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a b s t r a c t

Traffic Classification (TC), consisting in how to infer applications generating network traffic, is currently
the enabler for valuable profiling information, other than being the workhorse for service differentiation/
blocking. Further, TC is fostered by the blooming of mobile (mostly encrypted) traffic volumes, fueled by
the huge adoption of hand-held devices. While researchers and network operators still rely on machine
learning to pursue accurate inference, we envision Deep Learning (DL) paradigm as the stepping stone
toward the design of practical (and effective) mobile traffic classifiers based on automatically-
extracted features, able to operate with encrypted traffic, and reflecting complex traffic patterns. In this
context, the paper contribution is fourfold. First, it provides a taxonomy of the key network traffic anal-
ysis subjects where DL is foreseen as attractive. Secondly, it delves into the non-trivial adoption of DL to
mobile TC, surfacing potential gains. Thirdly, to capitalize such gains, it proposes and validates a general
framework for DL-based encrypted TC. Two concrete instances originating from our framework are then
experimentally evaluated on three mobile datasets of human users’ activity. Lastly, our framework is
leveraged to point to future research perspectives.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

In last years network operators have experienced tremendous
growth of network traffic, mostly generated by mobile devices
[1]. To face this unique challenge, sophisticated network monitor-
ing systems, incorporating intelligence through machine learning
(ML), are employed by several network players [2]. Yet, their suc-
cess resorts to the design of handcrafted features, thanks to
domain experts. Such process is impractical when facing the fast-
paced mobile traffic evolution, because it can be neither automated
nor crowdsourced to non-experts (due to the high specialization
required). After a large number of ML-based approaches [3–6],
recently deep learning (DL) [7,8], a cutting-edge subset of ML tech-
niques, has emerged as the disruptive breakthrough toward the
automatic design of accurate inference systems able to capture
complex dependencies among data, thus limiting human expert
intervention.
A pillar for network monitoring services is represented by traffic
classification (TC) [9], namely how to infer the application generat-
ing the traffic. Indeed, TC represents a key prerequisite for security
and QoS enforcement, and additional appeal is arising formobile TC
[10–13] due to its potential for valuable profiling information (e.g.
to advertisers and security agencies), while also implying privacy
downsides (e.g. recognition of health or dating apps, or in bring-
your-own-device scenarios). Concurrently, the broad adoption of
encrypted protocols (TLS) and dynamic ports blocks the road to
accurate TC, defeating traditional deep packet inspection and
port-based techniques [9,14]. This paves the way to DL techniques,
here envisioned as the stepping stone toward the fulfillment of
high performance in the challenging encrypted traffic [11,15] con-
texts, allowing to train classifiers directly from input data by auto-
matically distilling structured and complex feature representations
[7,16]. Still, DL adoption in network TC is thorny, and currently less
understood [13]. More important, other than the encrypted-traffic
issue, mobile TC is marked by a high number of apps, possibly gen-
erating similar traffic patterns and with complex fingerprints. The
latter is due to scarce number of training samples per app and
device/OS/version diversity. Hence, such challenging and dynamic
scenario justifies DL higher complexity and training requirements.
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Table 1
Summary of the acronyms used in the manuscript.

Acronym Definition

CNN Convolutional Neural Network
CR Classified Ratio
DL Deep Learning
ECE Expected Calibration Error
FB FaceBook
FBM FaceBook Messenger
KPI Key Performance Indicator
ML Machine Learning
MM Multi Modal
MT Multi Task
RTPE Run Time Per-Epoch
SM Single Modal
ST Single Task
TC Traffic Classification
TI Traffic Identification
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1.1. Summary of the contributions and paper organization

In view of the discussed considerations, the contributions of
this work are manifold:

� We give an overview of the key network traffic analysis subjects
where DL is foreseen as attractive, since their common intent
is to capitalize network-level raw data automatically to extract
valuable info.

� We categorize the state-of-the-art in DL-based TC toward its
effective application in mobile and encrypted context, providing
also a systematic taxonomy, of the most-related literature.

� To pinpoint and overcome the limitations of literature, we pro-
pose a general framework for DL-based mobile and encrypted TC,
based on a rigorous definition of its milestones: (i) the choice
of the traffic object, (ii) the definition of the input(s), (iii) the
simultaneous TC tasks required, and (iv) the corresponding DL
architecture. Thanks to the above framework, clear guidelines
are provided to designers for the judicious choice of relevant
segmentation criteria and unbiased (while effective) input(s)
in DL-based TC [13,17]. More importantly, our proposal over-
comes the design limitations of current works (limited to either
single-modality or single-task learning, e.g. [17–20]), by envi-
sioning the joint use of multi-modal and multi-task techniques
via the ‘‘connectionist” approach granted by DL.

