
(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

1

Challenges and solution for measuring Available
Bandwidth in Software Defined Networks

Péter Megyesi∗, Alessio Botta†, Giuseppe Aceto†, Antonio Pescapé†, Sándor Molnár∗
∗ Budapest University of Technology and Economics, Budapest, Hungary

E-mail: {megyesi, molnar}@tmit.bme.hu
† University of Napoli Federico II, Naples, Italy

and NM2 srl, Italy
E-mail: {a.botta, giuseppe.aceto, pescape}@unina.it

Abstract—Software Defined Networking (SDN) is an emerging
paradigm that is expected to revolutionize computer networks.
Methods for measuring Quality of Service (QoS) parameters
such as bandwidth utilization, packet loss, and delay have been
recently introduced in literature for SDN-based scenarios, but
they required almost invariably a completely different approach
with respect to traditional network environments, thus facing
new challenges and exploiting new opportunities. An important
dynamic path characteristic is Available Bandwidth (ABW), that
has strong impact on a wide range of applications, but is a metric
very hard to estimate with traditional approaches. In this paper
we focus our analysis on ABW measurement based on messages
in the OpenFlow protocol. We present both analytical results
and experimental evaluation (in Mininet emulation and using
Floodlight, OpenDaylight and ONOS controllers) of measurement
error due to network delay between the SDN switches and
the controller. Based on our results we propose to extend
the OpenFlow protocol with a local timestamping mechanism,
providing and discussing two different implementations of this
feature. The presented analysis and the proposed extension of
OpenFlow protocol are not restricted to ABW, and can benefit
measurement of other network metrics in SDN.

Index Terms—SDN, OpenFlow, Floodlight, OpenDaylight,
ONOS.

I. INTRODUCTION

Today computer networks are everywhere. In our everyday
life we are almost always connected to the Internet and, in
most cases, we are also connected in our working hours since
many business-critical applications also need network connec-
tion. The different demands of heterogeneous networks has led
to a situation where nowadays IP networks are very complex
to both build and manage. Current network architectures are
rigid thus it is especially hard to add new features to them.

Software Defined Networking (SDN) offers a solution for
this problem mainly through the following features: (i) data
and control planes are decoupled; (ii) control logic is moved
out of the network devices (SDN switches) to an external

Network Operating System (also called the SDN controller);
(iii) external applications can program the network using the
abstraction mechanisms provided by the SDN controller. The
SDN concept has quickly gained significant focus by the
research community after the introduction of OpenFlow in
2008 [1].

In the last few years, several proposals for monitoring Qual-
ity of Service (QoS) parameters in SDN networks have been
presented in literature. They mostly tackle problems related
to bandwidth utilization [2]–[6], packet loss ratio [5], packet
delay [5], [7], and route tracing [8]. All these monitoring
solutions are based on approaches completely different from
the counterparts in traditional networks, and this is mainly due
to the abstraction mechanism provided by the Network Oper-
ating System (NOS). However, the new possibilities provided
by SDN and its NOS introduce new issues, limitations, and
sources of error, which were previously undiscussed in such
manner.

The main contribution of this paper is four-fold. Firstly, we
present the state-of-the-art Available Bandwidth monitoring
techniques used in Software Defined Networks emphasizing
how they utilize the new features introduced by the architec-
ture. Secondly, we discuss the limitation of such monitoring
approaches and the new source of errors they introduce, with
analytical calculation of measurement error due to lack of local
timestamping mechanism in OpenFlow. Thirdly, we validate
experimentally in Mininet emulation testbed the analysis and
the properties of the proposed technique (using the controllers
Floodlight, OpenDaylight and ONOS). Finally, we propose
an extension to the OpenFlow protocol providing local times-
tamping mechanism in order to avoid measurement errors due
to network jitter.

The remainder of this paper is structured as follows. Sec. II
presents the background of Software Defined Networks, the
earlier works in monitoring SDN networks, and Available

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

2

SDN switch

SDN switch

SDN switch

SDN switch

Network Operating System

Northbound API

Southbound API

Monitoring
Traffic 

Engineering
Network 

Virtualization

Network Applications
Business 

Applications

Control Plane

Data Plane

Fig. 1: The architecture of Software Defined Networks

Bandwidth measurement in traditional networks. We present
our method for measuring available bandwidth in SDN in
Sec. III. In Sec. IV we address the main issues and lim-
itations in SDN measurements. In Sec. V we discuss the
main advantages offered by the newly proposed technique and
possible applications that can benefit from them. In Sec. VI
we validate our ABW application using a Mininet based
test configuration and also analyze the measurement error
caused by the network delay. We propose an efficient and
backward compatible extension to the OpenFlow protocol in
Sec. VII that adds message timestamping to further reduce
measurement error. Finally, Sec. VIII ends the paper with
concluding remarks.

II. BACKGROUND AND RELATED WORK

Software Defined Networking gained significant focus after
the introduction of OpenFlow [1]. However, its main concepts
root in earlier works in the fields of active networks, control
and data plane separation, and network virtualization [9]. In
this paper we follow the definition of SDN as presented in [10],
which is based on the following four elements: (i) Control and
data planes are separated from each other. Network devices
no longer have control functionalities, they become simple
forwarding devices. (ii) Forwarding rules are made based on
a set of fields in the packet headers. This also guarantees
unified behaviors of networking elements such as switches,
routes or firewalls. (iii) Control plane is moved to an external
entity called the Network Operating System (NOS) or SDN
controller. NOS is a software platform that runs on commodity
hardware and can communicate the forwarding rules to the

switches via open standards. (iv) Third party applications can
program the network over the NOS. The controller must also
provide the necessary abstractions and interfaces for serving
these applications.

Fig. 1 presents the architecture of Software Defined
Networks. The SDN controller can communicate with the
switch via the southbound API, where the most used stan-
dard is OpenFlow, and there are also other proposals, e.g.
OVSDB [11], P4 [12] or ROFL [13]. For NOS platform
there are many available open software such as NOX [14],
POX [14], Floodlight [15] or Ryu [16]. Moreover, there are
ongoing industrial consortia projects for controller platforms
specialized for data centers, for e.g. OpenDayLight [17] or
ONOS [18]. SDN applications can program the network using
the northbound API of the NOS. However, these APIs are
specific to the controller thus most of the currently available
SDN applications are only able to operate over one NOS
platform. These northbound interfaces either uses a specific
programing language (e.g. Java or Python) or a REST based
API. We refer to [10] for a comprehensive taxonomy of
different elements in Software Defined Networking.

A. Monitoring in SDN

In the recent years, there has been several proposals for
monitoring Software Defined Networks. FlowSense authors [2]
propose to use only the mandatory OpenFlow messages to
monitor the bandwidth utilization over the network. Although
this approach offers bandwidth monitoring with zero extra load
to the network, it has been proven to work inaccurately under
dynamic traffic conditions [4]. Other papers propose to use the
FlowStatsReq message in OpenFlow to poll the interface and
flow counters in the switches for bandwidth measurement [4]–
[6]. Furthermore, PayLess [4] and MonSamp [6] offer adaptive
sampling algorithms that can adapt for the current network
load. However, their approaches are conflicting since PayLess
suggests to increase the sampling rate when the traffic load is
high (for increasing the accuracy), whereas MonSamp suggests
to decrease the sampling rate under high load (so the higher the
network load the lower monitoring load should be generated).

OpenNetMon [5] offers a solution for loss and delay moni-
toring as well. For loss measurement, it polls the flow counters
on the ingress and egress switches for a given flow and
calculates the difference. For delay measurement, it uses the
SDN controller to inject probe packets into the network along
a given path and than reroute them back to the controller. The
tool is able to calculate the delay for the given path using the
round trip time between ingress and egress switches. Phemius
and Bouet [7] use the same approach for delay measurement,
but observe a constant difference between the measured and

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

3

reference time values. They also present a method to calculate
this value and calibrate the delay measurement accordingly.

