[3, 4], while also implying privacy downsides (e.g. recognition
of context-sensitive apps, such as health and dating ones, and
in case of bring-your-own-device policies from companies).

Equally important, the growing adoption [5, 6] of encrypted
protocols (TLS) as well as network address translation and
dynamic ports, poses new challenges to accurate TC, defeating
established approaches such as deep packet inspection and
port-based methods [7]. Indeed, the presence of Encrypted
Traffic (ET) is a severe limitation that can be bypassed only in
closed-world enterprise scenarios and adopting workarounds
as man-in-the-middle proxies [8]. Moreover, other than the
ET issue, mobile TC comes with exacerbated challenges and
requirements due to (i) a large number of apps to discriminate
from and (ii) the automatic frequent updates of the apps—
leading to inadequate number of training samples per app and
hindering the achievement of targeted performance.

Hence, classifiers based on Machine Learning (ML) are
deemed the most appropriate, especially in this context, since
they suit also ET while not necessarily relying on port in-
formation [9, 10, 11], and they are also able to discriminate
traffic generated from several apps.1 However, the successful
use of standard ML classifiers relies on obtaining handcrafted
(domain-expert driven) features, which in TC context usually
correspond to statistics extracted from the sequence of pack-
ets [9, 13] or message sizes [14, 15]. Sadly, such process is
time-consuming, unsuited to automation, and it is becoming
rapidly outdated when compared to the evolution and mix
of mobile traffic, being a constantly moving target, and pre-
cluding the design of accurate and up-to-date mobile-traffic
classifiers [10, 13, 16] with “traditional” ML approaches.
Based on these considerations, we believe that Deep Learning
(DL), which allows to train classifiers directly from input data
by automatically learning structured (and complex) feature
representations [17], may be the stepping stone toward high-
performing TC in the dynamic and challenging mobile context.

1ML techniques can be also hybridized with port-association algorithms (in
scenarios where port information can be considered reliable), e.g. [12].

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 2

However, a naïve adoption of DL techniques to (mobile)
TC may imply misleading design choices and lead to biased
conclusions, due to the peculiar (and tricky) nature of network
traffic data. This constitutes, in our opinion, one of the main
gaps to fill (viz. the prerequisite) for the capitalization of DL
assets to mobile TC, thus echoing its successful use in “ma-
ture” fields, e.g. image and natural language processing [17].

Hence, this paper proposes for the first time (cf. Tab. II)
the design of mobile traffic classifiers (able to operate with
ET) via the adoption of DL umbrella. To this end, this work
resorts on the development of a systematic framework for the
design of novel DL-based TC architectures and comparison
of existing ones, declined herein in the mobile scenario, but
having a wider applicability to encrypted TC.2 This originates
from a critical analysis (later provided in Sec. II) of several
non-mobile-specific DL classifiers recently appeared in TC
literature [19, 20, 21, 22, 23, 24] and here reproduced (so
as to avoid focusing on a specific DL technique and draw
close-to-general conclusions).

In detail, the proposed framework dissects the DL-based TC
problem from different viewpoints (highlighted via Fig. 1):
(A) the TC object adopted, (B) the type (and the amount) of
input data fed to the DL classifier, (C) the DL architecture
employed, and (D) the required set of performance measures
for an objective and comprehensive evaluation. Our framework
is then applied to a realistic experimental setup, consisting of
three different (mobile) datasets of real human users’ activity,
to assess the most appealing techniques, the potential gain
w.r.t. ML-based best alternatives and shallow architectures (to
justify the need for complex hierarchically-arranged features),
and highlight open issues for real-time and accurate mobile TC
via DL. Up to our knowledge, no similar systematic approach
and experimental investigation have been performed in the
mobile scenario to date. The outcomes of this work underline
the deficiencies of current DL-based traffic classifiers and the
need for: (i) unbiased, informative, and heterogeneous inputs
extrapolated from traffic data, (ii) sophisticated DL archi-
tectures, and (iii) a rigorous and multifaceted performance
evaluation. This study represents a first attempt to address (i)
and (ii) issues, being also a “safe” groundwork for paving the
way to the design of accurate DL-based classifiers coping with
highly-diverse mobile traffic, whereas it provides designers
with a fine-level performance evaluation workbench (iii).

The rest of the paper is organized as follows. Sec. II reviews
the related TC literature for the present work, whereas Sec. III
describes the DL framework for mobile TC, focusing on key
aspects to address, including the performance evaluation work-
bench here proposed; the experimental evaluation is reported
and discussed in Sec. IV; finally, Sec. V provides lessons
learned and highlights challenges. For the sake of readability,
the acronyms used in this manuscript are summarized in Tab. I.

II. BACKGROUND

Several recent works have dealt with TC of mobile apps,
mainly under the assumption of ET. Nonetheless, TC in both

2Preliminary results in the same framework of this study have been
published as a conference publication [18].

Table I: List of the acronyms used in the manuscript.

Acronym Definition

AE / S(D)AE AutoEncoder / Stacked (Denoising) AE
APDU Application Protocol Data Unit
CNN Convolutional Neural Network
CR Classified Ratio
DL / ML Deep/Machine Learning
ET Encrypted Traffic
FB / FBM FaceBook / FB Messenger
IAT Inter-Arrival Times
LSTM Long Short-Term Memory
MLP MultiLayer Perceptron
PS Packet Sizes
RF Random Forest
RTPE Run Time Per-Epoch
SVC Support Vector Classifier
TC Traffic Classification
WF Website Fingerprinting

a mobile and encrypted scenario by means of DL appears
currently unexplored. To this end, we first describe foremost
works performing TC in the mobile context, using standard
ML-based approaches to deal with encrypted traffic. Then, we
briefly discuss DL applied to the conceptually-similar task of
Website Fingerprinting (WF), and, finally, we introduce the
literature applying DL to Internet TC (i.e. not focusing on
the mobile context). These three groups of related work are
categorized in Tab. II, so as to sum up their main aspects and
highlight their limitations in comparison to the present study.

A. Classification of Mobile Encrypted Traffic

A user fingerprinting scheme for devices that learns their
traffic patterns by analyzing background activities (quantified
as 70% of smartphone traffic) is developed by Stöber et al.
[25]. Based on 3G transmissions, bursts of data are lever-
aged to extract statistical features which are used, via ML-
based classifiers, to infer the specific user generating them.
Differently, Wang et al. [26] propose a ML-based framework
for app-usage classification considering Wi-Fi ET. Traffic
frames are collected by running different iOS apps (among
8 categories) for 5 minutes. Results show an unexpected
behavior of some apps with the increase of the training
time, highlighting the lack of an accurate ground-truth la-
beling that affects classification performance. AppScanner is
a framework for fingerprinting and identification of mobile
apps developed by Taylor et al. [13]. An SVC and an RF
are trained/tested with statistical (and raw) features extracted
from the vector of the sizes of packets grouped based on
timing and destination IP address/port aggregation criteria
(service burst). App fingerprints are obtained by automatically
running the 110 most popular apps from Google Play Store
and preprocessing the traces to remove background traffic
and TCP retransmissions and errors. Experimental results,
other than satisfactory TC performance (shown in Tab. II),
show an average 99% accuracy in single app identification.
A comparison with state-of-the-art alternatives devised for the
(conceptually-)similar WF task [31, 32] is also done, showing
that AppScanner is able to significantly outperform them.
More extensive analyses (on a larger dataset) of AppScanner
are conducted in [10], to assess classification performance

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 3

Table II: Summary of previous works. First group adopted ML, second and third ones employed DL. Starred works aim at WF.

Paper DL ET Mobile Human TC Object Input Data Classifier Experimental Results

Stöber et al. [25] # Burst Statistics of PS & IAT SVC, K-Nearest Neighbors ≥ 90% acc. (20 users)
Wang et al. [26] # Burst Statistics of PS & IAT RF ≈ 94% acc. (13 iOS apps)

Taylor et. al. [10, 13] # # Service burst Statistics of PS SVC, RF 86.9% acc. (110 Android apps)
Kampeas et al. [27] # # # Biflow APDU sequence C4.5 (J48) ≥ 90% acc. with 3 APDUs (54 classes)
Shahbar et al. [28] # # Biflow Statistics of PS & IAT C4.5 ≈ 98% acc. (22 classes)

Conti et al. [29] # # # TCP connection Clustering-based features RF 95% best acc. / prec. (up to 11 actions)
Alan and Kaur [30] # # TCP connection First 64 TCP PS WF methods [31, 32] 88% best acc. (1595 Android apps)

Aceto et al. [16] # Service burst Statistics of PS Soft/Hard combination
of traffic classifiers

+9.5% rec. w.r.t. best classifier
(49 / 45 Android/iOS apps)

? Oh et al. [24] # # Tor cell sequence Cell directions [784] MLP, 2D-CNN, AE 92% / 1% rec. / fall-out (100 websites)
? Rimmer et al. [33] # # Tor cell sequence Cell directions [150÷5k] SDAE, CNN, LSTM 94% acc. (900 websites)
? Sirinam et al. [34] # # Tor cell sequence Cell directions [5k] SDAE, CNN 99% / 94% prec. / rec. (open-world)

Wang [19] # # Biflow TCP payload [1000 B] SAE ≥ 90% prec. & rec. (25 protocols)
Zhang et al. [35] # Biflow Manually-designed features SAE ≥ 90% F-meas. (10 services)
Wang et al. [20] # Flow/Biflow ALL/L7 layers [784 B] 2D-CNN ≥ 89% per-class metrics (up to 20 classes)
Wang et al. [21] # Flow/Biflow ALL/L7 layers [784 B] 1D-CNN +2.51% w.r.t. [20] (up to 12 classes)
Huang et al. [36] # Biflow ALL layers [1024 B] 2D-CNN > 90% per-class metrics (9 Trojans)

Chen et al. [37] # Biflow L7-layer data and
manually-designed features

Hierarchical DL with
weighted backpropagation

99.6% / 85.4% acc. / prec.
(12 classes)

Lotfollahi et al. [22] # Packet IP packet [1500 B] SAE, 1D-CNN 95% / 97% F-meas. (17 / 12 classes)
Lopez-Martin et al. [23] # Biflow 6 fields [20 packets] Hybrid LSTM+2D-CNN 95.7% best F-meas. (108 services)