� We validate two actual implementations of the proposed frame-
work on three recent human-generated mobile traffic datasets.
One instance coincides with the best DL-based baseline on
mobile encrypted TC [13], while the other is a novel architecture,
drawn from our proposal, we devise herein to exploit multiple
inputs. We show that the latter instance surpasses the former,
accurately predicts the app generating the traffic, and beats
the state-of-the-art in ML-based mobile TC [11].

� Finally, our framework allows us to surface future perspectives
toward an effective mobile and encrypted TC by means of
advanced DL techniques.

The rest of the paper is organized as follows: Section 2 presents
a review of the recent success achieved by DL in network traffic
analysis; Section 3 provides a categorization of literature back-
ground on TC through DL; the proposed general framework for
DL-based mobile and encrypted TC is described in Section 4, with
Section 5 reporting the experimental validation of its two proposed
implementations; finally, Section 6 suggests insights and possible
future directions.

To foster manuscript readability, Table 1 summarizes the acro-
nyms used in the main text. Conversely, we report those used only
in tables within the corresponding captions.
2. Deep learning in network traffic analysis

Telecom operators and ISPs have a long history of traffic-data
analysis operations, possess a huge availability of network-level
data, and have thus enjoyed decades-long research and applica-
tions on the topic. The huge success of DL in several fields is
recently igniting global interests in exploiting it also in networking,
where its adoption can leverage this solid know-how and help fac-
ing new challenges of mobile network-level data analysis.

To this end, in this section we review the recent success
achieved by DL in network traffic analysis, discussing the key sub-
jects which have found beneficial impact (and can benefit further)
from its adoption, as summarized in Table 2. For each subject, we
highlight the related privacy (P), security (S), and network manage-
ment (M) concerns (possibly even partially affected by the
considered subject), along with the inference task associated (i.e.
time-series prediction or binary/multiclass classification task). More-
over, we list a few exemplifying papers showing the successful
adoption of DL, along with the DL family proposed as the design
solution. We exclude therein traffic identification and classification,
whose detailed analysis is provided in later Table 3.

We remark that this taxonomy is not strictly tight, since some
degree of overlapping could be possible between certain works
on related subjects. A description of these subjects is given here-
inafter. For example, studies tackling malware classification usu-
ally also perform malware detection, as a preliminary step of
their analysis. Moreover, malware and (normal) traffic classifica-
tion have been also investigated together, as in W. Wang et al.
[29] and H. Huang et al. [28] (see Table 3), both as separate prob-
lems or in a multi-task fashion, respectively.

Network Prediction. It refers to forecasting network traffic or
performance indicators given historical measurements or related
data. Specifically for mobile networks, given the high variability
of both traffic and network conditions, and the stringent QoS
requirements of new applications, this constitutes a challenging
subject. Hence, the design of algorithmic solutions with increased
traffic prediction abilities directly reflects on improved network
management.

Anomaly Detection and Attack Classification. The aim is to reveal
anomalies in the traffic due to attacks (anomaly detection) based on
patterns drawn from normal network behavior, and, possibly, to
infer also the specific attack experienced (attack classification).
Accordingly, both these subjects are directly linked to the security
aspect, whereas attack classification allows a finer network man-
agement, for example attack-specific network countermeasures.

Malware Detection and Classification. The aim of malware detec-
tion is to identify whether the observed network traffic is gener-
ated by either legitimate applications or malware, whereas
malware classification also tries to infer the malware type. Hence,
these subjects both pertain to the security aspect. Besides, privacy
aspects are involved when malware provokes data exfiltration,
while the network management aspect is partially (resp. fully)
affected by advances in malware detection (resp. classification).

Website Fingerprinting. The aim is to classify which website
(and, at a finer level, which webpage) has been visited by a user
via its traffic inspection, among a set of websites that an eaves-
dropper is monitoring. Since these sites may be targeted for cen-
sorship, this subject has a direct impact on the network privacy
aspect.

Traffic Identification and Classification. Traffic identification (TI)
consists in identifying a specific application (or protocol) among
the network traffic, modeled as a binary classification task (i.e.
application vs. other). Differently, traffic classification (TC) discrim-
inates several applications (or protocols) among the network traffic



Table 2
Taxonomy of network traffic analysis subjects leveraging DL [21–31]. Concerns: Privacy (P), Security (S), Management (M). DL Family:
AutoEncoder (AE), Convolutional Neural Network (CNN), Deep Belief Network (DBN), Deep Neural Network (DNN), Long Short-Term
Memory (LSTM). ‘‘+” symbol indicates hybrid architectures.
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and constitutes a multi-class generalization of TI. Besides monitor-
ing goals, TI and TC outcomes are capitalized in enforcing specific
policing rules to the targeted application (or class of applications)
traffic, such as prioritization, throttling, or blocking. This leads to a
finer network management. Also, TI and TC are both tightly-
coupled to the privacy aspect, for instance recognition of
context-sensitive apps in mobile scenarios. Lastly, both also have
security applications, such as detection of unexpected or unautho-
rized network services that, although not malicious in nature,
either expose a wider attack surface or violate policies. A deeper
analysis of TI and TC is the object of the next section.