Previous approaches do not rely on explicit time manage-
ment in SDN, and on this specific topic we found that very
little work has been published so far. One relevant work
presents a variation on the Precise Time Protocol, named
ReversePTP [19], aimed at distributing accurate time to SDN
switches, allowing synchronized operations. An extension of
the OpenFlow protocol has been proposed in [20] to add
support for Synchronized Ethernet in SDN. Another approach,
but focusing on delay, is presented in [21], providing bounds
on the basis of the estimation of statistical traffic distribution.
In such approach random sampling is performed on flow
counters, in order to efficiently obtain the autocovariance of
network flows; the autocovariance is then used to simulate
the queue behavior of the switches and therefore numerically
derive the bonds on queue length and packet delay. Our
method provides estimates not based on statistical model
estimation and subsequent simulation, even though we report
statistical analysis aimed at evaluating the theoretical bounds
for the estimation error. Besides the difference in the estimated
performance metrics, and the use of statistical models and
discrete-events simulation, in [21] the authors do not detail
the error introduced by lack of time precision (possibly com-
pensated for in the random sampling process).

The issues, goals and contributions considered in such
works differ from ours and actually can be complementary to
our proposal of introducing timestamping for OF messages.

B. Available Bandwidth

Available bandwidth is an important dynamic characteristic
of a network path, being equivalent to the amount of traffic that
can be added to the path without affecting the other flows that
traverse part of it, and independently from their bandwidth-
sharing properties. Such definition tells it apart from other
bandwidth-related metrics such as bulk transfer capacity and
from the maximum achievable throughput [22].

For a formal definition, the available bandwidth is first
defined on each link of a network path. For each time instant,
the i-th link is either inactive or trasmitting at its full capacity,
so the average utilization of the link i in the time interval
(t− τ, t) is

ūi(t− τ, t) ≡
1

τ

∫ t

t−τ
ui(x)dx (1)

and τ is the averaging timescale. The amount of traffic that
is transferred over the link during the time interval (t − τ, t)
is denoted as li(t− τ, t) and is equal to

li(t− τ, t) = Ci · τ · ūi(t− τ, t) (2)

The available bandwidth in the time interval (t− τ, t) for the
i-th link, with capacity Ci, is

ai(t− τ, t) ≡
1

τ

∫ t

t−τ
Ci(1− ui(x))dx (3)

= Ci(1− ūi(t− τ, t))

= Ci −
li(t− τ, t)

τ
(4)

In other words the available bandwidth of a link is the average
of unused capacity during the considered time interval. The
available bandwidth on a path is defined as the minimum value
of available bandwidth of the links composing the path.

Available bandwidth measurement can have significant
importance for both service provider and application per-
spectives. Service providers use this parameter for network
management and traffic engineering purposes. Furthermore,
nowadays, video streaming generates the largest portion of
Internet traffic, where ABW measurement techniques play a
significant role in adapting to the current network load. In
general, knowledge about the available bandwidth over the
network would benefit many users and operators of network
applications and infrastructures.

C. Available Bandwidth Measurement Methods

In traditional networks, available bandwidth estimation tech-
niques are typically classified into active and passive (with
the same definition provided in [23] for network measurement
methods in general). Active techniques send probe packets into
the network and analyze how network traversal affected their
spacing/arrival to infer network status. Active ABW estimation
techniques in the literature can be referred to two models,
probe gap and probe rate, according to the hypotheses on the
analyzed path and on the type of probing procedure adopted.
Probe gap tools such as Spruce [24] or Traceband [25] use
packet pairs as probes, and require knowledge of link capacity.
Probe rate tools use multiple series of packets, injected at
different rates, aimed at causing a temporary congestion.
Examples of probe rate tools include PathLoad [26] and
PathChirp [27].

Passive techniques for estimating the available bandwidth
use multiple measurement points in the network to monitor
bandwidth utilization, packet loss ratio, and packet delay. The
available bandwidth can then be estimated if these measures
are properly synchronized. These techniques are very complex
to deploy thus they are rarely used in practice.

A passive technique that leverages analysis methods devel-
oped initially for active ABW estimation is presented in [28],
and consists in inspecting traffic traces generated by real
applications running at the ends of the measured path, in order

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

4

to detect the presence of packet trains similar to ones generated
by active ABW estimation tools: for each of them the effect of
network traversal is evaluated according to active estimation
techniques, obtaining an estimate of the available bandwidth
with no measurement overhead.

D. Main issues for traditional Available Bandwidth estimation
techniques

The performance of most of active ABW estimation tools
currently available is scenario-dependent and require non-
trivial calibration [29], [30]. The main issue they have in
common is the limited accuracy, and systematic errors around
50% are not uncommon. Some of the tools (Diettopp and
Pathload, the most accurate ones) have long convergence time,
in the order of 10 seconds up to 40 seconds, and—depending
on configuration settings and traffic conditions—they may not
converge to an estimation. The approach using passive mea-
surement with active-like analysis inherits the accuracy issues
of the active techniques that are adopted in the processing
phase, worsened by the impossibility of dynamically adjusting
the characteristics of probing traffic (that is independently
generated by the monitored applications). Estimation time is
also dependent on the presence of suitable traffic generated by
third party applications, therefore it is not predictable. These
reasons lead the authors to propose it as a complementary
method with respect to active tools.

III. MEASURING AVAILABLE BANDWIDTH IN SDN
NETWORKS

In SDN environments the situation is largely different from
the traditional ones. The centralized control plane provides in-
teresting opportunities for measuring the available bandwidth,
which were unforeseeable in traditional environments. In the
following we present our approach for the estimation of this
important parameter and discuss the possibilities as well as the

Intel Xeon Server

Mininet Virtual MachineSDN Controllers

ABW 
Application

Emulated SDN Network

Fig. 2: The assembled test configuration.

TABLE I: Notation list.

Notation Description

G(V,E)
the directed graph representation of the network topology
with node set V and edge set E

ei ith link in the network topology graph
ci the capacity of ei
bi the current bandwidth load on ei
ai the available bandwidth on ei, ai = ci − bi

PA→B the set of all available paths from A to B

new challenges that SDN introduces in the ABW measurement
field.

We propose the use of a passive technique for the Available
Bandwidth estimation, taking advantage of the NOS in the
architecture of SDN. We use the northbound API to discover
the topology of the network and to monitor the bandwidth
utilization of the links. With this information we calculate the
available bandwidth for any path in the network at any given
time.

Using the northbound API of the NOS we query the topol-
ogy abstraction of the network which is a mandatory feature
in every SDN controller [10]. Firstly, our application uses this
information to build up the network topology graph G(V,E),
where the node set V corresponds to the switches and the edge
set E corresponds to the links (for further notations see Tab. I).
Due to the topology abstraction mechanisms the capacity ci
of every link is also known in the network.

The application is also able to measure the current load bi
of every link. For this we use an approach similar to the one
previously presented in [4]–[6]: we periodically poll the coun-
ters in the SDN switches using the PortStatsReq OpenFlow
message. This method is already proven to be effective in SDN
and it provides an easy solution for measuring the bandwidth
utilization over the entire network. After this step, we calculate
the available bandwidth ai on every link in the network, using
(4). Based on the ai values we then calculate the available
bandwidth on a given path P through the following equation

ABWP = min
ei∈P

ai. (5)

Our method is also able to distinguish between three differ-
ent scenarios and calculate the ABW according to them. They
are the following:

1) ABW on fixed paths. In this scenario the routing
policies are fixed. Thus for a given flow, first we have
to find out its route on the network, and then calculate
the available bandwidth using (5). Our method uses the
northbound API of the NOS for this task, e.g. Flood-
light’s REST API provides an interface for reporting the
route of a flow in the network (for any given header on

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

5

a given entry point) according to the policies set up in
the controller.

2) Best available path. In this case we have to find the path
P between two points in the network where the available
bandwidth is the largest. This can be calculated through
the following equation:

ABWA→B = max
P∈PA→B

min
ei∈P

ai. (6)

For solving this equation we use a modified Dijkstra
algorithm where the metric of a path is not measured
by the sum of the edge capacities (distances) but by
(5). This algorithm also gives the best possible path for
the best AWB solution in O(|E| + |V | log |V |) (like a
standard shortest-path Dijkstra algorithm would do).

3) Multipath scenario. In this case we can use multiple
paths between two points in the network. We consider
this as an important scenario since the SDN architecture
can easily enable solutions for multipath routing, for e.g.
using MPTCP in the transport layer [31]. In this case we
face off a classical max-flow problem over the network
topology graph G(V,E) which can be solved through
the Ford-Fulkerson Algorithm in O(|E|f) complexity
(where f is the maximum flow in the graph).