Shi et al. [38] # Biflow ML&DL-selected features Deep Belief Networks ≈ 60% G-mean (10 classes)

Vu et al. [39] # Biflow Manually-designed features Aux. Classifier Generative
Adversarial Network

≈ 95% F-meas.
(11 SSH & non-SSH services)

Li et al. [40] # HTTP session HTTP fields [28×36 B] Variational AE 99.6% acc. (12 Android apps)

This paper Biflow
ALL/L7 layers [256÷2304 B]
4 - 6 fields [4÷32 packets]

Packet directions

SAE, LSTM,
1D-CNN, 2D-CNN,

Hybrid LSTM+2D-CNN

Comprehensive evaluation (see. Sec. IV)
E.g. ≈ 86% / ≈ 83% acc.
(49 / 45 Android/iOS apps)

degradation due to apps’ fingerprint variation/aging because of
different used device/app versions. Remarkable applications of
decision trees are also found in [27, 28] for the encrypted TC
problem, whereas the RF (with features obtained starting from
a hierarchical clustering approach) is also employed in [29]
for action fingerprinting of a certain app. The WF methods
described in [31, 32] are also employed by Alan and Kaur [30]
to check out whether Android apps can be identified from their
launch-time traffic using only TCP/IP header information. In
the best case considered, i.e. when training and test samples
are collected on the same device, apps can be identified with
88% accuracy. Differently, a significant drop (up to 26%
for the best classifier) is observed when the OS/vendor is
different. Aging of training data caused by app updates is
also taken into account. Recently, a novel multi-classification
approach enjoying the fusion of state-of-the-art classifiers
devised for mobile and encrypted TC is proposed in [16].
Four classes of combination techniques varying in accepted
classifiers’ outputs (i.e. soft or hard), training requirements,
and learning philosophy are compared. Based on a dataset of
real users’ activity (as opposed to [10, 13, 29, 30], employing
bot-generated mobile traffic), combination results present a
performance gain according to all considered metrics.

B. Website Fingerprinting using Deep Learning

Henceforth, we first discuss the applications of DL to the
(conceptually-similar) problem of (encrypted) WF. Oh et al.
[24] study the usage of DL for WF and also prove its
effectiveness on feature extraction (via AE) for state-of-the-

art ML algorithms. Results underline that DL architectures
successfully detect which website the user visited among 100
websites against 100k background websites. A novel DL-based
method to deanonymize Tor traffic is proposed in [33] and
tested on a very-large WF dataset made of ≥ 3 · 106 network
traces. Results highlight that performance achieved via DL is
comparable to state-of-the-art deanonymization attacks, with
the best-performing DL model being +2% accurate. Finally,
Sirinam et al. [34] develop a WF attack against Tor which
is evaluated against state-of-the-art defenses (i.e. WTF-PAD
and Walkie-Talkie). Performance evaluation in an open-world
setting shows that the attack is effective against undefended
traffic, while still relevant (95/70% of precision/recall) in case
WTF-PAD defense is employed.

C. Standard Traffic Classification using Deep Learning

Herein we complete our review of related literature by
discussing recent DL proposals to standard TC. Wang [19]
suggests a first DL approach (based on SAE), applied to clear
traffic identification (but adaptable to ET), and compares it to
standard neural networks on a dataset made of 300k records
stripped of duplication and HTTP traffic. Results show that
SAE outperforms the latter and achieves high performance in
protocol identification (taken from 58 different typologies) and
a class prediction probability ≥ 80% (resp. ≥ 90%) on 6.7k
(resp. 5.5k) out of 10k traffic samples unrecognizable via deep
packet inspection. The SAE (trained on manually-designed
features) is also recently applied to TC in [35], showing that
it outperforms a SVC and achieves a high F-measure on a

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 4

real-world traffic dataset. A novel malware TC, based on 2D
Convolutional Neural Networks (CNNs) and explicitly devised
for ET, is proposed in [20]. The approach is tested on a dataset
(≈ 752k instances) consisting of (i) 10 malware traffic types
from public websites and (ii) 10 normal traffic types, in two
different tasks: (i) malware vs. normal (binary) and (ii) traffic-
type (20 classes) classification. Also, two different choices
of raw “traffic images” (named “ALL” and “L7”) dependent
on the protocol layers considered to extract the input data,
are used to feed the classifier, showing that (biflow-based)
TC with “ALL” is the most informative and reaches elevate
performance for all the metrics considered. In [21] the same
authors propose a similar approach for encrypted TC based
on a 1D-CNN. Experiments, conducted on a selection of the
“ISCX VPN-nonVPN” dataset [41], consist of four different
setups: (i) VPN/nonVPN (binary) classification, (ii) encrypted
TC (6 classes), (iii) TC of VPN-encapsulated data (6 classes),
and (iv) encrypted TC (12 classes). Consistently with [20],
the configuration “Biflow + ALL” performs the best and
the configuration-optimized 1D-CNN always achieves higher
accuracy than a 2D-CNN counterpart (being both however
≥ 80%) in all the setups, and (almost) always outperforms
the C4.5 classifier originally designed by Gil et al. [41].

More recently, in [36] the problem of handling multiple
TC problems (i.e. malware detection, recognition of VPN-
encapsulation, and Trojan classification) at once via a single
2D-CNN DL architecture is tackled. The 2D-CNN is tested on
a merge of “CTU-13” (malware) and “ISCX VPN-nonVPN”
traffic datasets, and shown to outperform each element of
comparison for each task considered. Another study on DL-
based TC of malware is represented by [37], dealing with
issues of an imbalanced dataset via “weighted” backpropaga-
tion and a hierarchical approach exploiting both raw data and
handcrafted features. Experimental results on a self-generated
dataset show that the proposed approach outperforms stan-
dard ML/DL alternatives. The same dataset is also used to
test Deep Packet [22], a DL-based (namely 1D-CNN and
SAE) framework for encrypted TC working at packet-level.
Deep Packet is compared to state-of-the-art ML classifiers on
the same dataset, showing to outperform the latter in both
application identification (K-Nearest Neighbors) and traffic
characterization (C4.5).

Different DL architectures for encrypted TC, based on
hybrid compositions of Long Short-Term Memory (LSTM)
and 2D-CNN layers, are proposed in [23]. The best-performing
of these variants (named “CNN+RNN-2A” therein) attains
≥ 95% metrics on a dataset captured on Spanish academic
backbone network ‘RedIRIS’ and made of 266k biflows from
108 distinct services. The analysis also highlights (i) a perfor-
mance drop by including inter-arrival times in the input and
(ii) that 5÷15 packets are enough for satisfying results. In [38]
a novel feature optimization approach, based on deep belief
networks and ML-based feature selection techniques is devised
to improve TC performance, by overcoming the negative im-
pacts of multi-class imbalance and concept drift. Experiments
on real traffic show that the approach outperforms existing ML
classifiers and a deep belief network without feature selection.
Another application of DL to TC with imbalanced network

data is found in [39], where an auxiliary-classifier generative
adversarial network is used to generate synthesized samples
(in the form of a set of handcrafted features) for training set
balancing, to be used by ML classifiers. The method, tested
on NIMS dataset, outperforms a counterpart based on the
synthetic minority over-sampling technique.

To the best of our knowledge, the sole application of
DL to mobile TC, other than our preliminary work [18],
seems to be [40], where a DL classifier, based on variational
autoencoders and input data taken from the reconstructed
HTTP session (i.e. designed only for clear traffic) is proposed
and tested on a self-generated dataset.

III. FRAMEWORK FOR COMPARISON AND TUNING OF
DEEP LEARNING–BASED TRAFFIC CLASSIFICATION

Input
Data

Extraction

Traffic
Object

Selection

Input
Data

Extraction

Input
Data

Extraction

Reject
Option

Reject
Option

Reject
Option

DL-Architecture1

Performance
Evaluation

Human
Generated

PCAP Traces

y1

Res
i2 DL-Architecture2

DL-ArchitectureK

Hyperparametersi
Tuning

i1

iK

γ1

γ2

γK

y2

yK

Figure 1: Framework for comparison and tuning of DL architectures
for TC.

This section dissects the state-of-the-art of DL in TC, by
focusing on the following viewpoints: (A) the traffic object
(i.e. the type of traffic aggregate, also known as traffic
view [1]), (B) the types of input data extracted to feed the
DL architectures, (C) the DL architectures employed, and (D)
the performance evaluation measures used. Based on these
points, Fig. 1 sketches out the framework devised for the
systematic comparison of DL-based traffic classifiers. It is
worth pointing out that all the DL classifiers proposed for TC
have been carefully analyzed and reproduced, e.g. by setting
the hyperparameter values suggested in their respective works
or performing a basic tuning procedure when the latter are
not reported. Specifically, we leveraged DL models provided
by Keras [42] (Python) API running on top of TensorFlow to
implement and test the approaches described in the following.

A. Traffic Object

Different traffic objects have been considered in the TC
literature. The definition of a specific traffic object determines
how raw traffic is segmented into multiple discrete traffic
units [1]. It is worth noticing that all the works approaching the
TC using DL [19, 20, 21, 23] considered either flows or biflows
as the relevant objects of classification, with the sole exception
of [22]. More specifically, a flow is defined as all the packets
having the same 5-tuple (i.e. source IP, source port, destination
IP, destination port, and transport-level protocol) taking into
account their directions. Differently, a biflow includes both
directions of traffic sharing a given tuple (i.e. the source and
the destination are interchangeable). Finally, in [22] the object
of classification is the single packet (i.e. the classification

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 5

is performed at packet level), corresponding to the finest
granularity for a TC problem (and virtually representing the
hardest setup for the corresponding classification task).

B. Types of Input Data

The type of data being fed to the surveyed DL architectures
may be roughly categorized within three types:

I the first N bytes of payload of TC object [19, 20, 21];
II the first N bytes of raw data pertaining to the PCAP file

related to the TC object [20, 21];
III informative data fields of first Np packets [23].

Based on the aforementioned categorization, it is worth
noticing that all the types of input data considered for DL
are naturally suited for “early” TC [43].