3. Deep learning in traffic classification

In this section we provide an intuitive categorization, via a sys-
tematic taxonomy, of literature on DL-based TI and TC. We point
out that a number of works have faced mobile TC in the last five
years, under encrypted-traffic assumption, mostly using ML and
based on bot-generated traffic [10,11].
On the other hand, the appeal of DL to TC is confirmed by sev-
eral recent works providing initial design attempts of DL-based
traffic classifiers, either not-mobile or not-encrypted. All these
works use human-generated traffic datasets to evaluate their pro-
posals. Also, from our thorough search, TC in the mobile and
encrypted scenario by means of DL appears unexplored, save from
our own preliminary analyses [13,40,39]. Indeed, in mobile and
encrypted context, DL-based TC is challenged by a high number
of apps generating similar traffic patterns, hard-to-learn app fin-
gerprints (due to device/OS/version diversity, encryption, and
scarce number of samples) and bot-generated traffic less represen-
tative of human behaviour.

Accordingly, in Table 3 we summarize and categorize each work
performing TC via DL based on whether (a) it tackles TI, TC, or both,
(b) it focuses on the mobile scenario, and (c) it tackles encrypted
TC. For each study, we surface from a design viewpoint: (i) the traf-
fic segmentation criterion employed (i.e. the traffic object), (ii) the
input type used to feed the classifier, (iii) the specific DL classifier
adopted, and (iv) whether the DL architecture is fed with multiple



Table 3
Recap of previous works adopting DL for TI/TC [18,19,17,29,32,28,33–36,20,37,38,13,39]. All the works use a single input type,
and validate their approach on human-generated traffic. Encrypted Traffic (ET). Multi-Modal (MM). Multi-Task (MT). Traffic object
(TO): biflow (BF), flow (F), HTTP session (H), packet (P); I symbol indicates various applicable traffic objects. Input Data: Raw data
of PCAP trace (PCAP), Xth layer of ISO/OSI model (LX). DL Classifier: AutoEncoder (AE), Auxiliary Classifier Generative Adversarial
Network (AC-GAN), Bidirectional Gated Recurrent Unit (bi-GRU), Convolutional Neural Network (CNN), Deep Belief Network
(DBN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), Stacked AutoEncoder (SAE), Variational AutoEncoder
(VAE); ‘‘+” symbol indicates hybrid architectures.
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types of input (i.e. multi-modal) and handles different TC tasks (i.e.
multi-task). Furthermore, the flag features integrates the viewpoint
(ii), stressing the use of handcrafted features as input data for DL
architectures.

The above categorization prompts some caveats and warning
flags in the adoption of the approaches reported in Table 3 to the
mobile and encrypted context. Each of these is discussed here-
inafter with regards to each separate aspect.

Regarding the traffic objects, we observe that the flows and
biflows are the most-common choices under the encrypted-
traffic assumption, whereas the HTTP sessions cannot be used in
presence of encrypted traffic, due to the need to access the cleart-
ext of transport layer payload to define such packet aggregation.
Similarly, though DL-based TC can in principle be performed on a
per-packet basis [17], the common labeling among packets of the
same communication and the unavailability of cleartext payload
in each encrypted packet discourage the use of this traffic object.

Regarding inputs, although raw payload is widely used as a rel-
evant input type for DL architectures, the size and layer chosen
vary from work to work and layer choices lower than transport
level are likely to introduce bias in TC performance [40]. The same
reasoning applies to byte-converted raw traces including also PCAP
metadata [29,32] and inputs comprising source/destination port
fields [19]. Equally important, the counter-productive application
of DL to manually-extracted traffic features, as opposed to input
data, nullifies a key asset of DL paradigm, that is, no need of
human-expert intervention for designing informative features.

Referring to DL architectures, almost all the works, with the
exception of [28,20], have proposed design solutions able to solve
a single TC problem, in contrast with multi-task ones. Similarly, all
previous DL traffic classifiers, except that developed in our previ-
ous work [39], have been designed based on a single input type.
Furthermore, some research has used arbitrarily-shaped 2-D con-
volutional layers as the relevant block to handle a naturally 1-D
input (i.e. a traffic packet series). Lastly, only three works (marked
with + in the classifier column) started exploiting the composition
possibilities offered by hybrid architectures allowed by the con-
nectionist philosophy underlying deep learning.