IV. LIMITATIONS AND CONSTRAINTS FOR AVAILABLE
BANDWIDTH ESTIMATION IN SDN

Based on our extensive analysis and measurements of the
ABW over SDN networks, we have derived a number of limi-
tations and constraints in estimating ABW with the technique
we have proposed. For each of them we provide an analytical
modeling of the issue, an experimental evaluation in emulated
environment, and possible solutions or mitigations.

A. Measurement overhead

In traditional networks the measurement overhead caused
by passive methods has been subject of several studies and
proposals [4], [6]. Due to both the architecture of SDN net-
works and the different possibilities for monitoring it provides,
measurement overhead can have multiple aspects. We report in
Fig. 3 a visual breakdown of such aspects. Regarding traffic,
measurement can affect the SDN control network (for passive
methods), data plane network (for active methods), or both.
As regards computation overhead, it can affect the logically
centralized controller and the switches; for the switches the
additional computations can impact the slow-path (whose
primary duty is management, not monitoring), the fast-path
(either directly or indirectly), or both.

In the case of the ABW estimation method we propose,
the overhead in traffic regards the control network, and the

Measurement

  overhead
Computation

Switches
Fast-path

Slow-path

Controller

Tra c
Data plane

Control network

Fig. 3: The impact of measurement in SDN networks.

computational overhead regards mainly the controller, as the
switches are required a standard task (port counters readings).
More specifically, due to periodic polling of switches counters,
the control network is affected by additional traffic in the size
of 80 bytes for every port (based on Section 7.3.5.5 in the
OpenFlow 1.5.1 specification). This means that the statistics
of 18 ports can be fitted into a single 1500 byte OpenFlow
packet, thus in case of a 48 port switch a total number of 3
packets will be sent in every polling period. Even with a very
frequent polling rate (e.g. polling the switches every second)
this adds less than 5 Kbps traffic for every switch, which in
a network with 200 devices makes a traffic overhead of less
then 1 Mbps.

B. Accuracy limitation for lack of synchronization

In the simplest set-up with one physically centralized
controller, the controller performs polling of measurement
reports from switches at the parallelism level allowed from
the networking infrastructure: if the controller and the switches
are on a single flat control LAN, the controller has one single
interface connected to such LAN, and the polling messages are
sent as unicast messages to each of the switches, then requests
are necessarily sequentially issued, possibly introducing a
non-negligible delay among requests to switches. This delay
is due to the relative ordering of the poll requests, and is
additionally affected by a degree of randomness depending
on the controller activities and LAN conditions. This delay
adds to the transmission delays between the controller and
each switch, whose impact is analyzed in Section VI-C. An
upper bound estimation of error in the Available Bandwidth
estimation due to lack of synchronization between switches
polling times can be calculated noting that, said δmax the delay
between the polling to the first switch and the polling to the
last one in a single probing round, the maximum error on
traffic load for links with capacity C is

δL1 = C · δmax
and on two subsequent pollings, in the worst case the error on
throughput estimation is

Berr =
δL2 + δL1

τ
=

2 · C · δmax
τ

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

6

where τ is the polling rate. The maximum delay in polling
δmax in turn depends on the number of switches to be polled
N , the capacity of the link connecting the controller to the
control network Cctl and the length of the query packet
Lenquery:

δmax = (N − 1)
Lenquery
Cctl

in the hypothesis that all messages are put on the wire back-
to-back with no additional delay (e.g. due to context-switch).
With the simplifying assumption that all links have the same
capacity C = Cctl, we obtain

Berr =
2 · (N − 1) · Lenquery

τ

Given the size of FlowStatsReq message Lenquery =
56Bytes1, a controller managing N = 101 switches, with poll
rate τ = 0.5s can suffer up to 44.7Kbps error on throughput
estimation, that on a 1Gbps link is a 4.4·10−5 relative error on
flow rate estimation. Even in this case, the higher the polling
rate, the higher the error.

C. Critical time-scale dependence of estimation

For its very definition, ABW is a metric that depends on a
time interval (see Eq. 4), thus its dependence on the choice of
the averaging timescale τ is self evident. Traditionally such
parameter has been set according to monitoring needs, using
time intervals usually in the order of the minutes, down to
30 seconds [32], while techniques provides a snapshot of
the status of the whole path under measurement, averaging
on sub-second time scale: application traffic can take more
than this time to traverse the path, while network conditions
change in the meanwhile. In general, polling delay should be
chosen so that traffic entering the controlled SDN network
can exit it within a single ABW estimation period. Said
δingr−egr the maximum delay for a packet to traverse the SDN
network, and τ the polling period, this condition translates
in τ � δingr−egr. While in a fully wired setup this is
not a strict constraint, if the network includes wireless links
these can significant add to the border-to-border delay thus
this constraint has to be accounted for. If this is not the
case, traffic could traverse the network while the controller
changes its internal representation of network status, and not
even a single packet would experience the path available
bandwidth as estimated by the controller. According to the
usage of ABW estimation, failing to enforce this constraint can
lead e.g. to the invalidation of routing decisions on the run,
or erroneous granting or denying access to flows, if access

1 OpenFlow Switch Specification Version 1.5.1 Section 7.3.5.2

Application
FloodLight
Controller Switch Time

Polling timer t-poll 1

API call
Measure request 1

t-req 1

FlowStats Request 1

Actual
Reading 1

t-meas 1

FlowStats Response 1

API call
response 1

t-read 1

Ground Truth
Reading 1

t-gt 1

Polling timer t-poll 1

API call
Measure request 2

t-req 2

FlowStats Request 2

Actual
Reading 2

t-meas 2

FlowStats Response 2

API call
response 2

t-read 2

Ground Truth
Reading 2

t-gt 2

Fig. 4: The measurement process.

control is applied. Therefore the practical applicability of
ABW estimation with fine granularity in time is to be checked
against both polling time and border-to-border transmission
time.

D. Accuracy limitation for lack of timestamp

Due to the lack of a switch-generated timestamp in the
OpenFlow message, the instant when the reading is performed
is unknown, and has to be estimated by the receiving con-
troller; this introduces uncertainty associated with the pro-
cessing and transmission delay between the switch and the
controller.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

7

In Fig. 4 we report a message sequence chart depicting the
communications between the ABW measuring application, the
controller and the switches, during the measurement process;
in the chart we name the time instants associated with notable
events. With reference to Fig. 4, as no network delay is
implied, the difference between t-poll 1 and t-req 1 is in the
order of µs, as well as the difference between t-read 1 and t-
meas 1; the same applies to the each polling. We will therefore
approximate t-poll 1 with t-req 1, t-read 1 with t-meas 1 and
focus on the time laps between t-gt 1, when the counter values
are read by the switch and the ground truth timestamp is
extracted, and t-meas 1, when the ABW application time-
stamped the received the message. By defining as ∆L the
difference between the counter values L1 and L2 in the
first and second measurements, respectively, we obtain the
following formula for the error:

ε =

∆L
T 2
GT−T 1

GT
− ∆L

T 2
meas−T 1

meas

∆L
T 2
GT−T 1

GT

=

1
T 2
GT−T 1

GT
− 1

T 2
meas−T 1

meas

1
T 2
meas−T 1

meas

(7)

In case we assume that the counter value extractions happen
at perfect τ rate (∀i : T i+1

GT − T iGT = τ ), and mark δi as the
network delay between the application and the ground truth
timestamping in the ith measurement period (δi = T imeas −
T iGT ), Eq. 7 can be simplified as:

ε =
τ

τ + δ2 − δ1
− 1 = − δ2 − δ1

τ + δ2 − δ1
(8)

The formula in Eq. 8 suggests that the error due to the
timestamping mechanism is not dependent on the network
delay itself but rather the difference between the delay in
consecutive measurement intervals, hence a jitter like metric.
For example, if we model the network delay as δ = δmin+x,
where δmin is the minimal possible delay between the switch
and the ABW application and x is a positive random variable,
δmin will fall out from the equation. This means that the
network distance between a switch and the ABW application
will not affect the accuracy of the measurements as long as
the jitter in the network is under control. Furthermore, the
magnitude of the error will be in the range of the ratio between
the network jitter and the polling period.