In the first case, the data being fed to the DL architecture is
represented by payload only, with input data in binary format.
In all these works, the payload is arranged in a byte-wise
fashion and normalized so as to constrain it within [0, 1]. The
choice is always justified as a means to reduce the input size
for the DL architecture. On the other hand, the layer and size
of the payload being chosen depend on the specific work. For
example, in [19] these correspond to the first 1000 bytes of
TCP payload. A similar choice is made in [20, 21] for the
input labeled as “L7”, where 784 bytes from the application
layer in TCP/IP model are considered. Differently, in [22] the
authors consider the first 1500 payload bytes at layer 2, i.e. the
IP header and the first 1480 bytes of each IP payload which
results in a 1500 bytes input vector.3

The second type of input data attempts to gather infor-
mation from all protocol layers (denoted with “ALL” layers
in [20, 21]) as in some relevant cases the data from levels lower
than layer 7 also contain some useful traffic information (such
as transport-layer ports or flags), as pointed out in [20, 21].
Then, since the considered data are typically captured at data-
link layer, the payload from frames of layer 2 is extracted.
However, the traffic provided in this case is always in the form
of PCAP files, containing information that could introduce a
bias in the classification results.4 Specifically, in [20, 21] only
the first 784 bytes of each TC object are employed.

Finally, the third type of input data is represented by se-
lected protocol fields (not pertaining to the explicit inspection
of encrypted payload) of the first Np packets. For example,
in [23] the authors consider only the first 20 packets exchanged
into a TC object (a biflow), and, for each packet, the following
6 fields are extracted (thus a 20×6 matrix is obtained for each
TC object): source and destination ports, number of bytes in
transport layer payload, TCP window size5, inter-arrival time,
and packet direction (∈ {0, 1}). We highlight that the (binary-
valued) sequence of packets/messages directions has been also
recently employed in DL-based WF [24, 33].

3Additionally, the authors apply also a pre-processing step to cope with
unequal transport-layer header lengths, by padding with zeros the end of the
UDP-datagram headers up to TCP-segment headers length.

4We underline that extraction of “ALL” layers input includes PCAP
metadata besides raw packet data (from MAC layer, included). In detail, PCAP
global header is of 24 bytes and each packet is also prepended with a 16-byte
header, including a timestamp at µs granularity and packet size information.

5The TCP window size is set to zero for UDP packets.

Finally, we conclude the discussion mentioning that in all
the above cases, there may be instances longer or shorter
than the considered fixed-length data inputs. In such cases,
longer instances are truncated to the designed length of bytes
or packets, in the case of first/second or third type of data,
respectively, whereas in the case of shorter instances, padding
with zeros is always applied in all the discussed works.

C. Deep Learning–based Classification Architectures

Herein we review the architectures employed for DL-based
TC. For convenience, we define the mth instance of the train-
ing set (made of M samples) as x(m) while the corresponding
label with `(m), belonging to one among L different classes
(i.e. `(m) ∈ {1, . . . , L}). All the considered DL classifiers are
trained to minimize the categorical cross-entropy [17]:

L(·) fi

M∑
m=1

{
−

L∑
l=1

tl,(m) log pl,(m)

}
(1)

In the above equation, the one-hot representation of the label
p(m) fi

“

p1,(m) · · · pL,(m)

‰T
and of the corresponding

predicted vector t(m) fi
“

t1,(m) · · · tL,(m)

‰T
are employed.

The minimization of the loss L(·) is achieved by means of
standard (first-order) local optimizers (e.g. stochastic gradient
descent, adaptive moment estimation, etc.), resorting to the
usual back-propagation for gradients evaluation.

SAE: The SAE (Fig. 2(a)) relies on the basic AutoEncoder
(AE), commonly employed for (unsupervised) feature learn-
ing, and whose aim is to (ideally) set the output y(m) ≈ x(m),
∀m = 1, . . . ,M , by learning a compressed data representa-
tion. Specifically, the first AE block (i.e. the encoder) provides
a lower-dimensional data representation (via a hidden layer of
neurons), whereas the second block (i.e. the decoder) tries to
reconstruct the data from the compressed representation.

In practice, to obtain improved performance, a more com-
plex (hierarchical) architecture, namely the SAE, has been
proposed [17]. This scheme employs unsupervised greedy
layer-wise pre-training (top part of Fig. 2 (a)) which stacks
up several AEs so that the lower-dimensional representation
obtained from jth AE is used as the input of (j + 1)th AE
(i.e. each layer of network is trained by keeping the weights of
lower layers frozen). After training greedily AE layers, a final
softmax layer is added and supervised fine-tuning (i.e. a re-
finement of all layers’ weights) of the whole network (bottom
part of Fig. 2 (a)) for the classification task is performed (i.e.
using x(1), . . . ,x(M) along with `(1), . . . , `(M)). A relevant
application of SAE to TC is found in [22], consisting of
five stacked layers—with {400, 300, 200, 100, 50} neurons and
25% dropout-probability [17] after each layer (to mitigate
over-fitting)—all employing rectified linear unit activations.

CNN: The CNNs (Fig. 2 (b)) are widely-used DL models,
inspired by visual mechanism of living organisms, and made
of chained convolutional layers, each comprising a set of
translation-invariant filters (conceived in either 1D or 2D
form, depending on the specific input nature) with a limited
extent (the “receptive field”) which are convolved with the
input with the aim of extracting features of a certain input
region. Another important CNN component is the pooling

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 6

Encoder

Input
Data

Fully-C
onnected

Layer

Softm
ax

Layer

Prediction
Vector

D
ecoder

AE

Encoder

D
ecoder

AE

Input
Data

C
onvolutional

Layer

Input
Data

Pooling
Layer

Prediction
Vector

LSTM
Layer

Input
Data

LSTM
Layer

Prediction
Vector

(a)
(b)

(c)

Fully-C
onnected

Layer

Fully-C
onnected

Layer

C
onvolutional

Layer

Pooling
Layer

Fully-C
onnected

Layer

Softm
ax

Layer

Fully-C
onnected

Layer

Fully-C
onnected

Layer

Softm
ax

Layer
Figure 2: DL architectures for TC: SAE (a), CNN (b), LSTM (c).

layer, typically following a convolutional layer and whose
function is to perform down-sampling (max- and average-
pooling are the most common) of intermediate representations,
aiming at complexity reduction and overfitting mitigation. The
higher CNN layers are usually a few fully-connected (similar
to AE compressing stage) layers, with the last having the
essential softmax activation. For example, the architecture
in [21] is made of two 1D convolutional layers (with 32 and
64 filters, respectively), each followed by a 1D max-pooling,
and terminated with two fully-connected layers.

Similarly, the CNN in [20] is obtained by replacing 1D with
2D (pooling/convolutional) layers and interpreting the input as
a “traffic image”. A similar 2D-CNN is also considered in [23],
where batch normalization [17] is also applied after each max-
pooling layer. Differently, in [22] a 1D-CNN consisting of
two 1D convolutional layers (200 and 80 filters, respectively,
with 1D average-pooling) and seven fully-connected layers
(with {600, 500, 400, 300, 200, 100, 50} neurons), all having
rectified linear unit activations, is considered. Additionally, to
avoid the over-fitting, 25% dropout after pooling layer and
early stopping technique are adopted [17].

LSTM: An LSTM (Fig. 2 (c)) is a popular (easier to train)
variant of recurrent neural networks (having unit connections
forming a directed cycle), able to model dynamic temporal be-
haviors with “long-term dependencies” [17]. A neural network
made of LSTM units is often called an LSTM network.

An LSTM unit is in charge of “remembering” values (via a
state vector h[t]) over arbitrary time intervals and is composed
of a cell, input, output, and forget gates, while having as
input a vector sequence of length T : x[1], . . . ,x[T] (i.e.
each training instance is a matrix). The final hidden state
h[T] corresponds to the output of LSTM unit. A standard
LSTM network for classification is usually terminated with
a few fully-connected layers, with last having a softmax
activation. On the other hand, when several LSTM layers
are stacked, they expose as output (except for the last one)
the finer-grained time-evolution of the state vs. the input
sequence, h[1], . . . ,h[T] (modeling a “return-sequences” be-
havior), forming the input to the higher LSTM layer.6 For
example in [23] a standard LSTM ending with two fully-
connected layers of 100 and 108 nodes (the latter being
the number of services to discriminate from) is considered.
Interestingly, a stack of LSTM layers is also proposed in [23]
in the context of hybrid architectures, as described henceforth.

6We highlight that for successive LSTM layers, the temporal-dimension of
data input does not change, whereas the vector-size of the successive inputs
does, being function of the size of the hidden state.

Hybrid DL Architectures: The discussed elementary learn-
ing layers can be also jointly employed within a single
DL architecture. For example, architectures based on the
combination of 2D convolutional and LSTM layers may be
conceived [23], where the output tensor of the convolutional
layer is reshaped into a matrix fed as input to an LSTM unit.

D. Performance Evaluation Workbench

The proposed comparison framework includes the following
common performance measures [1]: accuracy (the fraction of
correctly classified instances), precision (prec, i.e. the propor-
tion of classifier decisions for a given class which are actually
correct), recall (rec, i.e. the class-conditional accuracy), and
specificity (spec, i.e. the proportion of actual negatives of a
class that are correctly identified as such). Since the latter three
are defined on a per-app basis, we consider the F-measure F fi

(2 ·prec · rec)/(prec + rec) and the G-mean G fi
?
rec · spec

so as to account for their effects concisely, and employ their
arithmetically averaged (viz. macro) versions. Moreover, the
concept of Top-K accuracy (recently used in WF [24]) is
employed, defining a correct classification event if the true
app is within the top K predicted labels (K < L is a free
parameter7) and allowing to investigate the soft-output of a DL
classifier. Finally, we consider also confusion matrices with the
aim of identifying the most frequent misclassification patterns.

To provide a complete performance picture, classifiers are
also tested when they are enriched with a “reject option”
(i.e. the classification is performed only if the highest class
prediction probability exceeds a threshold γ and “unsure”
classifications are then censored), whose adoption has been
justified in the mobile context [10]. Indeed, since apps typ-
ically send multiple flows where used, there remains high
chance to identify them from their more distinctive flows,
without the need to classify all the instances (i.e. the classifier
does not reach a verdict when the highest class prediction
probability is below γ). Hence, tuning γ can be effective to
improve classification performance while incurring negligible
drawback, i.e. a decreased ratio of classified instances (CR).