Fig. 1. Traditional ML flow (a) vs. DL flow (b). Bottom boxes depict the most used elementary layers (c) composing DL architectures and the four different classes of DL
architectures (d), based on single/multiple input modalities (SM/MM) and single/multiple classification tasks (ST/MT).
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The above analysis clearly underlines the scattered nature of the
existing approaches pursuing DL-based TC, as well as their implicit
(or partially-justified) design choices. This underlies the lack of a
systematic design path, defining the key pillars for the conception
and implementation of a practical DL-based mobile TC architec-
ture, and motivates the need for a general framework explicitly
capitalizing these aspects by molding them into rigorously-
defined milestones. In this regard, we highlight the potentialities
of the framework proposed herein in the last row of Table 3. We
particularly emphasize its generalization ability according to dif-
ferent viewpoints, that is, with no constraints regarding specific
design choices (e.g. traffic object, input data, and traffic classifier
selection) and the capability of solving possibly multiple TC tasks
fed with multiple inputs. We will provide the details of its design
milestones in the next section.

4. A general framework for deep learning-based mobile
encrypted traffic classification

In the following, we introduce and dissect our DL framework for
mobile and encrypted TC. Fig. 1 illustrates the proposed framework
in terms of its workflow, highlighting the key differences with
respect to a traditional ML workflow (cf. Fig. 1(a)). Specifically,
the mobile traffic flowing over a network device is captured and
segmented into defined packet aggregates of traffic (traffic segmen-
tation). Then, from each traffic object, raw input data is selected
(input data selection) and used to feed a DL architecture, in charge
of labeling the segmented traffic. As aforementioned, a DL-based
classification system obviates to the need of an expert-
handcrafted feature extractor module, by automatically learning
the complex and informative features for an accurate TC.

To design a DL system for TC, the following milestone design
choices should be made:

� Traffic object: the traffic aggregate atom which induces the seg-
mentation criterion.
� Type(s) of input data: the number and sets of input selected from
each traffic object to feed the DL architecture.

� Classification tasks: the number and the type of TC problems that
a single DL-based traffic classifier is in charge to solve
simultaneously.

� DL architecture: the peculiar DL architecture (e.g. the composi-
tion instance of elementary learning layers), coping with input
and output constraints originating from the design choices con-
cerning the type(s) of input data and classification tasks.

We now discuss each design element of our DL-based mobile TC
framework separately.

Traffic Object. A key choice regards how raw traffic is segmented
into multiple discrete units. Considering mobile and encrypted traf-
fic, we here suggest the use of either flows or biflows [9], with the lat-
ter achieving better performance in most related works [29,32]. In
detail, a flow is a stream of packets sharing the same 5-tuple (i.e.
source IP and port, destination IP and port, and transport-level proto-
col), thus taking into account their directions. Differently, in a biflow
the source and destination (IP, port) pairs can be swapped. In both
cases the termination is based on a user-defined timeout. Other
appealing choices are given by the TCP connection and the service
burst. The former differs from the biflow only in the initiation and
termination heuristics [9]. The latter has been recently adopted in
mobile TC [11,10], and is defined by aggregating packets with an
inter-packet time smaller than a given ‘‘burst” threshold and then
grouping those that belong to biflows with the same transport proto-
col and destination (IP, port) pair. Still, the service bursts have not
seen their direct application to security and policy enforcement so
far, as opposed to the ubiquitous (bi) flows.

Types of Input Data. The recommended types of input data [40]
of a generic TC object ingested by DL architectures may be roughly
grouped within two categories: (i) the first N bytes of the payload
[29,18,32] at transport level or higher; (ii) K selected informative
data fields of the first Np packets [19,37]. In the first case, the pay-
load data being fed to the DL architecture is represented in binary



1 https://strace.io/
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format, arranged in a byte-wise fashion and normalized within
½0;1�. In the second case, the type of input data is represented by
selected protocol fields, not pertaining to the explicit inspection
of encrypted payload (e.g. the packet size) of the first Np packets.
In both cases, instances longer than the considered fixed-length
(N or Np) data inputs are truncated to the designed length of bytes
(N) or packets (Np), whereas shorter instances are zero-padded.
Based on the discussion of previous section, both recommended
types correspond to unbiased input data and imply DL-based
mobile traffic classifiers suited for early TC [41], namely using only
the first segments of traffic aggregate to take a decision.