To confirm the above assumption we introduce a simple
case where the network delay has normal distribution and
analytically calculate the error. Based on Eq. 8 the distribution
of the error can be calculated as the difference of two indepen-
dently and identically distributed normal variable. Thus if the

TABLE II: Configuration hardware and software.

Host CPU Intel Xeon E5-2640 v2 @ 2.00GHz
Host Memory 32 GB

Host OS Ubuntu 14.04, Linux kernel 3.13.0-24
Virtualization VirtualBox 4.3.20

Guest OS1 Ubuntu 14.04 64-bit
VM configuration 4 CPU cores, 2 GB memory
Mininet version 2.2.0

OVS version 2.0.2
Floodlight version 1.0

OpenDaylight version 0.4.3 Beryllium SR3
ONOS version 1.6.0 Goldeneye

distribution of the delay is N (m,σ2), the distribution of the
difference of two consecutive values will be N (0, 2σ2), thus
the distribution of the error will beN (0, 2σ2

τ ), if τ � σ. Based
on this formula we can calculate the mean of the absolute error
by the following.

E(|ε|) =

∞∫
−∞

∣∣∣∣ y

τ − y

∣∣∣∣ fy(y)dy

=

∞∫
0

y

τ − y
fy(y)dy +

∞∫
0

y

τ + y
fy(y)dy

=

∞∫
0

2τy

τ2 − y2
fy(y)dy

τ�σ
=

∞∫
0

2y

τ
fy(y)dy =

√
4

π

σ

τ
(9)

Eq. 9 describes that if the distribution of the network
delay is normal, than the mean measurement error will be
a linear function of the ratio between the standard deviation
of the delay and polling period. Further, it also tells that the
mean error will be independent on the mean of the network
delay. Such scenarios will be emulated and the results will be
evaluated in Section VI-C.

We explicitly notice that, even if affected by said sources of
error, ABW estimations provided by our technique is orders
of magnitude better than the ones provided by active tools
in traditional networks. Moreover, the time-scale dependence
is meaningful in our case just because high frequency esti-
mation has become possible, while is unfeasible in traditional
networks. As a counterpart of said limitations and caveats, our
technique presents several advantages and enables new appli-
cations of ABW, not previously considered in the traditional

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

8

scenario: we discuss such advantages and enabled applications
in the following section.

V. ADVANTAGES AND NOVEL APPLICATIONS OF
AVAILABLE BANDWIDTH ESTIMATION IN SDN

The newly presented technique for estimating ABW offers
several advantages over the active techniques in traditional
scenarios. First, it is conceptually much simpler, not needing
assumptions on the statistical properties of cross traffic, neither
analytical models of the devices composing the paths under
measurements. This has an impact on both the accuracy of the
estimation, on the applicability of the technique, and on the
lack of necessity of a per-scenario tuning. Second, it allows
a for a time granularity and estimation accuracy of orders of
magnitude better than the ones reached by active techniques
in traditional scenarios (see Section VI-C for more details),
making several unprecedented applications possible.

Based on such unprecedented characteristics in terms of
accuracy and high frequency of estimation, we believe that
several novel applications based on ABW knowledge provided
by our method are possible:
• Highly-dynamic routing [33], [34].
• No-resv admission control – instead of checking avail-

ability of resources per-request like a RSVP, controller
already has the knowledge to admit/refuse a new flow
based on ABW [35].

• Traffic consolidation – like in NFV, where processing is
consolidated on busy servers, to shut down unused ones
and save costs, the same can be done for network (vir-
tualized) devices and links: as long as there is available
bandwidth, traffic can be routed so as to minimize the
number of links and devices needed. This also results
in the reduction of probing/control overhead, as sleeping
switches do not cause/require control [36].

• Adaptive video – as today’s killer application is video
streaming, and DASH is expected to be the future stan-
dard for adaptive video transfer. A video player could ask
for the current ABW conditions from the controller to set
up the best available resolution which will not congest the
network (instead of using very poor ABW estimation),
or the controller could manage DASH traffic and its
competing traffic according to the available bandwidth
and monitored QoE [37].

VI. EXPERIMENTS OVER MININET TESTBED

In order to evaluate our available bandwidth measurement
application presented in Section III and also, to validate our
statements in Section IV, we conducted extensive network
emulation scenarios using Mininet [38]. Fig. 2 presents the

10 Mbit

10 Mbit 20 Mbit

10 Mbit
5 Mbit

H1

H2

H4

H5

H3

S1

S4

S3

S2

Fig. 5: The test topology in Mininet.

schematics of our testbed. During the emulation scenarios
SDN switches are represented as running Open vSwitch entries
and they can be connected to three different SDN controllers.
Mininet emulation runs the switches inside a separate virtual
machine1 on the host server using VirtualBox. Virtualizing the
SDN environment is the suggested approach by the developers
of Mininet since it makes research results easier to reproduce
and build upon [39]. However, we chose to run the controllers
directly in the host server since we often faced load issues
when we run it inside the virtual machine. For the proof-
of-concept application in Sec. VI-B and VI-C we used
Floodlight [15] as NOS since it is easy to use and provides the
exact features we needed to validate the theoretical results2 .
In Sec. VI-D we created the same application for industrial
controller platforms OpenDaylight [17] and ONOS [18] and
we found fundamental differences on how they collect the
statistics from the SDN switches. For further reference, we
collected the used hardware and software versions in Tab. II.

During the emulation scenarios concurrently with the mea-
surement application, we used a kernel polling mechanism
for generating reference values for the measurements. Mininet
creates separate virtual Ethernet interfaces in the Linux system
for every interface of the emulated SDN switches. We use
IPtables to obtain reference measures regarding the traffic
on the interfaces. Packets between the ABW application and
the SDN controllers can (and in some of our test cases will
intentionally) suffer variable delays.

A. Test Configuration

Fig. 5 sketches the network topology we created in Mininet
for our tests. S1, S2, and S3 create a classical Y topology
which is frequently used as a testbed for testing ABW appli-
cations [29]. The idea is to set up the link between S1 and S2

1Virtual machine image was downloaded from Mininet website:
https://github.com/mininet/mininet/wiki/Mininet-VM-Images

2Preliminary results in the same framework of this paper have been
published in [40]

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

9

to serve as the bottleneck link (lowest capacity on the path)
and then use H3 to generate cross traffic on link between S2
and S3. If this cross traffic is high enough, the bottleneck link
and tight link will become different, which is an important test
case for the calculations of current ABW tools [29]. To realize
such scenario, we use TrafficControl to control the capacities
of the links and also, (in some scenarios) to add variable delay
between the polling application and the Floodlight controller.

We avoided sending any traffic through S4, as the default
route policy in all the three controllers do. This was to use the
feature in our application which can predict the best possible
alternative route even if such route is not the default one. If
the volume of cross traffic from H3 to H4 is larger than 10
Mbps, the alternative route through S4 would provide path
with larger available bandwidth.

B. Validation of Available Bandwidth Application

During the validation process we use D-ITG [41], [42] for
traffic generation, since it was proven to work much reliably
than other traffic generation platforms [43]. Using D-ITG, we
defined the following three traffic scenarios in order validate
the our ABW application in different circumstances:

1) CBR Traffic. In this scenario we generate three flows
with constant bit rate with the following timing. At
the beginning of the measurement, H1 starts to send
4 Mbps of UDP traffic to H5 for 100 seconds, than
the host sleeps for 100 s (generating no traffic) and
restarts sending with 8 Mbps rate. Parallel to this, H3
starts to send 10 Mbps of UDP traffic to H4 for 100 s
after the start of the measurement until the end. Fig. 6a
shows the ABW on the best route from H1 to H5 (the
path offering the maximum ABW). Reported values are
the estimated ABW, the reference ABW (as derived
from packet capture), and the relative error. Although

the bandwidth measured by the Floodlight controller is
varying due to the variable latency introduced between
the controller and switches, in some cases the measured
ABW is constant. This can happen when the alternative
route through S4 provides a better ABW solution: e.g.
in the last 100 s of the measurement, the bandwidth
between S1 and S2 is 8 Mbps thus the best route is
S1→S4→S3 with 5 Mbps available bandwidth (and no
traffic). After one measurement period (1 second long, at
second 200 and second 300) affected by transitory error,
the estimated ABW stabilizes to the (constant) actual
ABW, with no error.