For completeness, as a preliminary investigation of the
computational complexity of DL-architectures training phase,
we report their training runtime, given the specificity of such
phase in mobile TC, due to apps’ fingeprint aging because of
their (and OSs) updates. Precisely, since training is performed
on multiple epochs [17], we report such info in a terse (nor-
malized) way, by providing the Run-Time Per-Epoch (RTPE).

7Of course K = 1 coincides with the standard accuracy.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 7

Finally, for each considered analysis, our evaluation is based
on a (stratified) ten-fold cross-validation, representing a stable
performance evaluation setup. Accordingly, we report both the
mean and the variance of each performance measure as a result
of the evaluation on the ten different folds.

IV. EXPERIMENTAL EVALUATION

The present section investigates and compares performance
of considered DL classifiers, according to Sec. III-D, based on
the three mobile traffic datasets described next.

A. Datasets Description

The three datasets considered in this work have been all
collected by human users (instead of relying on automatically-
generated traffic, as done in related works). Also, the ground
truth has been obtained by labeling each trace with the
generating app (since they have been run separately, thus
limiting the presence of background traffic) and, for the sake
of a consistent comparison among all DL-based TC works
published so far (except for [22]), we have chosen to operate
at the biflow level when referring to the traffic view.

Multi-class datasets: The first two (multi-class) datasets,
obtained from a global mobile solutions provider and gener-
ated from 49 (resp. 45) apps on Android (resp. iOS) devices,
are considered for prioritization purposes.8 The corresponding
Android (resp. iOS) traces have been collected during Apr. ’15
- Jan. ’17 (resp. Sept. ’14 - Jan. ’17), generated by users with
different devices and OS/app versions, and provided already
anonymized and cleaned from background traffic. In detail,
≈ 89% (resp. ≈ 85%) of Android (resp. iOS) traces has been
captured in ’16. As a whole, the dataset is made up of 607
(resp. 419) traffic traces, with mean duration of 282 (resp. 296)
seconds and 1 ÷ 60 (resp. 1 ÷ 48) traces per app in Android
(resp. iOS), leading to a non-negligible class imbalance. Such
realistic setup justifies the need for a complete evaluation
framework of DL-based classifiers, as proposed in Sec. III.
Finally, after biflow segmentation, 77.3k (resp. 44.1k) labeled
instances compose the Android (resp. iOS) dataset, with 73.8k
(resp. 41.8k) TCP and 3.5k (resp. 2.3k) UDP biflows.

FB/FBM binary dataset: The third (binary) dataset has been
collected in ARCLAB laboratory at the University of Napoli
“Federico II”, during several sessions within May ’17 - Mar.
’18 timespan. More specifically, the captures pertain to either
Facebook (FB) or Facebook Messenger (FBM) traffic data, and
run on a Xiaomi Mi5 with Android Operating System 6.0.1
(CyanogenMod 13.0 distribution). This choice derives from
the peculiar nature of these two apps, both devoted to inter-
active usage of the Facebook platform (author of both). This
suggests a high possibility of shared development framework
and overlapping services usage, hampering the discrimination
of the respective traffic (as suggested by the same provider and
also confirmed experimentally in next section) needed for key
management tasks e.g. for billing differentiation. More than
100 users have been involved in its construction on a voluntary

8Due to NDA with the provider we can not report its name, details of its
network, detailed information on the data set, nor release the data set.

basis for sittings lasting less than 2 hours, being required to
perform different activities for both the apps (to explore their
diversity), in union with login/registration/logged-in use cases.
Each traffic-capture session lasted 5÷10 minutes, with > 1100
traffic traces collected. As a whole, the dataset contains > 34k
instances, with 15.0k (resp. 19.2k) biflows generated by FBM
(resp. FB) app, with a 44%/56% share. Precisely, FBM
(resp. FB) traffic consists of 13.2k (resp. 18.7k) TCP and 1.8k
(resp. 0.5k) UDP biflows, respectively.9

It is worth noting that depending on the particular clas-
sification approach and input data considered, preprocessing
operations could have been carried out on the datasets (both
multi-class and binary), varying the actual number of biflows.

B. Baselines Considered and Classification Results

We now provide a systematic comparison of the considered
DL architectures so as to draw out key guidelines (later elab-
orated in Sec. V). For completeness, two baseline approaches
are also included in our analysis of classification efficacy:
(i) the RF developed in [13], i.e. the current state-of-the-
art mobile-traffic classifier, taking as input 40 carefully hand-
crafted flow-based features and thus applicable only in “post-
mortem” TC (as opposed to inputs used in DL classifiers,
suited for “early” TC), and (ii) a MLP with only one hidden
layer (with 100 nodes), denoted as MLP-1, trained on the same
inputs as DL architectures, so as to stress the performance
achievable by shallow learning in the same scenario.

Hereinafter, we refer to Type I (resp. Type II, cf. Sec. III-B)
input data corresponding to the first N bytes of payload
(resp. raw) data as “L7-N” (resp. “ALL-N”) [19, 20, 21].
Differently, the 20× 4 (resp. 20× 6, when ports are included,
highlighted through a “?” marker) input matrix obtained
following [23] (Type III) is denoted with “MAT”, with the
general notation “MAT-Np” when a varying number of packets
is considered. Finally, for consistency, the first Np packet
directions (Type III) are referred to as “DIR-Np” [24].

Biased vs Unbiased Inputs: First, in Tabs. III and IV we
report the results of state-of-the art DL-based (and baseline)
approaches fed with inputs (and features) extracted from multi-
class Android and iOS datasets, and binary FM/FBM dataset,
respectively. We highlight that performance of classifiers
marked with diamond markers (3) represents results from
biased inputs (cf. Sec. III-B) and, therefore, they should not
be considered as meaningful elements of comparison. From
the inspection of results it is apparent that, referring to multi-
class datasets (cf. Tab. III), DL approaches are able to provide
improved performance w.r.t. shallow classifiers with analogous
unbiased inputs, i.e. MLP-1 (L7-1000/L7-784/MAT), and even
outperform flow-based state-of-the-art RF. This is attributed
to DL ability to learn implicitly very complex features able to
distinguish (seemingly) similar traffic generated from different
apps. Indeed, in Android setup, 85.46% accuracy, 78.78% F-
measure, and 86.92% G-mean are achieved by 2D-CNN (L7-
784), as opposed to 84.78%, 75.49%, and 83.86%, respec-

9The current dataset constitutes a larger version w.r.t. that considered
in [18], in terms of both depth and diversity, while improving also the balance
between FB/FBM samples (i.e. 44%/56% vs. 38%/62% share of [18]).

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 8

Table III: Accuracy, F-measure, and G-mean [%] of DL-based and baseline traffic classifiers. Results refer to the multi-class datasets and are
in the format avg. (± std.) obtained over 10-folds. Results with diamond (3) and star (?) markers refer to biased inputs and inputs including
TCP/UDP ports, respectively. Best-performing DL-based and shallow classifiers fed with unbiased inputs are highlighted for both datasets.

Architecture
Android iOS

Accuracy F-measure G-mean Accuracy F-measure G-mean

SAE [22] (L7-1000) 75.15 (± 1.52) 57.00 (± 2.78) 69.07 (± 3.42) 74.55 (± 0.80) 60.57 (± 2.06) 74.86 (± 1.89)
2D-CNN [20] (L7-784) 85.46 (± 0.48) 78.78 (± 1.39) 86.92 (± 1.26) 82.72 (± 1.47) 74.41 (± 0.90) 83.91 (± 0.95)

2D-CNN [20] (ALL-784) 3 95.74 (± 0.24) 92.05 (± 0.65) 95.15 (± 0.56) 95.27 (± 1.19) 92.48 (± 0.91) 95.41 (± 0.76)
1D-CNN [21] (L7-784) 85.70 (± 0.45) 78.68 (± 1.20) 86.82 (± 0.87) 82.64 (± 1.63) 74.34 (± 1.29) 84.00 (± 1.31)

1D-CNN [21] (ALL-784) 3 95.73 (± 0.67) 92.18 (± 1.19) 95.42 (± 1.02) 95.97 (± 0.38) 92.33 (± 0.99) 95.45 (± 0.67)
2D-CNN [23] (MAT) ? 82.22 (± 0.42) 70.81 (± 0.97) 82.18 (± 0.79) 81.23 (± 0.73) 73.04 (± 1.33) 83.64 (± 1.03)

LSTM [23] (MAT) ? 81.18 (± 0.41) 69.68 (± 0.81) 81.21 (± 0.65) 83.54 (± 0.64) 75.95 (± 1.11) 85.88 (± 0.89)
LSTM + 2D-CNN [23] (MAT) ? 83.53 (± 0.41) 72.02 (± 0.77) 82.51 (± 1.01) 82.28 (± 0.42) 74.22 (± 0.93) 84.36 (± 0.92)

2D-CNN [23] (MAT) 76.01 (± 0.70) 62.83 (± 1.28) 75.60 (± 1.29) 68.53 (± 0.61) 58.67 (± 1.22) 72.95 (± 1.30)
LSTM [23] (MAT) 73.64 (± 1.56) 59.53 (± 1.40) 73.31 (± 1.01) 66.50 (± 1.03) 56.27 (± 1.73) 71.98 (± 1.45)

LSTM + 2D-CNN [23] (MAT) 77.95 (± 0.41) 64.52 (± 1.17) 76.35 (± 1.45) 69.17 (± 0.64) 58.75 (± 0.76) 72.17 (± 0.75)
2D-CNN [24] (DIR-784) 40.11 (± 0.56) 15.41 (± 0.82) 24.61 (± 1.18) 32.95 (± 0.65) 11.42 (± 0.62) 18.18 (± 1.06)

MLP-2 [24] (DIR-784) 27.94 (± 0.82) 4.51 (± 0.22) 8.94 (± 0.26) 21.17 (± 0.44) 4.15 (± 0.32) 8.00 (± 0.59)