Classification Tasks. Given the polyvalent traffic nature, multi-
task learning [28,20] is becoming attractive as a viable means to
design a single TC system able to label traffic according to different
classification views, for example to discriminate simultaneously
among the sets of applications and user activities. In this respect,
we propose the DL paradigm as the perfect suit for the design of
multi-task classifiers, since DL architectures can be effectively con-
ceived and trained in a multi-output form, namely to minimize a
multi-objective loss function.

DL Architecture. Our framework defines four classes of DL archi-
tectures, as shown in Fig. 1(d), based on two orthogonal aspects:

� Whether they are fed with a single type (single-modal, SM) or
multiple types (multi-modal, MM) of input (modalities), to capi-
talize complementary viewpoints of the same traffic object (e.g.
using the first N bytes of transport-level payload together with
the informative data fields of the first Np packets).

� Whether they are in charge of providing inference for one
(single-task, ST) or multiple (multi-task, MT) TC problems (e.g.
inferring both the traffic-type and the specific application gen-
erating a (bi)flow).

These classes of DL architectures are obtained by composition of
elementary layers [7,16], whose common choices are dense, convo-
lutional, pooling, and recurrent layers (Fig. 1(c)):

� Dense layers are the simplest atoms of feed-forward DL architec-
tures, consisting of an affine matrix operation (i.e. a linear trans-
formation) on inputs, followed by an entry-wise activation
function. It is worth noticing that the encoding layer of an Auto-
Encoder [13,17,18,33,36,38], when used for TC, and Deep Belief/
Neural Networks [8,20,34] belong to this category.

� Convolutional layers are the basic building blocks of Convolutional
Neural Networks (CNNs), made of a set of translation-invariant fil-
ters with a limited extent (i.e. the ‘‘receptive field”) which are con-
volved with the input, with the aim of extracting the features of a
certain input region. The most common architectures in TC
adhere to a 1-D [13,17,32,38,39] or a 2-D [13,19,28,29,39] layout,
depending on the specific input nature (or reshaping).

� Pooling layers are other key components of CNNs and typically
follow a convolutional layer. They perform the down-
sampling of the intermediate representations from convolu-
tional layers, with the aim of complexity reduction and overfit-
ting mitigation. Max-pooling [19,29,32] and average-pooling
[17] are the most commonly employed in TC architectures.

� Recurrent layers present loopy connections and have in Long
Short-Term Memory [13,19,38] and Gated Recurrent Unit
[37,39] their most popular variants. These are in charge of re-
calling values over time, via a state vector, and accept as input
a vector sequence. Differently, they output either the final state
or its entire time-evolution. Note that Long Short-TermMemory
and Gated Recurrent Unit layers can be also conceived in an
improved ‘‘bidirectional” form, i.e. their internal representation
is split into forward and backward directions.
5. Experimental validation

In this section, we test two actual implementations of the pro-
posed DL framework for mobile and encrypted TC based on three
recent human-generated mobile traffic datasets. First, we describe
the aforementioned datasets and the key performance indicators
(KPIs) adopted for evaluation of TC effectiveness (Section 5.1). Sec-
ondly, we show and discuss the experimental results obtained
(Section 5.2).
5.1. Description of datasets and KPIs

We validate our framework based on three mobile encrypted
datasets (cf. Table 4) suitable for ST classification, either recom-
mended or produced by a global mobile solution provider and col-
lected by human users using both Android and iOS apps, as opposed
to works based on bot-generated mobile traffic [10,11]. The traces
capture traffic generated by users running a single app at a time on
a given device/OS, allowing to label traces with the associated
known ground truth. The TC object chosen is the biflow, due to
its suitability for mobile and encrypted traffic and fruitful adoption
in most DL-based TC works (cf. Table 3).

The first (binary) dataset, named FB/FBM, was collected in the
ARCLAB laboratory of University of Napoli Federico II. In detail,
the capture sessions pertain to either Facebook (FB) or Facebook
Messenger (FBM) with the aim of billing differentiation between
similar apps. To explore app diversity, users were requested to per-
form different activities (e.g. posting contents, commenting, liking,
sending messages, making (video-) calls, etc.). As the apps required
user login the sign-in, first login, and already logged-in scenarios
have been explored as well. More than 280 users have been
involved in the dataset collection on a volunteering base, with each
user performing 12 capture sessions of � 5 minutes. Background
traffic was removed in the post-capture stage, leveraging the net-
work system-calls (e.g. connect, bind, getsockname, etc.), traced
on the mobile devices (by means of the strace1 utility via the
Android Debug Bridge2) to identify the biflows associated with the
user-controlled app and discard the rest. In detail, we relate each
socket descriptor to the name of the Android package originating
the call. Given this capture setup, the traces result anonymized.
Indeed, no identification information is associated to the (local) IP
address and purposely created user accounts have been used for
all the apps. Of the 31k biflows collected, 17:5k and 13:5k instances
were generated by FB and FBM, respectively, corresponding to a
44/56 percent share. We refer to [42] for detailed information and
to http://traffic.comics.unina.it/mirage/ for downloading an open
super set of the FB/FBM dataset.