2) VBR Traffic is generated by D-ITG using Pareto dis-
tribution for the inter-departure times of packets. We
generated two flows, one from H1 to H5 and the other
one from H3 to H4. We tested different values of shape
and scale parameters and report the most interesting
cases in the following. Fig. 6b plots the ABW of the best
path from H1 to H5 (estimated by Floodlight, reference
value, and relative error). In this case we used λ = 1.75
as shape parameter for both flows, whereas for scale
parameter we used XH1 = 1ms and XH3 = 0.5ms
for H1 and H3, respectively. As shown, the error of
the ABW measurement is larger than in case of CBR
traffic using frequent polling rates. On the other hand,
since the inter-departure times of packets are identically
and independently distributed on larger time scales, the
traffic becomes smoother making the error rate similar
to CBR results.

3) Real Traffic. We collected real traffic measurements from
the campus network of the Budapest University of Tech-
nology and Economics. We used a Cisco 6500 Layer-3
switch that aggregates the traffic of two buildings and
linked them to the core layer of the network. A 10-
minute-long trace was used for this purpose. The trace

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3

4

Av
ai

la
bl

e 
Ba

nd
w

id
th

 [M
bp

s]

Er
ro

r [
%

]

Time [s]

Delay: μ=100ms, σ=5ms; Polling: 1 sec
Reference ABW
ABW with Floodlight
Relative Error (right axis)

(a) CBR traffic measurement.

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400
-5

-4

-3

-2

-1

0

1

2

3

4

5

Av
ai

la
bl

e 
Ba

nd
w

id
th

 [M
bp

s]

Er
ro

r [
%

]

Time [s]

Delay: μ=100ms, σ=5ms; Polling: 1 sec
Reference ABW
ABW with Floodlight
Relative Error (right axis)

(b) VBR traffic measurement.

0

50

100

150

200

0 50 100 150 200 250 300 350 400
-10

-5

0

5

10

Av
ai

la
bl

e 
Ba

nd
w

id
th

 [M
bp

s]

Er
ro

r [
%

]

Time [s]

Delay: μ=100ms, σ=5ms; Polling: 1 sec

Reference ABW
ABW with Floodlight
Relative Error (right axis)

(c) Real traffic measurement.

Fig. 6: Measuring bandwidth on the link between S2 and S3 and the available bandwidth over the Mininet test network.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

10

was recorded in Nov 2013 and contains about 12 million
packets, 10 GB total data, 3000 individual users and
170k flows. We extracted the inter-packet times and
packet sizes from the trace and set up D-ITG to send
the same traffic from H3 to H4. Since this traffic rate
is much higher than the one we used for the previous
cases, we also increased the capacity of the links tenfold.
Fig. 6c presents the ABW measurement in this scenario.
In this case the throughput also varies in larger time
scales, thus we expect to measure higher ABW error
rates using larger polling frequency.

As it can be observed on the left axis the three plots in
Fig. 6, in every scenario there is some slight deviation between
the implemented REST API polling based measurements and
the reference values. This is due to fact that the timestamp
value is created at the ABW application rater than being
provided by the switches when reading the counters (i.e. taking
the measurements). The monitoring packets suffer variable
delay on the network, which causes the error that we described
in Section IV-D.

C. Analysis of Measurement Error

In order to fully understand the measurement error caused
by the lack of local timestamping at the SDN switches, we
conducted several Mininet emulation scenarios using a wide
range of network delay and polling rate setups. Firstly, we set
up no delay extra delay on the which can be considered as an
ideal case. Table III reports the mean and the standard devia-
tion of the measured error values for such cases. However, we
notice that the average error rate with 0.5 sec polling is under
1%, and the error is further decreasing with the increase of the
polling period. The reason for this decrease is that with larger
polling interval we average on a larger time scale while the
difference in the timestamp approximation remains the same,
thus having a smaller relative effect. Note that we always
use the polling period in the denominator during the error
calculation in Eq. (8) thus a more frequent polling generates
more reference values but with a slightly larger error. One
could average the values from a more frequent measurement
in order to get a more precise on a larger timescale but we
found that the error is similar to using a larger polling period
which generates less overhead. If we consider the minute time
scale, where typically the current ABW tools operate [30], the
average error rate is less than 10−5 which can be considered
as very accurate.

Hereafter, we present the cases were we introduced artificial
delay between the SDN switches and the Floodlight controller
to investigate its effect over the error rate. Fig. 7 presents the
CCDF of the error for different delay values using frequent

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-3 -2 -1  0  1  2  3

C
C

D
F

Relative error [%]

No extra delay
µ=5ms, σ=5ms

µ=10ms, σ=5ms
µ=25ms, σ=10ms

µ=100ms, σ=25ms

(a) Error values for 1 ms polling using different delay.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-3 -2 -1  0  1  2  3

C
C

D
F

Relative error [%]

0.5 sec polling
1 sec polling
2 sec polling
5 sec polling

10 sec polling

(b) Error values for 20ms delay using different polling
periods.

Fig. 7: The CCDF of the relative errors of the ABW measure-
ments using the Floodlight controller compared to reference
values (range is limited to [0.05, 0.95] quantiles).

polling rates. In Fig. 7a we fixed the polling period to 1 sec
and used different delay values between the switches and
the Floodlight controller. In details, we added delay values
following a normal distribution, with mean values of 5 ms, 10
ms, 25 ms and 100 ms and standard deviation of 5 ms, 5 ms,
10 ms and 25 ms, respectively.

In Fig. 7b we show only one delay value (25 ms mean with
5 ms standard deviation) and used the following polling rates
to calculate the available bandwidth: 0.5 s, 1 s, 2 s, 5 s and 10 s.
The results confirm our previous calculation in that increasing
the polling period the measurement error decreases linearly.
This phenomenon can also be justified as the uncertainty on
the time remains the same while the measurement interval
increases, thus the relative effect of delay will be smaller.
As a consequence, increasing the polling period we can
achieve more precise ABW values in case we do not need

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

11

TABLE III: Error rate of ABW measurements using real traffic replayed by D-ITG with no added delay.

Polling period in seconds
0.5 1 2 5 10 20 30 40 60

E
rr

or Mean 7.2 · 10−3 3.9 · 10−3 1.8 · 10−3 8.5 · 10−4 5.5 · 10−4 2.1 · 10−4 1.3 · 10−4 1.0 · 10−4 6.5 · 10−5

STD 9.4 · 10−3 5.1 · 10−3 2.3 · 10−3 1.0 · 10−3 7.4 · 10−4 2.4 · 10−4 1.6 · 10−4 1.3 · 10−4 6.9 · 10−5

very frequent results. This leads to the conclusion that the
proper value for polling rate and maximum network jitter
acceptable is a function of the application that is in need of the
ABW estimation. Some applications (e.g. for streaming server
selection) may require infrequent but accurate estimations.
Others (e.g. for routing) may require frequent estimation,
tolerating a lower accuracy.

In Fig. 8 we plotted the result of every measurement with
real traffic. We used fifteen different mean-std delay setups
for all the five polling periods and emulated every scenario
four different times. The measured mean delays in all the
300 measurement cases are depicted against the mean and the
standard deviation of the delay in Fig. 8a and 8b, respectively.
The results in Fig. 8a confirms our statement in Sec. IV-D and
shows that there is no correlation between the mean error of
the ABW measurement and the mean of the delay introduced
to the system. However, Fig. 8b is a clear indication that there
is a linear dependence between the standard deviation of the
monitoring packet delay and the mean error of the available
bandwidth measurement which confirms the calculations in
Eq. (5).

Tab. IV summarizes the mean and the standard deviation of
the measurement result in the most interesting cases. These
results clearly show the trade-off constrains between the error

rate, the polling frequency, and the monitoring packet delay.
Applications working with SDN networks and in need of
ABW estimations can be properly devised looking at these
results.