MLP-1 (L7-1000) 77.76 (± 0.38) 67.85 (± 1.45) 79.75 (± 1.29) 76.11 (± 0.84) 66.95 (± 1.47) 79.63 (± 1.44)
MLP-1 (L7-784) 78.71 (± 0.65) 69.79 (± 1.17) 81.52 (± 1.38) 77.16 (± 0.63) 67.61 (± 1.07) 80.11 (± 0.99)

MLP-1 (ALL-784) 3 96.53 (± 0.27) 94.28 (± 0.72) 96.80 (± 0.54) 97.24 (± 0.50) 95.29 (± 0.81) 97.15 (± 0.65)
MLP-1 (MAT) ? 72.54 (± 0.47) 58.29 (± 1.11) 71.87 (± 1.27) 66.94 (± 0.90) 56.51 (± 1.24) 70.88 (± 1.08)
MLP-1 (MAT) 64.94 (± 0.47) 48.26 (± 0.96) 63.10 (± 1.07) 54.42 (± 0.63) 40.86 (± 1.04) 57.56 (± 1.03)

RF [13] (flow-based) 84.78 (± 0.30) 75.49 (± 0.89) 83.86 (± 0.58) 80.77 (± 0.84) 72.39 (± 1.39) 81.88 (± 1.27)

Table IV: Accuracy, F-measure, and G-mean [%] of DL-based and
baseline traffic classifiers. Results refer to FB/FBM dataset and
are in the format avg. (± std.) obtained over 10-folds. Results
with diamonds (3) and stars (?) refer to biased inputs and inputs
including TCP/UDP ports, respectively. Best-performing DL-based
and shallow classifiers fed with unbiased inputs are highlighted.

Architecture Accuracy F-measure G-mean

SAE [22] (L7-1000) 73.52 (± 0.82) 71.82 (± 1.31) 70.49 (± 2.25)
2D-CNN [20] (L7-784) 75.56 (± 3.15) 73.95 (± 2.54) 71.81 (± 2.07)

2D-CNN [20] (ALL-784) 3 73.99 (± 3.03) 72.54 (± 2.80) 70.85 (± 3.33)
1D-CNN [21] (L7-784) 76.37 (± 0.73) 75.56 (± 1.01) 74.79 (± 1.76)

1D-CNN [21] (ALL-784) 3 75.91 (± 2.74) 75.53 (± 2.68) 75.46 (± 2.61)
2D-CNN [23] (MAT) ? 71.82 (± 1.13) 70.84 (± 1.12) 70.01 (± 1.07)

LSTM [23] (MAT) ? 72.59 (± 0.75) 71.76 (± 0.78) 71.10 (± 0.85)
LSTM + 2D-CNN [23] (MAT) ? 72.36 (± 0.95) 71.41 (± 0.96) 70.58 (± 1.04)

2D-CNN [23] (MAT) 73.33 (± 0.93) 72.18 (± 1.04) 71.02 (± 1.16)
LSTM [23] (MAT) 73.54 (± 0.49) 72.50 (± 0.58) 71.49 (± 0.85)

LSTM + 2D-CNN [23] (MAT) 73.74 (± 0.69) 72.66 (± 0.72) 71.58 (± 0.82)
2D-CNN [24] (DIR-784) 66.51 (± 0.57) 63.88 (± 0.82) 61.28 (± 1.23)

MLP-2 [24] (DIR-784) 58.93 (± 0.80) 56.65 (± 2.20) 54.73 (± 3.83)

MLP-1 (L7-1000) 73.78 (± 1.09) 72.58 (± 1.16) 71.95 (± 1.43)
MLP-1 (L7-784) 74.46 (± 0.88) 73.89 (± 0.86) 73.55 (± 0.89)

MLP-1 (ALL-784) 3 76.39 (± 0.96) 75.82 (± 0.90) 75.42 (± 0.91)
MLP-1 (MAT) ? 68.66 (± 0.99) 67.65 (± 1.13) 66.88 (± 1.45)
MLP-1 (MAT) 68.93 (± 1.32) 67.86 (± 0.94) 66.98 (± 0.75)

RF [13] (biflow-based) 79.56 (± 0.62) 78.73 (± 0.62) 78.37 (± 0.76)

tively, obtained by the RF. We notice that, in both datasets, 1D-
CNN (L7-784) achieves very similar performance to 2D-CNN
(L7-784). This result confirms the intuition that discriminative
information from traffic should be extracted by naturally
considering data as one-dimensional (viz. time-series). A
similar reasoning applies to iOS case, where LSTM performs
the best in terms of the three considered metrics, but only when
port information is taken into account (i.e. with “MAT ?”
input). Differently, a significant performance drop is observed
for each DL classifier with “MAT” input compared to its
counterpart including both source and destination TCP/UDP
ports in the input (“?” marker). For example, up to −19.68% in

F-measure is observed for multi-class datasets, with the worst
drop affecting LSTM in the iOS case. Finally, referring to the
FB/FBM dataset (cf. Tab. IV), only the 2D-CNN (L7-784) is
able to outperform the shallow classifiers MLP-1 (L7-1000/L7-
784) in terms of all the metrics analyzed. Nonetheless, in
the binary dataset neither the best DL classifier is able to
achieve performance comparable with biflow-based RF. This
may be attributed to the need of a more informative type of
input, providing a higher discriminative power in the case
of very similar apps, like FB and FBM. Finally, focusing
on the DL approaches with “MAT” input, results highlight
a different trend w.r.t. the multi-class datasets, with FB/FBM
classification task almost being port-independent, showing
even a slight performance gain (e.g. +1.51% accuracy with
a 2D-CNN (MAT)) when ports are removed. This may be the
consequence of high port randomization or/and (likely) use of
overlapping port sets (e.g. corresponding to common services).

Top-K Accuracy: Delving into performance of DL-based
classifiers, in Tab. V we report their Top-K accuracy (K ∈
{1, 3, 5}) on the multi-class datasets. From now on we exclude,
for brevity, the results of DL classifiers based on biased
inputs. By looking at these fine-grained results, we observe
that, other than the highest DL accuracy, 1D-CNN (resp. 2D-
CNN) (L7-784) reports also the highest global (soft-output)
behavior on the Android (resp. iOS) dataset, e.g. 91.51% and
93.45% (resp. 91.02% and 93.32%) accuracy when the Top-3
and Top-5 predicted apps are considered, respectively.10 Also,
although shallow (baseline) classifiers present an accuracy
increase due to a larger pool of predicted apps taken into
consideration, they are never able to approach the same score
as the best DL classifiers, confirming also an improved global
behavior of the latter (viz. learning of the TC task as a whole).

10Still, 1D-CNN (L7-784) performs almost on par on iOS dataset.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 9

Table V: Top-K accuracy [%] of DL-based and baseline traffic classifiers. Results refer to the multi-class datasets and are in the format avg.
(± std.) obtained over 10-folds. Only the classifiers fed with unbiased inputs are shown. Best-performing DL-based and shallow classifiers
are highlighted for both datasets.

Architecture
Android iOS

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

SAE [22] (L7-1000) 75.15 (± 1.52) 82.16 (± 0.85) 85.53 (± 0.72) 74.55 (± 0.80) 82.73 (± 0.92) 86.58 (± 0.79)
2D-CNN [20] (L7-784) 85.46 (± 0.48) 91.36 (± 0.31) 93.35 (± 0.30) 82.72 (± 1.47) 91.02 (± 0.42) 93.32 (± 0.33)
1D-CNN [21] (L7-784) 85.70 (± 0.45) 91.51 (± 0.27) 93.45 (± 0.29) 82.64 (± 1.63) 90.95 (± 0.36) 93.29 (± 0.32)

2D-CNN [23] (MAT) 76.01 (± 0.70) 86.49 (± 0.53) 90.32 (± 0.39) 68.53 (± 0.61) 82.75 (± 0.46) 87.96 (± 0.36)
LSTM [23] (MAT) 73.64 (± 1.56) 85.58 (± 0.58) 89.93 (± 0.50) 66.50 (± 1.03) 81.94 (± 0.88) 87.23 (± 0.73)

LSTM + 2D-CNN [23] (MAT) 77.95 (± 0.41) 87.38 (± 0.37) 90.80 (± 0.29) 69.17 (± 0.64) 82.23 (± 0.38) 87.16 (± 0.39)
2D-CNN [24] (DIR-784) 40.11 (± 0.56) 58.88 (± 0.56) 68.29 (± 0.52) 32.95 (± 0.65) 53.91 (± 0.72) 64.40 (± 0.63)

MLP-2 [24] (DIR-784) 27.94 (± 0.82) 42.02 (± 0.26) 51.75 (± 0.27) 21.17 (± 0.44) 40.40 (± 0.55) 50.84 (± 0.64)

MLP-1 (L7-1000) 77.76 (± 0.38) 85.96 (± 0.30) 89.11 (± 0.20) 76.11 (± 0.84) 85.86 (± 0.65) 89.48 (± 0.51)
MLP-1 (L7-784) 78.71 (± 0.65) 86.93 (± 0.40) 89.88 (± 0.37) 77.16 (± 0.63) 86.96 (± 0.50) 90.40 (± 0.51)

MLP-1 (MAT) 69.94 (± 0.47) 79.22 (± 0.51) 84.94 (± 0.34) 54.42 (± 0.63) 72.47 (± 0.59) 80.03 (± 0.56)

RF [13] (flow-based) 84.78 (± 0.30) 91.69 (± 0.31) 93.89 (± 0.24) 80.78 (± 0.79) 90.70 (± 0.61) 93.58 (± 0.52)

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

1 4 7 1013161922252831343740434649

A
c
tu

a
l
C

la
s
s

Predicted Class

 0.1

 1

 10

 100

(a) 1D-CNN [21] (L7-784).

1

5

9

13

17

21

25

29

33

37

41

45

1 5 9 13 17 21 25 29 33 37 41 45

A
c
tu

a
l
C

la
s
s

Predicted Class

 0.1

 1

 10

 100

(b) 2D-CNN [20] (L7-784).

FB

FBM

FB FBM
A

c
tu

a
l
C

la
s
s

Predicted Class

76.85 23.15

30.44 69.56

FB

FBM

FB FBM

(c) 1D-CNN [21] (L7-784).