The second and third (multi-class) datasets, named Android and
iOS, are generated from different apps on Android and iOS devices,
respectively, and are explored with a service prioritization goal. The
traces were collected by the provider and shared, already anon-
ymized and cleaned from background traffic, under a non-
disclosure agreement. The detailed report of biflow statistics for
each class can be found in [12], where the Android and iOS datasets
were employed for ML-based (handcrafted) mobile TC.

The performance evaluation resorts to a stratified 10-fold cross-
validation: for each KPI, we report the mean (l) and standard devi-
ation (r), as a l� 3r confidence interval. The main KPIs consid-
ered are the accuracy, being the fraction of correctly classified
samples, and the well-known F-measure, defined on a per-class
basis as the harmonic mean of precision (i.e. the fraction of per-
class predictions that are correct) and recall (i.e. the class-
2 https://developer.android.com/studio/command-line/adb.html

http://traffic.comics.unina.it/mirage/
https://developer.android.com/studio/command-line/adb.html


Table 4
Details of the datasets employed in experimental evaluation. Average duration of each trace is � 5 minutes.

Dataset Type (#Apps) #Traces #Biflows %ET OS Version Collection Source Aim

FB/FBM Binary(2) > 1100 31:0k 91% Android 6:0:1 May ’17 - Mar. ’18 Self-generated@UniNa Billing differentiation
Android Multi-class (49) 607 55:5k 47% 4:2:2 - 6:0:1 Apr. ’15 - Jan. ’17 Mobile solutions provider Service prioritization
iOS Multi-class (45) 419 37:2k 60% 7:0 - 10:0 Sept. ’14 - Jan. ’17 Mobile solutions provider Service prioritization
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conditional accuracy). Specifically, we employ the arithmetic mean
of per-class F-measures, that is the macro F-measure.

Moreover, we investigate the use of a reject option, which allows
the traffic classifiers to assign labels only to the biflows which can
be labeled reliably, namely those whose highest class-prediction
probability exceeds a threshold c. Differently, the decisions on
the other biflows are censored. In this respect, we take into account
both the generic KPI and classified ratio (CR), namely the percentage
of reliably labeled biflows, vs. the censoring threshold c. Hence,
each classifier can improve its KPI with c at the price of a reduced
CR.

Indeed, tuning c enables a fine-grained control of the classifiers
and further (useful) flexibility to mobile TC [11]. Specifically, given
the high number of flows commonly generated by mobile apps,
there is an excellent chance of identifying them only considering
the more characteristic flows, namely those corresponding to a
classification confidence above c.

Furthermore, to analyze the computational complexity of con-
sidered instances of our framework, we report also the time
needed for their training, in terms of Run-Time Per-Epoch (RTPE)3.
This KPI is of interest due to frequent re-training requirements of
mobile TC, due to aging of training data as a result of app and OS
updates [11].

Lastly, we perform a calibration analysis, that allows to check
whether the class-probability estimates are representative of the
true-class (posterior) probabilities. Indeed, a miscalibrated classi-
fier produces confidences (i.e. class-prediction probabilities) that
could not represent the true probabilities, leading to either exces-
sively optimistic or pessimistic decisions. Specifically, we leverage
reliability diagrams that show the accuracy as a function of confi-
dence and are obtained by partitioning the predictions into M
equally-spaced bins and calculating the accuracy of each bin. If
the classifier is perfectly calibrated, then the diagram should plot
the identity function (e.g. operating with 70 percent confidence
leads to 70 percent accuracy) and any deviation from a perfect
diagonal represents a miscalibration. In addition to reliability dia-
grams, for conciseness we report also the Expected Calibration Error
(ECE). The latter KPI is defined as the weighted (based on the num-
ber of samples) mean, evaluated over all the bins, of the difference
between accuracy and confidence [43].
5.2. Experimental results

Herein, we investigate the performance of three different
mobile (encrypted) traffic classifiers. The first is the ML-based
state-of-the-art Random Forest (Base-ML), taking as input 40 hand-
crafted input features, namely the best-ranked statistics (i.e. min,
max, mean, standard deviation, variance, mean absolute deviation,
skewness, kurtosis, and percentiles) on the basis of the Gini impu-
rity score, calculated on the sequences of upstream, downstream,
and bidirectional IP packet sizes [11].