D. Measurements with Industrial Controller Platforms

In order to test out application in a wider spectrum we
also prepared the same ABW application over OpenDaylight
(ODL) [17] and ONOS [18], that are among the most com-
monly used SDN controllers in industrial environment. Since
both of these controllers provide an API access for querying
the switch port counters we only had to modify the API URL
in the request and the JSON parser module for processing the
replay. However, the APIs of both ODL and ONOS work very
differently than what we assumed for our ABW application
and what we presented in Fig. 4. When we initiate an API
request for the port counters these controllers do not send
an OpenFlow PortsStatsRequest message to the SDN switch
but rather sends back the latest measured value. The port
counter values are collected by a separate statistics collector
module which has to be installed via the controllers CLI. These
modules have a default polling period (3 sec in ODL and 5
sec in ONOS), but there is the possibility to modify this rate.
However, both ODL and ONOS do not provide a timestamp

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180

M
ea

n 
er

ro
r [

%
]

Mean delay [ms]

Mean error vs. Mean delay

Polling = 0.5 sec
Polling = 1 sec
Polling = 2 sec
Polling = 5 sec
Polling = 10 sec

STD of delay ≈ 5ms
STD of delay ≈ 10ms
STD of delay ≈ 25ms

Marker type:

Marker color:

(a) Average error measured with different mean delay setups.

0

1

2

3

4

5

6

0 5 10 15 20 25 30

M
ea

n 
er

ro
r [

%
]

Standard deviation of delay [ms]

Mean error vs. Delay deviation

Polling = 0.5 sec
Polling = 1 sec
Polling = 2 sec
Polling = 5 sec
Polling = 10 sec

Mean dealy = 5 ms
Mean dealy = 10 ms
Mean dealy = 25 ms
Mean dealy = 50 ms
Mean dealy = 100 ms
Mean dealy = 150 ms

Marker type:

Marker color:

(b) Average error measured with different delay variation setups.

Fig. 8: The average error measured during real traffic replay using different mean delay and standard deviation setups.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

12

value for the measured port counter values when we query
them via the APIs. This phenomenon made our application
to estimate the available bandwidth very poorly since our
measurement (with the reference value generation) was out
of phase from the collection of the controllers. Fig. 9a present
the CDF of the measured error rate with the two controller in
two setups, i) using the default polling rates (3 sec in ODL and
5 sec in ONOS), and ii) using 1 sec polling rate in both our
application and end the controllers’ statistics collector module.
We also conducted measurement when the polling rate in our
application was not the multiple of the polling rate in the
controller, but those result were completely missing the real
values on the network. Based on these result we suggest to
extend the API and the statistics collector module of both ODL

0

0.2

0.4

0.6

0.8

1

-30 -20 -10 0 10 20 30

C
D

F

Relative error [%]

Floodlight 1 sec polling
ODL 3 sec polling
ODL 1 sec polling

ONOS 5 sec polling
ONOS 1 sec polling

(a) Error value comparison of different controllers.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

C
D

F

API Response Time [ms]

Floodlight
OpenDaylight

ONOS

(b) API response time comparison of different con-
trollers.

Fig. 9: The CDF of ABW measurement error and API response
time generated by our application over OpenDaylight, ONOS
and Floodlight.

and ONOS with a timestamping mechanism in order to have
a reference when the given values were measured. We expect
that using such timestamping would significantly decrease the
error for an ABW application over both ODL and ONOS.

Another interesting result of these measurements is that the
rest API of OpenDaylight has a very slow response time, in
fact on average we measured almost two orders of magnitude
larger response times than in case of Floodlight and ONOS.
We reported the CDF of the API response times for the
three considered controllers in Fig. 9b. Since ODL is a very
complex software platform we couldn’t find the reason for
this problem but several forum entries suggested that other
technicians also experienced similar slowness. The average
response time of ONOS and Floodlight is around 5 ms and
7 ms, respectively. The slightly slower response in Floodlight
compared to ONOS is expected since Floodlight sends an
OpenFlow PortsStatsRequest message after every API request
and only sends back the response after getting the counter
values from the SDN switch.

VII. NOVEL FEATURES FOR OPENFLOW

While the access to switches counters highly simplifies
most monitoring tasks, we have theoretically (Sec. IV-D)
and experimentally (Sec. VI-C) verified that the lack of a
timestamp in OpenFlow (OF) messages introduces a source of
uncertainty and thus a measurement error for the estimation
of the traffic rate and available bandwidth. The introduction of
a switch-based timestamp would further reduce or completely
remove the source of uncertainty in the estimation of ABW,
therefore we advocate for an extension to the OpenFlow
standard, adding timestamping of OF messages, and propose
requirements and different implementation possibilities for it
in the following.

The timestamp should be generated as close as possible in
time to the counter readings. Moreover the sequence (times-
tamping, reading) should be atomic with regards to packet
processing, i.e. no intervening packet should be accounted for
until all the counters are read, in order to provide a consistent
snapshot in time of flow statistics. If those two conditions
are met, and in addition the clock resolution for timestamping
does not introduce further uncertainty (e.g. 1 µs resolution
will allow for 125 bytes counter resolution on 1 Gbps links),
and between the timestamp and the reading of all counters no
packets are completely received, the error on ABW estimation
will be zero.

For the implementation of the timestamp extension, a spe-
cific request and reply format has to be defined, and the reply
has to carry a representation of a time instant. The timestamp
could be represented as a 64 bit structure such as POSIX

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

13

TABLE IV: Error rate of ABW measurements using real traffic replayed by D-ITG.

Polling period in seconds
0.5 1 2 5 10

µ σ µ σ µ σ µ σ µ σ

Sw
itc

he
s
→

N
O

S
de

la
y

no
0.72% 0.94% 0.39% 0.51% 0.19% 0.23% 0.09% 0.11% 0.05% 0.06%

delay
µ = 5ms

1.29% 1.62% 0.6% 0.75% 0.3% 0.37% 0.13% 0.16% 0.06% 0.07%
σ = 5ms

µ = 10ms
1.34% 1.67% 0.73% 0.93% 0.36% 0.45% 0.19% 0.28% 0.07% 0.09%

σ = 5ms

µ = 25ms
2.5% 3.11% 1.12% 1.43% 0.62% 0.78% 0.24% 0.29% 0.14% 0.16%

σ = 10ms

µ = 100ms
5.6% 7.04% 2.28% 3.59% 1.47% 1.85% 0.54% 0.66% 0.3% 0.37%

σ = 25ms

timespec specification 3, representing UNIX epoch time
(seconds from January 1st 1970) reserving 32 bits for seconds
(truncated to integer) and 32 bits for remaining nanoseconds
(approximated to the nearest integer, with resolution dependent
on the implementation). This format is the same adopted for
the standard Network Time Protocol (NTP) timestamps [44].
For the message formats we propose different implementa-
tions, described hereafter.

A. Experimenter-based implementation.

Possible implementations of timestamp extension on flow
statistics can leverage the “experimenter” messages (“vendor”
messages in OFv1.0) to define same format and function
of a FlowStats reply with a timestamp field added. This
implementation would provide possibly the benefit of reusing
all the code of FlowStats message generation (in the switch)
and parsing (in the controller), and not modifying the OF
standard, being compatible with OF versions since 1 on. The
protocol overhead for the reply message would be, besides the
aforementioned 64 bit timestamp, an experimenter_header

adding two 32 bit fields experimenter and exp_type as
defined by the “OpenFlow Switch Specification Version 1.5.1
Section 7.5.5” and valid for OFv1.1 up to OFv1.5.1 (in OFv1.0
only 32 bits are required for a single vendor_id field). For
the request message the protocol overhead would be just the
64 bits of the experimenter_header in addition to the
standard OF header (see Fig. 10 for the format of the proposed
implementation for the generic Experimenter message with the
addition of a Timestamp).

3 http://pubs.opengroup.org/onlinepubs/007908799/xsh/time.h.html

0 7 8 1516 31

OFP ver. type* length

transaction ID

}
OF
header

experimenter

exp type

}
common
part

timestamp

timestamp
(content and format according to

non-timestamped message, off-set by 128bits
from the beginning of payload)hhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhh



rest of
payload

Fig. 10: Format of OpenFlow Experimenter message with
Timestamp.
* type header field is set to value OFPT_EXPERIMENTER.