1 = 360Security 2 = 6Rooms 3 = 80sMovie 4 = 9YinZhenJing
5 = Anghami 6 = BaiDu 7 = Crackle 8 = EFood
9 = FrostWire 10 = FSecureVPN 11 = Go90 12 = Google+
13 = GoogleAllo 14 = GoogleCast 15 = GoogleMaps 16 = GooglePhotos
17 = GooglePlay 18 = GroupMe 19 = Guvera 20 = Hangouts
21 = HidemanVPN 22 = Hidemyass 23 = Hooq 24 = HotSpot
25 = IFengNews 26 = InterVoip 27 = LRR 28 = MeinO2
29 = Minecraft 30 = Mobily 31 = Narutom 32 = NetTalk
33 = NileFM 34 = Palringo 35 = PaltalkScene 36 = PrivateTunnelVPN
37 = PureVPN 38 = QQ 39 = QQReader 40 = QianXunYingShi
41 = RaidCall 42 = Repubblica 43 = RiyadBank
44 = Ryanair 45 = SayHi 46 = Shadowsocks
47 = SmartVoip 48 = Sogou 49 = eBay

(d) Android Labels

1 = 360Security 2 = 6Rooms 3 = 80sMovie 4 Anghami
5 = AppleiCloud 6 = BaiDu 7 = Brightcove 8 = Crackle
9 = EFood 10 = FSecureVPN 11 = Go90 12 = Google+
13 = GoogleAllo 14 = GoogleCast 15 = GoogleMaps 16 = GooglePhotos
17 = GroupMe 18 = Guvera 19 = Hangouts 20 = HiTalk
21 = HidemanVPN 22 = Hidemyass 23 = Hooq 24 = HotSpot
25 = IFengNews 26 = LRR 27 = MeinO2 28 = Minecraft
29 = Mobily 30 = Narutom 31 = NetTalk 32 = NileFM
33 = Palringo 34 = PaltalkScene 35 = PrivateTunnelVPN 36 = PureVPN
37 = QQReader 38 = QianXunYingShi 39 = Repubblica
40 = Ryanair 41 = SayHi 42 = Shadowsocks
43 = Sogou 44 = eBay 45 = iMessage

(e) iOS Labels

Figure 3: Confusion matrices of the best DL-based classifier for the (a) Android, (b) iOS, and (c) FB/FBM datasets. Note that the log scale
is used to evidence small errors (except for FB/FBM). Categorical class-labels are reported for the (d) Android and (e) iOS datasets.

Such “global” performance gap is even more apparent for
DL classifiers resorting to packet directions, whose best Top-
5 accuracy is only 68.29% (resp. 64.40%) in Android (resp.
iOS) case. Hence, although mobile TC can be conceived as a
conceptually-similar task to WF, it shows higher requirements
w.r.t. the former, since the sole directions are usually sufficient
for training of high-performing WF classifiers [24, 33]. Finally,
the (flow-based) RF classifier provides a slightly better global
behavior than the best DL classifier on the Android dataset,
reaching 91.69% (resp. 93.89%) Top-3 (resp. Top-5) accuracy.

Confusion Matrices: Turning to the details of classifiers be-
havior, Fig. 3 shows the confusion matrices of best-performing
DL-approaches in the three datasets, so as to investigate

noteworthy error-patterns.11 From inspection of the results, the
1D-CNN (L7-784) (in Android and FB/FBM datasets) and 2D-
CNN (L7-784) (in iOS dataset) achieve almost-uniform error
patterns. The FB/FBM matrix contrasts, only at a first look,
the earlier result shown in [18], referring to an older (smaller
and class-imbalanced) version of the dataset. However, the
results on the current (balanced) dataset are not significantly
better, implying that the main error source on FB/FBM arises
from the inadequacy of the considered pairs of input and DL
architecture, as well as the traffic similarity of the two apps.

11Since 1D-CNN (L7-784) and 2D-CNN (L7-784) perform about on par
on the multi-class dataset, we have chosen the one with the highest accuracy.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 10

 0

 25

 50

 75

 100

 125

 150

Android iOS FB/FBM

R
T

P
E

 [
s
]

SAE (L7-784)
2D-CNN (L7-784)
1D-CNN (L7-784)

2D-CNN (MAT)
LSTM (MAT)

2D-CNN+LSTM (MAT)
2D-CNN (DIR-784)

MLP-2 (DIR-784)

Figure 4: Run-Time Per Epoch (RTPE) of DL-based traffic classifiers. Results are in the format avg. (± std.) obtained over 10-folds. Only
the classifiers fed with unbiased inputs are shown.

Training Complexity of DL Architectures: To investigate
the training complexity of the considered DL classifiers, in
Fig. 4 we report their RTPE obtained in the three datasets.12

Results highlight a natural RTPE decrease of each classifier
when the size of the classification problem is reduced (i.e.
moving from the Android dataset, to the iOS and FB/FBM
datasets). Additionally, the two classifiers reaching the highest
performance are those having the highest RTPE (i.e. 2D-CNN
(L7-784) and 1D-CNN (L7-784)), highlighting a reasonable
performance-complexity tradeoff. Referring to the aforemen-
tioned two classifiers, we remark that 1D-CNN (L7-784)
experiences a higher RTPE than 2D-CNN (L7-784) because
of lower size of the pooling layers (i.e. lower down-sampling)
in its implementation [20, 21]. On the other hand, all DL
classifiers based on “MAT” input present a significantly lower
complexity, being this a direct consequence of the lower-
dimension input set (20 × 6 = 120 as opposed to 784).
Analogous considerations apply to DL classifiers based on
“DIR-784” input, having a lower complexity than those based
on “L7-784”, because the former are binary valued, with the
2D-CNN (DIR-784) having a higher complexity w.r.t. MLP-2
(DIR-784), because of its more complex architecture. Finally
we highlight that Fig. 4 reports, for the SAE, only the RTPE
score corresponding to the fine-tuning phase (i.e. in which the
SAE is trained in a supervised fashion as a “deep” MLP)
and thus neglects its pre-training stage, which contributes
additively to RTPE with a linear growth in the number of
AE layers (since it is done in a layer-wise fashion).13

Performance vs. Input Size: Focusing our investigation
toward the choice of the most discriminative forms of input
types, in Fig. 5 we report accuracy, F-measure, and G-mean
for the best DL classifier based on two types14 of (unbiased)
input data considered herein (i.e. “MAT-Np” and “L7-N”) vs.
the number of packets Np and payload bytes N , respectively.
To highlight the relevant input size-complexity trade-off, we
also report the RTPE measure vs. the size of the considered

12The times refer to the same hardware architecture (8× Intel(R) Core(TM)
i7-4710MQ CPU @ 2.50GHz with Ubuntu 16.04 (64 bit)) in the same load
conditions (i.e. the DL classifier is the sole CPU-intensive running process).

13For example, in our scenario, the observed RTPE for the pre-training
phase (of five AE layers) equals 16.97 (±0.27) s in Android, 11.35 (±0.08) s
in iOS, and 9.21 (±0.15) s in FB/FBM case.

14We omit, for brevity, the performance with “DIR-Np” input, as it has
been shown to be unable to reach satisfactory performance and its behavior
with varying Np can be qualitatively inferred from “MAT-Np” results.

input data. From the inspection of results, it is apparent that, in
the case of Np input (Fig. 5 (a-c)), there is a unimodal behavior
and 16−20 packets are usually enough to achieve the highest
performance (denoting a higher requirement w.r.t. the results
shown in [23]), whereas, in the payload size case (Fig. 5 (d-
f)), such trend is less obvious (although N = 784 is observed
to be the best choice among the different sizes considered).
On the other hand, in both cases an almost-linear increase of
the RTPE with the input size is apparent. The only exception
is given by Np = 4: the reason is that, so as to implement the
same DL architecture with a very small input, we had to resort
to a different padding choice, implying additional complexity.

Performance vs. Reject Option: As a complementary anal-
ysis, Fig. 6 shows the accuracy, F-measure, and G-mean (first,
second, and third row of plots, respectively) of both the best
DL approach and shallow classifier vs. the censoring threshold
γ on the three considered datasets. All the plots include, for
a complete comparison, the CR vs. γ. This analysis delves
into the possibility for DL architectures to classify apps more
accurately only from reliably-labeled biflows. We notice that
a threshold value implying different performance w.r.t unclas-
sified samples can be theoretically observed only if γ ≥ 1/L
(recall that L denotes the number of classes). This corresponds
to≈ 0.02 in the case of Android and iOS datasets, whereas this
value equals 0.5 for the FB/FBM dataset. Results show that
all the methods globally benefit from increasing γ at the price
of a decreasing ratio of classified instances. However, only
in the multi-class dataset it is evident a relevant performance
improvement with a negligible ratio of unclassified samples,
whereas for the FB/FBM (binary) dataset this trend is sharper
and less advantageous (although the best DL classifier tends
to be “less wrong” than its shallow counterpart, while having
almost the same CR vs. γ profile). Since the marginal gain
of DL classifiers w.r.t. shallow counterparts can be observed
over all the γ range, we can infer that more sophisticated
DL architectures (and more informative inputs) would be
needed for an accurate classification. Specifically, by rejecting
the classification of only 10% of instances, in the case of
Android dataset, the 1D-CNN (L7-784) is able to achieve
≥ 90% accuracy, ≥ 85% F-measure, and ≥ 90% G-Mean.
Similarly, for the iOS dataset, the 2D-CNN (L7-784) achieves
84÷88%, scores with the same CR. Unluckily, in the FB/FBM
case, achieving the same target performance would require
≥ 40% biflows to be censored. This result again underlines the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 11

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 4 8 12 16 20 24 28 32
 0

 10

 20

 30

 40

 50

 60

P
e
rc

e
n
ta

g
e

s

Np

Accuracy
F-measure

G-mean
RTPE

(a) LSTM + 2D-CNN [23].

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 4 8 12 16 20 24 28 32
 0

 5

 10

 15

 20

 25

 30

P
e
rc

e
n
ta

g
e

s

Np

Accuracy
F-measure

G-mean
RTPE

(b) LSTM + 2D-CNN [23].