On the other hand, the latter two are different DL-based TC
implementations of our framework, trained for 90 epochs—as also
suggested in related works [13,19,32]—with adaptive moment
estimation optimizer (with a batch size of 50) and randomly-
3 The training phase of DL classifiers is performed on multiple epochs in a cyclic
fashion.
initialized parameters. Also, to avoid overfitting, both have been
equipped with an early-stopping procedure set with a 1 percent
threshold and evaluated on the training accuracy.

The first implemented instance is the best-performing SM-DL
approach (i.e. taking only one input type) devised for the mobile
TC task, namely an optimized 1D-CNN fed with the first N ¼ 784
bytes of L4 payload, being the current DL baseline (Base-DL) [13].
The second implemented instance is a Proposed (drawn from our
framework) MM-DL hybrid architecture using both the recom-
mended unbiased input sets, namely the first N ¼ 576 bytes of L4
payload (first modality) and four informative fields4 of the first
Np ¼ 12 packets (second modality). For the first modality, we adopt
two ‘‘light” 1D-convolutional layers (16 and 32 filters and rectifier
activations), each followed by a 1D max-pooling layer, and one dense
layer (256 nodes). For the second modality, we use a Gated Recur-
rent Unit (64 nodes) and one dense layer (256 nodes). Lastly, the
intermediate outputs of the two branches are stacked and fed to a
shared dense layer (128 nodes).

We highlight that hyperparameter optimization for both these
architectures has been performed either via trial-and-error proce-
dures for some parameters (e.g. the architecture depth), while a
grid search [13,39] has been numerically evaluated for some others
(e.g. the input size).

Fig. 2a and c report, in dotted and solid lines, respectively, both
the F-measure and CR vs. the censoring threshold c on the three
datasets. The results show that the Proposed MM-DL classifier
gains either in terms of F-measure or CR over both Base-DL and
Base-ML for all the datasets considered. For example, in an uncen-
sored case (CR ¼ 100, percent) it gains up to þ7:12 and þ9:28 per-
cent F-measure (on the iOS dataset) over Base-DL and Base-ML,
respectively. Conversely, with a 90 percent target F-measure, it
gains þ5 and þ10 percent CR over Base-DL and Base-ML, respec-
tively. It is worth noting that, for the hardest classification task,
that is discriminating between the very similar FB and FBM apps,
the Proposed classifier also guarantees a (less-evident) improve-
ment of þ1:10 percent over the best Base-ML baseline in the
uncensored setting, and a significant gain in terms of CR otherwise
(e.g. þ20 percent with c ¼ 0:7).

For completeness, in Figs. 2d and 2f we report also the training-
phase RTPE of the two DL architectures. Interestingly, the proposed
MM-DL classifier requires a RTPE lower than Base-DL, with a 3:5�
speed in the hardest classification (i.e. Android) setup and a less
severe trend with the size of the TC task L (i.e. moving from the
FB/FBM dataset to the iOS and Android datasets), corresponding
to þ41 percent complexity burden as opposed to þ64 percent for
Base-DL. This is the outcome of shorter inputs and
computationally-lighter layers. For instance, the proposed
approach requires � 56 minutes training in the hardest TC task,
thus being a good candidate for frequent re-training in practical
mobile contexts.

To deepen this investigation, Table 5 reports the number of
parameters to be trained (viz. learned) for both the Proposed
MM-DL and the Base-DL architectures. It can be noticed that the
RTPE is strongly dependent on this number of parameters, with
the Proposed classifier having � 6:2� and � 3:6� fewer trainable
4 IP packet size, direction, inter-arrival time, and TCP window size (set to zero for
UDP packets).



Fig. 2. Top row: F-measure and ratio of classified samples (CR) [%] vs. censoring threshold c of MM/ST (Proposed) approach vs. best SM/ST (Base-DL) and ML-based (Base-ML)
baseline classifiers. Bottom row: run-time per epoch (RTPE) of Proposed and Base-DL classifiers. Note that RTPE is not defined for Base-ML.

Table 5
Number of trainable parameters (in millions) of the Proposed MM-DL hybrid
architecture and Base-DL baseline.

FB/FBM Android iOS

Proposed 0.9346 1.6202 1.6176
Base-DL [13] 5.8223 5.8705 5.8664
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parameters when trained on the FB/FBM dataset and the multi-
class datasets, respectively. This outcome results from shorter
inputs and composition of ‘‘lighter” elementary layers leveraged
in the Proposed approach with respect to the Base-DL baseline.

In view of the results obtained, we can affirm that a DL architec-
ture having a more complex structure and inputs does not guaran-
tee a more accurate classification and may instead incur into
overfitting issues. On the other hand, the Proposed MM-DL solu-
tion, being able to exploit multi-modality with the right amount
of complexity, is able to obtain both a higher F-measure and a
lower RTPE, despite using a similar training procedure (e.g. a com-
parable number of epochs, same optimizers and initialization).