B. Protocol-wide modification.

The implementation proposed in the previous section for the
FlowStats messages can be applied also to other messages,
by defining an experimenter message type for each of the
timestamp-augmented version of the standard OF message.
Wrapper code, with reuse of the related non-timestamped OF
message for construction (in the switch) and parsing (in the
controller), would be implied for each of the considered mes-
sages. Moreover, an high-precision timestamp on all switch
messages can be useful for multiple uses, such as performance
evaluation, troubleshooting, and security. These considerations

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

14

suggest to include the timestamp in the OF header, common to
all OF messages. On the other hand, both the implementation
and computational cost of the timestamping operations, and
the additional space required in the messages generated by
the switch, suggest to have the timestamp as an optional field.
Moreover, a variation in the OF header is a major change in
the protocol, thus compatibility issues have to be carefully
accounted for. We propose an implementation that introduces
the optional request for timestamped reply in the OF protocol,
while retaining backward compatibility for the header format,
by means of a change in the definition of the OF header field
type, that is common to all OF messages. In OFv1.5.1 type

is allocated 1 byte in the header, and values from 0 to 35 are
assigned to OF messages 4. We propose to reserve the most
significant bit of type to manage the timestamping option, as
a Timestamp Flag, leaving 128 possible values for OF message
types. Setting to 1 the flag will signify “Timestamp Required”
for messages carrying requests, and “Timestamp Provided”
for replies; when such flag is set to 0 the format, meaning,
and associated functions of already defined OF messages
remain the same as per OFv1.5.1, retaining full backward
compatibility.

0 7 8 9 1516 31

OFP ver. 1 type length

transaction ID

timestamp

timestamp


OF
header

(content and format according to
non-timestamped packet type field, unvaried)

hhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhh


payload

Fig. 11: Format of OpenFlow reply packet with Timestamp
Flag set. Changes against OFv1.5.1 are highlighted in bold.

In request messages with Timestamp Flag set there is no
protocol overhead; in reply messages with Timestamp Flag set,
additional 64 bits will be appended to the OF header, changing
the total length of the header, and containing the timestamp as
defined previously (Fig.11). Parsing a “Timestamp Required”
request a switch will mask the Timestamp Flag as 0 and
process the message as a standard OF message, generate

4 OpenFlow Switch Specification Version 1.5.1 Section 7.1.1

the timestamp, and append it to the reply header, that will
have the “Timestamp Provided” flag set. This will avoid
message-specific wrapper definitions, and for standard (non-
timestamped) OF messages will imply just a bit check in
addition to the current processing flow. Analogous mechanism
is adopted to parse a “Timestamp Provided” reply by a
controller: the Timestamp Flag is checked, and if set the
additional timestamp field is extracted from the header and
stored, then the Timestamp Flag is masked to 0 and the body
part of the message is processed according to the standard
(non-timestamped) OF message type. Also in this case, for
standard OF messages the only additional processing is a
single bit check.

C. Discussion

An extension similar to the one we described has been
presented in [45] in a more general framework, with the aim
of enforcing synchronization of OF configuration updates.
Besides the different goal, the structure proposed in [45]
differs from ours as it includes a Type-Length-Value (TLV)
generic experimenter header, that would precede at least one
time TLV, which in turn adds more fields to time values
alone (namely: type, length, flags, and padding). Moreover the
time representation chosen in [45] uses 64 bits for seconds,
while we adopted 32 bits. As the Time-TLV extension format
is intended both for requests and reply, even if the request
does not carry a time stamp (that would be useless for our
purposes anyway), an overhead is present for both messages:
for the request message the difference is of 256 bits and
for the reply 192bits leading to a total of 448 bits (300%
additional overhead on the original message) with respect to
our experimenter-based proposal, and 704 bits in addition to
our bit-based extension (1,100% additional overhead), while
offering no additional features for what concerns our aims.

The Scheduled Bundle OF extension, adopted in the OF
standard version 1.5, can be used to enforce the atomic exe-
cution at a specified time of a group of commands. In our case
we could in principle exploit it to let the Controller enforce the
precise polling time on the switch. By enforcing the reading of
counters at a given time, the errors due to timing as analyzed
in Sec. IV-B and IV-D would be significantly reduced (at least
in principle, still depending on synchronization accuracy and
on precision in meeting the deadline). However, due to the
original intended usage for the extension, there is significant
overhead compared with our proposed extension, both in term
of messages (minimum 3 to require the reading), time (at least
one additional RTT) and of data (1,100% the overhead over the
standard OF message that is timestamped, with respect to our
proposed implementation). Being this reiterated for every poll

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

15

request, for every switch, we think that such overhead should
be taken into account, and the implementation using Scheduled
Bundles should be considered unfit for our purposes. Other
minor aspects add to this, e.g. synchronization is required
among all involved switches and the Controller. In our case if
such constraint is relaxed, our proposed Timestamp extension
would be affected by the error considered in Sec. IV-B, but
still would allow to remove the error discussed in Sec. IV-D.

Given the different layers of SDN, ABW estimation can
be implemented as an SDN application or as SDN metric,
according to the support from the controller and the switch,
using in order of decreasing accuracy:

1) protocol-wide timestamping (OF protocol modification:
change in standard definition, switch, and controller)

2) experimenter-based timestamping (Experimenter mes-
sages definition: change in switch and controller)

3) controller-based timestamping (controller extension:
change in controller only)

4) application-based timestamping (implemented as SDN
application)

If the controller supports the implementations from 1 to 3, the
best method can be adopted on a per-switch basis thanks to
the negotiation phase, when the switch can advertise supported
capabilities.

VIII. CONCLUSION

In this paper we tackled the problem of Available Bandwidth
estimation and monitoring in Software Defined Networks.
We presented the state-of-the-art techniques for this emerging
architecture, emphasizing how they utilize the new features
available and what are their limitations. We also analyzed the
source of errors introduced by SDN and openflow, analytically
deriving the measurement error due to lack of local times-
tamping mechanism in OpenFlow. The analytical results have
also been validated on a testbed implemented in Mininet using
different kinds of traffic, also comprising real traffic traces
collected on a real network. Our results show that our approach
provides accurate results if compared with the ground truth.
These results also constitute a reference for ABW applications
willing to operate in SDN environments, which require a
proper trade-off between accuracy, polling rate, and jitter.

We also implemented our ABW application over the two
most commonly used industrial SDN controllers: OpenDay-
light and ONOS. We showed that these controllers do not
provide the necessary features in order to accurately measure
the available bandwidth. Due to the different mechanism in
ODL and ONOS the reported measurement errors were more
than one order of magnitude worse compared to our proof of
concept implementation over Floodlight. Given these results

we suggested to extend the API and the statistics collector
modules of both ODL and ONOS with a timestamp providing
mechanism.

We finally proposed an extension to the OpenFlow protocol
providing local timestamping mechanism in order to avoid
measurement errors due to network jitter. In particular, we
proposed two implementations of such feature. One implemen-
tation leverages the “experimenter” message type, provided by
the OF standard purposely for extending the base OF capabil-
ities. Due to the general potential of the proposed extension,
and the inefficient implementation through “experimenter”
messages, we also propose an amendment to the OF standard
by re-purposing one bit of the current protocol as a flag to
signal the request or presence of a timestamp. By reducing
the maximum number of different OF message types from
256 to 128 (up to 35 are used in OFv1.5.1) we can efficiently
extend the capability of the OF protocol in a fully backward-
compatible way and no additional protocol overhead.

In our ongoing work we are investigating the possible
impact of the specific implementation of the NOS and the
proposed implementations of timestamp capability on the
accuracy and timeliness of other measurement activities, as
well as applications of our technique to hybrid scenarios
mixing SDN and traditional networks. We are also considering
expanding the possible implementations of ABW estimation
based on meter statistics (leveraging duration fields in meter
stats introduced in OFv1.3), and the use of approaches based
on In-Network-Telemetry [46].

ACKNOWLEDGMENT

This work is partially funded by the Ministry of Research
of Italy (MIUR) under the Art. 11 DM 593/2000 for NM2
srl (Italy) and, for the University of Napoli, by the SOME-
TIME project, part of the MONROE EU Project funded by
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 64439.