 55

 60

 65

 70

 75

 80

 4 8 12 16 20 24 28 32
 0

 5

 10

 15

 20

 25

 30

P
e
rc

e
n
ta

g
e

s

Np

Accuracy
F-measure

G-mean
RTPE

(c) LSTM + 2D-CNN [23].

 65

 70

 75

 80

 85

 90

 95

256 576 784 1024 1600 2304
 0

 100

 200

 300

 400

 500

P
e
rc

e
n
ta

g
e

s

N

Accuracy
F-measure

G-mean
RTPE

(d) 1D-CNN [21].

 65

 70

 75

 80

 85

 90

256 576 784 1024 1600 2304
 0

 50

 100

 150

 200

 250

P
e
rc

e
n
ta

g
e

s

N

Accuracy
F-measure

G-mean
RTPE

(e) 2D-CNN [20].

 50

 55

 60

 65

 70

 75

 80

 85

 90

256 576 784 1024 1600 2304
 0

 50

 100

 150

 200

 250

 300

P
e
rc

e
n
ta

g
e

s

N

Accuracy
F-measure

G-mean
RTPE

(f) 1D-CNN [21].

Figure 5: Performance of the best DL-based classifier fed with “MAT-Np” input (top row) and “L7-N” input (bottom row): Accuracy [%],
F-measure [%], G-mean [%] (left axis), and RTPE [s] (right axis) vs. first Np packets (top row) and first N bytes (bottom row), for the
Android (a, d), iOS (b, e), and FB/FBM (c, f) datasets. Average on 10-folds and corresponding ±3σ confidence interval are shown.

DL framework limitations in tackling an “overlapped-apps”
classification task with the present input/architecture choices.

V. LESSONS LEARNED AND CHALLENGES

We tackled TC of mobile (encrypted) traffic via a DL
approach for the first time in the literature. Our work provided
not only a wide experimental analysis based on a newly-
developed framework for comprehensive evaluation and com-
parison (Fig. 1) obtained by dissecting existing DL works in
standard TC, but also the vital groundwork for sound advances
on the general encrypted TC topic. Precisely, this analysis has
enabled the surfacing of a list of guidelines and sparks, and
highlights caveats of traffic analysis domain, so as to avoid
pitfalls in the design and evaluation of DL-based (mobile)
traffic classifiers and be the springboard of real-world imple-
mentations [44]. Hereinafter we summarize our conclusions as
lessons learned, each with corresponding open challenges.

Comprehensive performance evaluation framework: The
presence of several DL architectures highlights the need for
a rigorous performance evaluation framework in (mobile) TC.
This work provided a first attempt to its formalization. Recent
literature has ascertained that a naïve accuracy comparison is
not sufficient, and measures reflecting a per-app behavior (F-
measure, G-mean, confusion matrices, etc.) are increasingly
considered [10, 16], given the high app number potentially in-
volved in the classification task. Going further, we investigated
DL architectures output at a finer detail by means of Top-K
accuracy and by providing a performance analysis with a reject
option, being essential in highly multi-instance and multi-class
classification tasks, respectively, such as the mobile one [10].

This analysis was also enriched with a training-phase com-
plexity evaluation of DL architectures (via the defined RTPE).
Indeed, although test complexity is directly associated to the

classifier at run-time, training complexity equally represents
a key aspect in mobile TC, where frequent re-training of a
classifier is required, due to aging of training data because of
apps/OS updates [10, 30]. For completeness, the framework
included a baseline “shallow” network to assess DL (clas-
sification) performance gain and a state-of-the-art ML-based
classifier [13], using handcrafted and flow-based features.

The lack of a comprehensive and principled approach to
DL-based classifiers applied to TC has been the main moti-
vation to this work. This challenge is specifically important
in research on TC as it is affected by the lack of up-to-date
human-generated public datasets. This can be mainly attributed
to the difficulty of anonymizing traffic traces in ways that
both do not significantly affect the information useful for
classification, and preserve users privacy in the face of future
de-anonymization attacks. This issue is further worsened for
mobile traffic, where the possibility of sharing significant and
up-to-date datasets is hindered by both the highest privacy
concerns and fast-paced evolution of traffic mix. Hence, an
agreed-upon and comprehensive approach to comparison is
vital to the progress of knowledge in this field. With this work
we highlight this challenge, and provide a first response to it.

Unbiased and informative input: Mobile TC presents its
own peculiarities, which hinder the straightforward applica-
tion of DL classifiers originated from other domains (e.g.
image/speech processing), as clearly shown in this work.
Indeed, a DL classifier fed with all the data contained in
a packet (or in a set of packets) likely leads to misleading
performance results. One relevant case is [20, 21], adopting
the “ALL layers” input, and thus overlooking the presence of
PCAP metadata. Similarly, the input proposed in [23] includes
port numbers, yielding DL statistical port-based architectures.
Furthermore, whether destination port may be useful in some

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 12

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

Accuracy
CR

Shallow Accuracy
Shallow CR

(a) 1D-CNN [21].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

Accuracy
CR

Shallow Accuracy
Shallow CR

(b) 2D-CNN [20].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

Accuracy
CR

Shallow Accuracy
Shallow CR

(c) 1D-CNN [21].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

F-measure
CR

Shallow F-measure
Shallow CR

(d) 1D-CNN [21].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

F-measure
CR

Shallow F-measure
Shallow CR

(e) 2D-CNN [20].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

F-measure
CR

Shallow F-measure
Shallow CR

(f) 1D-CNN [21].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

G-mean
CR

Shallow G-mean
Shallow CR

(g) 1D-CNN [21].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

G-mean
CR

Shallow G-mean
Shallow CR

(h) 2D-CNN [20].

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e
rc

e
n
ta

g
e

γ

G-mean
CR

Shallow G-mean
Shallow CR

(i) 1D-CNN [21].

Figure 6: Accuracy (a-c), F-measure (d-f), G-mean (g-i), and ratio of classified samples (CR) [%] vs. censoring threshold γ of the best
DL-based classifier, fed with “L7-784” input, for the Android (a, d, g), iOS (b, c, h), and FB/FBM (c, f, i) datasets. Average on 10-folds
and corresponding ±3σ confidence interval are shown.

“static” contexts, this is never the case for the source port,
which is subject to a choice depending on sequential number-
ing or, in a more sophisticated fashion, to randomization. On
the other hand, the directions of packets belonging to a biflow
(albeit representing an unbiased input type) were shown to
be not informative enough as in the case of WF [24, 33, 34].
Therefore, a key outcome of this study was to skim informative
and unbiased information from traffic data to be used as DL
classifiers’ input. Finally, since the complexity of DL-based
traffic classifiers directly depends on the size of the input
data, we preliminary investigated the “minimum required” size
for each type of input for an accurate classification. Results
have shown that, whether the fields of the first 16 to 20
packets are usually sufficient to reach the highest performance
reported with “MAT-Np” input, a clear trend is not evident for
payload input “L7-N”. Accordingly, this motivates a deeper
investigation, also in terms of a more effective representation
of payload (i.e. byte-based or at a higher/lower resolution).

Associated with this lesson learned, we surface the chal-
lenge of carefully analyzing and selecting the input of DL
algorithms. Unluckily an elaborated input selection process
contrasts one of the main promises of DL approaches, i.e.

the reduced need of domain expertise. Indeed, this process
potentially limits the generality of the obtained solution. In
the case of DL-based classifiers, this issue is worsened by
the black-box nature of most algorithms, as the performance
impact of specific inputs is barely or not-at-all predictable.
Hence, striking the right balance between naive application
and expertise-driven effort constitutes a still open challenge.

Choice of TC object: This work, for brevity and consistency
with surveyed DL-based traffic classifiers, only considered
biflow-based TC, given the higher performance experienced
w.r.t. its flow-based counterpart [20, 21]. However, recent
mobile TC literature has shown the appeal of TC objects
exploiting the bursty traffic nature (namely, the “service
burst”) [10, 13, 16, 25]. Although appealing, a definition of
reasonable (and effective) input data for the latter TC object
is not as straightforward as in the case of (bi)flows given the
presence of a varying number of biflows toward the same desti-
nation IP/port. Moreover, while there is longstanding practical
experience and mature technology working with biflows, using
classification results from service bursts becomes hard to
translate into actionable and sensible reactions. Therefore, this
aspect deserves further attention and research in our opinion.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 13

Fine-grained design of DL traffic classifiers: Results in
Sec. IV-B, based on SAE, CNN, LSTM, and hybrid archi-
tectures, highlighted that there is no “killer” DL architecture
for mobile TC. Indeed, the most the DL model fits the nature
of the input data, the better it is expected to perform (one
relevant example is the comparison of 1D- and 2D-CNN based
on payload data which is, by definition, one-dimensional).
Moreover, from our analysis of the literature we found that the
tuning of hyper-parameters of DL algorithms is substantially
overlooked (just tentative values are provided, if at all).

From these observations we derive that, given the het-
erogeneous information available from traffic data, the need
for advanced hybrid DL architectures arises. Also, though
DL architectures relieve the designer from the feature design
issue, they come with many hyper-parameters to be tuned
(e.g. the optimizer, the number of layers/hidden nodes, the
regularizers). To explore the performance gain brought by
fine-grained design, this further process can be as complex
and resource-demanding as feature design. On the plus side,
differently from feature design this process can be automated,
as it is less domain-driven.
Further challenges posed by DL in the field of TC pertain to
the training dataset. Indeed, although a key issue of DL is the
high requirement on training data (to allow the “surfacing”
of deep representations), in the supervised context of mobile
TC, the aspect of the purity of labeled samples used for
training (i.e. the ground-truth quality) is equally important,
with (coarse) trace-level labeling probably not representing the
“purest” strategy (i.e. including some non-app instances).

We conclude confirming that DL algorithms applied to
mobile TC indeed constitute a promising approach, but the
current state of research on this application has yet to reach
the maturity level of DL in other fields. In this work we have
systematically explored this aspect and provided guidelines
and directions to face the challenges that we surfaced.

REFERENCES

[1] A. Dainotti, A. Pescapè, and K. C. Claffy. Issues and
future directions in traffic classification. IEEE Network,
26(1), 2012.

[2] N. Heuveldop et al. Ericsson mobility report. Ericsson
AB, Technol. Emerg. Business, Stockholm, Sweden, Tech.
Rep. EAB-17, 5964, 2017.