To deepen the performance analysis of the mobile traffic classi-
fiers taken into account, Fig. 3 reports the reliability diagrams and
the Expected Calibration Error (ECE) of the Proposed MM-DL archi-
tecture, along with the Base-DL and Base-ML baselines for the
Android (top row) and iOS (bottom row) datasets. In this case,
we do not report performance for the FB/FBM dataset, as similar
trends have been observed also in this case. Additionally, since it
is a binary dataset, the dynamic of reliability diagrams is reduced
since the class prediction probability is always higher than 0:5.

It can be seen that the Proposed classifier results to be better
calibrated with respect to the two considered baselines, resulting
in an ECE being less than half of that of Base-DL and Base-ML. This
applies to both datasets. Furthermore, by looking at the behavior of
each classifier on the two multi-class datasets, we can observe (i)
an invariance of the miscalibration pattern and (ii) a different
ECE trend.

Specifically, referring to point (i), both the DL-based classifiers
interestingly exhibit almost always (except for the last bin) a mis-
calibration that tends to be over-confident (optimistic) in its pre-
dictions (i.e. in each bin the confidence is higher than the
accuracy). This effect can be attributed to a slight overfitting phe-
nomenon and is one of the distinctive characteristics of DL archi-
tectures [43] (although MM architectures reduce it). Differently,
the Base-ML classifier shows an accuracy always higher than the
related confidence, which can be attributed to a slight bias due
to its ‘‘ensemble” nature (i.e. a Random Forest whose decision is
taken based on the average of multiple parallel decision trees).

On the other hand, referring to point (ii), the Proposed MM-DL
performs better on the Android dataset, whereas the two baselines
are more effective on the iOS one. However, a relative performance
inversion is observed between the two baselines when passing
from the Android to the iOS dataset, namely Base-ML performs bet-
ter than Base-DL on Android, whereas Base-DL outperforms Base-
ML on iOS. This confirms that the difference in software and hard-
ware ecosystems of these mobile operating systems impact also on
the traffic proprieties and consequently on the app discrimination
ability of mobile traffic classifiers, being not generalizable between
the two cases.
6. Discussion and future perspectives

In this work we envisioned a DL application to the field of net-
work traffic analysis, focusing on the identification and classifica-
tion of mobile and encrypted traffic. The result of our study is a
DL-based TC framework able to capitalize heterogeneous input
data from mobile traffic and solve multiple TC tasks at the same
time.

By means of our framework we highlight several shortcomings
with previous DL-based attempts to TC, namely: (i) traffic segmen-
tation is often implicit or overlooked; (ii) surprisingly, some stud-
ies preliminarily extract features from data, instead of leveraging
DL for that; (iii) input data selection in some studies causes biased
inputs being fed to DL algorithm, jeopardizing the validity of
results; (iv) the choice of DL architecture is seldom well-matched
with the nature of input data, encouraging MM approaches
instead. We validated our framework on mobile datasets from
human users, and results have confirmed the strong appeal of such
paradigm, which outperformed current ML-based state-of-the-art
mobile TC approaches and, also, the current DL-based baseline in
encrypted TC, attaining up to þ9:28 percent F-measure.

Further analyses on the inner structure of DL networks can be
conducted along the lines of explainable AI [44], a recent field of
study that has yet to see application to TC. Complementary to this,
the proposed DL-based framework suggests a number of research
directions, the most prominent described in the following. First,
further performance gain is foreseen via exploitation of massive
unsupervised data for improved learning, along with the use of
pre-trained architectures and sophisticated DL layers. Additionally,
although some efforts have been made from a system viewpoint,



Fig. 3. Reliability diagrams of Proposed (a & d), Base-DL (b & e), and Base-ML (c & f) mobile traffic classifiers trained on the Android (top row) and iOS (bottom row) datasets.
Bin width is M ¼ 10. Under and over gap represent an under-confident (pessimistic) and over-confident (optimistic) miscalibration pattern, respectively.
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design and real-world implementations of accurate MM/MT-DL
architectures are still unexplored.

Such real-world implementations should be able to operate
under an open-world assumption, that is they should be able to
handle (during the operational phase) unknown classes not pre-
sent in the training set (viz. open-set TC).

Analogously, the design of DL architectures able to cope with
more challenging—but promising—TC objects (e.g. the service burst
[11]) is of clear interest. Finally, the increased training complexity
of DL-based architectures paves the way to a justified and sensible
adoption of the Big Data paradigm to mobile TI and TC [45].
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