[3] D. Rajashekar, N. Zincir-Heywood, and M. Heywood.
Smart phone user behaviour characterization based on
autoencoders and self organizing maps. In IEEE 16th
International Conference on Data Mining Workshops
(ICDMW), 2016.

[4] Y. Fu, J. Liu, X. Li, and H. Xiong. A multi-label
multi-view learning framework for in-app service usage
analysis. ACM Transactions on Intelligent Systems and
Technology (TIST), 9(4), 2018.

[5] Sandvine. Global Internet Phenomena Spotlight: En-
crypted Internet Traffic., 2016.

[6] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez,
S. Sundaresan, J. Amann, and P. Gill. Studying TLS
usage in Android apps. In 13th ACM CoNEXT, 2017.

[7] G. Aceto, A. Dainotti, W. De Donato, and A. Pescapè.
PortLoad: taking the best of two worlds in traffic classi-
fication. In IEEE Conference on Computer Communica-
tions (INFOCOM) Workshops, 2010.

[8] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M.
Mao. SAMPLES: Self adaptive mining of persistent
lexical snippets for classifying mobile application traf-
fic. In ACM 21st International Conference on Mobile
Computing and Networking (MobiCom), 2015.

[9] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon,
Q. Zhang, X. Zhang, D. Xu, and J. Qian. Eavesdropping
on fine-grained user activities within smartphone apps
over encrypted network traffic. In USENIX Workshop on
Offensive Technologies (WOOT), 2016.

[10] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic.
Robust smartphone app identification via encrypted net-
work traffic analysis. IEEE Transactions on Information
Forensics and Security, 13(1), 2018.

[11] V. Carela-Español, P. Barlet-Ros, M. Solé-Simó, A. Dain-
otti, W. de Donato, and A. Pescapè. K-dimensional trees
for continuous traffic classification. In TMA 2010, Zurich,
Switzerland, 2010.

[12] Y.-D. Lin, C.-N. Lu, Y.-C. Lai, W.-H. Peng, and P.-C. Lin.
Application classification using packet size distribution
and port association. Journal of Network and Computer
Applications, 32(5), 2009.

[13] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic.
Appscanner: Automatic fingerprinting of smartphone
apps from encrypted network traffic. In IEEE European
Symposium on Security and Privacy (EuroS&P), 2016.

[14] A. Hajjar, J. Khalife, and J. Díaz-Verdejo. Network
traffic application identification based on message size
analysis. Journal of Network and Computer Applications,
58, 2015.

[15] A. Dainotti, F. Gargiulo, L. I. Kuncheva, A. Pescapé, and
C. Sansone. Identification of traffic flows hiding behind
TCP port 80. In 2010 IEEE International Conference on
Communications, May 2010.

[16] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè.
Multi-classification approaches for classifying mobile
app traffic. Journal of Network and Computer Appli-
cations, 103, 2018.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep
learning. MIT press, 2016.

[18] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè. Mo-
bile encrypted traffic classification using deep learning.
In IEEE/ACM Network Traffic Measurement and Analysis
Conference (TMA), 2018.

[19] Z. Wang. The Applications of Deep Learning on Traffic
Identification., 2015.

[20] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng.
Malware traffic classification using convolutional neural
network for representation learning. In IEEE Interna-
tional Conference on Information Networking, 2017.

[21] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang.
End-to-end encrypted traffic classification with one-
dimensional convolution neural networks. In IEEE
International Conference on Intelligence and Security

https://www.sandvine.com/hubfs/downloads/archive/global-internet-phenomena-spotlight-encrypted-internet-traffic.pdf
https://www.sandvine.com/hubfs/downloads/archive/global-internet-phenomena-spotlight-encrypted-internet-traffic.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH YYYY 14

Informatics (ISI), 2017.
[22] M. Lotfollahi, R. Shirali, M. J. Siavoshani, and

M. Saberian. Deep packet: a novel approach for en-
crypted traffic classification using Deep Learning. arXiv,
2017.

[23] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and
J. Lloret. Network traffic classifier with convolutional
and recurrent neural networks for Internet of Things.
IEEE Access, 5, 2017.

[24] S. E. Oh, S. Sunkam, and N. Hopper. Traffic analysis
with deep learning. arXiv, 2017.

[25] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic. Who
do you sync you are? smartphone fingerprinting via
application behaviour. In ACM WISEC, 2013.

[26] Q. Wang, A. Yahyavi, B. Kemme, and W. He. I know
what you did on your smartphone: Inferring app usage
over encrypted data traffic. In IEEE Conference on
Communications and Network Security (CNS), 2015.

[27] J. Kampeas, A. Cohen, and O. Gurewitz. Traffic classifi-
cation based on zero-length packets. IEEE Transactions
on Network and Service Management, 15(3), Sept 2018.

[28] K. Shahbar and A. N. Zincir-Heywood. Packet momen-
tum for identification of anonymity networks. Journal of
Cyber Security and Mobility, 6(1), 2017.

[29] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde.
Analyzing android encrypted network traffic to identify
user actions. IEEE Trans. Inf. Forensics Security, 11(1),
2016.

[30] H. F. Alan and J. Kaur. Can Android applications be
identified using only TCP/IP headers of their launch time
traffic? In 9th ACM Conference on Security & Privacy
in Wireless and Mobile Networks (WiSec), 2016.

[31] D. Herrmann, R. Wendolsky, and H. Federrath. Website
fingerprinting: attacking popular privacy enhancing tech-
nologies with the multinomial Naïve-Bayes classifier. In
ACM workshop on Cloud computing security, 2009.

[32] M. Liberatore and B. N. Levine. Inferring the source of
encrypted HTTP connections. In ACM 13th conference
on Computer and communications security (CCS), 2006.

[33] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem,
and W. Joosen. Automated feature extraction for website
fingerprinting through Deep Learning. arXiv, 2017.

[34] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep
fingerprinting: Undermining website fingerprinting de-
fenses with deep learning. arXiv, 2018.

[35] C. Zhang, X. Wang, F. Li, Q. He, and M. Huang.
Deep learning–based network application classification
for SDN. Wiley Transactions on Emerging Telecommu-
nications Technologies, 2018.

[36] H. Huang, H. Deng, J. Chen, L. Han, and W. Wang. Au-
tomatic multi-task learning system for abnormal network
traffic detection. Int. Journal of Emerging Technologies
in Learning, 13(4), 2018.

[37] Y.-C. Chen, Y.-J. Li, A. Tseng, and T. Lin. Deep learning
for malicious flow detection. In IEEE 28th International
Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC), 2017.

[38] H. Shi, H. Li, D. Zhang, C. Cheng, and X. Cao. An effi-

cient feature generation approach based on deep learning
and feature selection techniques for traffic classification.
Computer Networks, 2018.

[39] L. Vu, C. T. Bui, and Q. U. Nguyen. A deep learning
based method for handling imbalanced problem in net-
work traffic classification. In ACM SoICT, 2017.

[40] D. Li, Y. Zhu, and W. Lin. Traffic identification of
mobile apps based on variational autoencoder network.
In 13th IEEE International Conference on Computational
Intelligence and Security (CIS), 2017.

[41] G. D. Gil, A. H. Lashkari, M. Mamun, and A. A. Ghor-
bani. Characterization of encrypted and VPN traffic using
time-related features. In 2nd International Conference on
Information Systems Security and Privacy, 2016.

[42] F. Chollet et al. Keras. https://keras.io, 2015.
[43] L. Bernaille, R. Teixeira, and K. Salamatian. Early

application identification. In ACM CoNEXT, 2006.
[44] W. De Donato, A. Pescapé, and A. Dainotti. Traffic

identification engine: an open platform for traffic clas-
sification. IEEE Network, 28(2), 2014.

Giuseppe Aceto is an Assistant Professor at Uni-
versity of Napoli Federico II. He has a PhD in
telecommunication engineering from the same Uni-
versity. His work falls in monitoring of network
performance and security (focusing on censorship)
both in traditional and SDN network environments.
He is also working on bioinformatics and ICTs
applied to health. He is the recipient of a best paper
award at IEEE ISCC 2010, and 2018 Best Journal
Paper Award by IEEE CSIM.

Domenico Ciuonzo (S’11-M’14-SM’16) is Assis-
tant Professor at University of Napoli Federico II,
Italy. He holds a Ph.D. in Electronic Engineering
from University of Campania “L. Vanvitelli”, Italy
and, from 2011, he has held several visiting re-
searcher appointments. Since 2014 he is editor of
several IEEE, IET and ELSEVIER journals. His re-
search interests include data fusion, statistical signal
processing, wireless sensor networks, traffic analysis
and machine learning.

Antonio Montieri is a PhD Student at the De-
partment of Electrical Engineering and Information
Technology of the University of Napoli Federico II
since 2017. He has received his MS Degree from
the same University in 2015. His work is focused on
network measurements, (encrypted and mobile) traf-
fic classification and modeling, monitoring of cloud
network performance. Antonio has co-authored 15
papers and 5 posters accepted for publication in
international journals and conference proceedings.

Antonio Pescapè (SM’09) is a Full Professor of
computer engineering at the University of Napoli
Federico II. His work focuses on Internet technolo-
gies and specifically on measurement, monitoring,
and analysis of the Internet. He has co-authored
more than 200 papers and is the recipient of a
number of awards. He is involved in several research
projects on Internet Technologies and he is reviewer
and evaluator of research projects for international
agencies, governments, and EU commission.

https://keras.io

	Introduction
	Background
	Classification of Mobile Encrypted Traffic
	Website Fingerprinting using Deep Learning
	Standard Traffic Classification using Deep Learning

	Framework for comparison and tuning of Deep Learning–based Traffic Classification
	Traffic Object
	Types of Input Data
	Deep Learning–based Classification Architectures
	Performance Evaluation Workbench

	Experimental Evaluation
	Datasets Description
	Baselines Considered and Classification Results

	Lessons Learned and Challenges
	Biographies
	Giuseppe Aceto
	Domenico Ciuonzo (S'11-M'14-SM'16)
	Antonio Montieri
	Antonio Pescapè (SM’09)