P. Megyesi and S. Molnár are working in the High Speed
Networks Laboratory which is supported by Ericsson.

The authors also want to thank the anonymous reviewers for
their insightful and helpful comments on an earlier version of
this paper.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Computer Communnication Review,
vol. 38, no. 2, pp. 69–74, Mar. 2008.

[2] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. Madhyastha,
“Flowsense: Monitoring network utilization with zero measurement
cost,” in Passive and Active Measurement, ser. Lecture Notes in Com-
puter Science, 2013, vol. 7799, pp. 31–41.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

16

[3] M. Jarschel, T. Zinner, T. Hohn, and P. Tran-Gia, “On the accu-
racy of leveraging sdn for passive network measurements,” in Aus-
tralasian Telecommunication Networks and Applications Conference
2013 (ATNAC ’13), Nov 2013, pp. 41–46.

[4] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “Payless: A low
cost network monitoring framework for software defined networks,” in
Network Operations and Management Symposium (NOMS), May 2014,
pp. 1–9.

[5] N. van Adrichem, C. Doerr, and F. Kuipers, “Opennetmon: Network
monitoring in openflow software-defined networks,” in Network Opera-
tions and Management Symposium (NOMS), 2014 IEEE, May 2014, pp.
1–8.

[6] D. Raumer, L. Schwaighofer, and G. Carle, “Monsamp: A distributed sdn
application for qos monitoring,” in Federated Conference on Computer
Science and Information Systems (FedCSIS), Sept. 2014.

[7] K. Phemius and M. Bouet, “”monitoring latency with openflow”,” in 9th
International Conference on Network and Service Management (CNSM),
2013, pp. 122–125.

[8] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing
sdn forwarding without changing network behavior,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
2014, pp. 145–150.

[9] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual
history of programmable networks,” SIGCOMM Computer Communica-
tion Review, vol. 44, no. 2, pp. 87–98, April 2014.

[10] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[11] B. Pfaff and B. Davie, “The open vswitch database management
protocol,” Internet Requests for Comments, Internet Engineering Task
Force, RFC 7047, 2013. [Online]. Available: https://tools.ietf.org/html/
rfc7047

[12] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in Proc. of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13, 2013, pp. 127–132.

[13] M. Sune, V. Alvarez, T. Jungel, U. Toseef, and K. Pentikousis, “An
openflow implementation for network processors,” in Third European
Workshop on Software Defined Networks (EWSDN), Sept 2014, pp. 123–
124.

[14] “NOX and POX SDN Controllers.” [Online]. Available: http:
//www.noxrepo.org/

[15] “Floodlight.” [Online]. Available: http://www.projectfloodlight.org/
[16] “RYU network operating system.” [Online]. Available: http://osrg.

github.com/ryu/
[17] “The OpenDayLight Project.” [Online]. Available: http://www.

opendaylight.org
[18] “The Open Network Operating System (ONOS).” [Online]. Available:

http://onosproject.org/
[19] T. Mizrahi and Y. Moses, “Using reverseptp to distribute time in software

defined networks,” in Precision Clock Synchronization for Measurement,
Control, and Communication (ISPCS), 2014 IEEE International Sympo-
sium on. IEEE, 2014, pp. 112–117.

[20] R. Surez, D. Rincn, and S. Sallent, “Extending openflow for sdn-enabled
synchronous ethernet networks,” in Network Softwarization (NetSoft),
2015 1st IEEE Conference on, April 2015, pp. 1–6.

[21] Z. Bozakov, A. Rizk, D. Bhat, and M. Zink, “Measurement-based flow
characterization in centrally controlled networks,” April 2016.

[22] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth esti-
mation: metrics, measurement techniques, and tools,” Network, IEEE,
vol. 17, no. 6, pp. 27–35, 2003.

[23] A. Morton, “Active and passive metrics and methods (with hybrid types
in-between),” Internet Requests for Comments, Internet Engineering

Task Force, RFC 7799, 2016. [Online]. Available: https://tools.ietf.org/
html/rfc7799

[24] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of avail-
able bandwidth estimation tools,” in Proc. ACM SIGCOMM conference
on internet measurements, Oct. 2003, pp. 39–44.

[25] C. D. Guerrero and M. A. Labrador, “Traceband: A fast, low overhead
and accurate tool for available bandwidth estimation and monitoring,”
Computer Networks, vol. 54, no. 6, pp. 977–990, 2010.

[26] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with tcp throughput,” IEEE/ACM
Transaction on Networking, vol. 11, no. 4, pp. 537–549, Aug. 2003.

[27] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “Pathchirp:
Efficient available bandwidth estimation for network paths,” in Proc.
Passive and active measurements workshop, 2003.

[28] M. Zangrilli and B. Lowekamp, “Using passive traces of application
traffic in a network monitoring system,” in High performance Distributed
Computing, 2004. Proceedings. 13th IEEE International Symposium on,
June 2004, pp. 77–86.

[29] A. Botta, A. Davy, B. Meskill, and G. Aceto, “Active techniques
for available bandwidth estimation: Comparison and application,” in
Data Traffic Monitoring and Analysis, ser. Lecture Notes in Computer
Science, 2013, vol. 7754, pp. 28–43.

[30] G. Aceto, A. Botta, A. Pescapè, and M. D’Arienzo, “Unified architecture
for network measurement: The case of available bandwidth,” J. Network
and Computer Applications, vol. 35, no. 5, pp. 1402–1414, 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.jnca.2011.10.010

[31] B. Sonkoly et al., “Sdn based testbeds for evaluating and promoting mul-
tipath tcp,” in Proc. IEEE International Conference on Communications
(ICC 2014), June 2014, pp. 3044–3050.

[32] M. Hegde, M. K. Narana, and A. Kumar, “netmon: An snmp based
network performance monitoring tool for packet data networks,” IETE
Journal of Research, vol. 46, no. 1-2, pp. 15–25, 2000. [Online].
Available: http://dx.doi.org/10.1080/03772063.2000.11416131

[33] A. Al-Jawad, R. Trestian, P. Shah, and O. Gemikonakli, “Baprobsdn:
A probabilistic-based qos routing mechanism for software defined net-
works,” 2015.

[34] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[35] I. Bueno, J. I. Aznar, E. Escalona, J. Ferrer, and J. Antoni Garcia-Espin,
“An opennaas based sdn framework for dynamic qos control,” in Future
Networks and Services (SDN4FNS), 2013 IEEE SDN for. IEEE, 2013,
pp. 1–7.

[36] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou,
“A roadmap for traffic engineering in sdn-openflow networks,”
Computer Networks, vol. 71, pp. 1 – 30, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128614002254

[37] C. Cetinkaya, Y. Ozveren, and M. Sayit, “An sdn-assisted system design
for improving performance of svc-dash,” in Computer Science and
Information Systems (FedCSIS), 2015 Federated Conference on. IEEE,
2015, pp. 819–826.

[38] B. Lantz et al., “A network in a laptop: Rapid prototyping for software-
defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, 2010, pp. 19:1–19:6.

[39] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. of the 8th International Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’12), 2012, pp. 253–264.

[40] P. Megyesi, A. Botta, G. Aceto, A. Pescapè, and S. Molnár, “Available
Bandwidth measurement in Software Defined Networks,” in Proc. of the
ACM/SIGAPP Symposium on Applied Computing. Pisa, Italy: ACM,
Apr 2016.

[41] A. Botta, A. Dainotti, and A. Pescapé, “A Tool for the Generation

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004
https://tools.ietf.org/html/rfc7047
https://tools.ietf.org/html/rfc7047
http://www.noxrepo.org/
http://www.noxrepo.org/
http://www.projectfloodlight.org/
http://osrg.github.com/ryu/
http://osrg.github.com/ryu/
http://www.opendaylight.org
http://www.opendaylight.org
http://onosproject.org/
https://tools.ietf.org/html/rfc7799
https://tools.ietf.org/html/rfc7799
http://dx.doi.org/10.1016/j.jnca.2011.10.010
http://dx.doi.org/10.1080/03772063.2000.11416131
http://www.sciencedirect.com/science/article/pii/S1389128614002254


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

17

of Realistic Network Workload for Emerging Networking Scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531 – 3547, 2012.

[42] D. Emma, A. Pescape, and G. Ventre, “Analysis and experimentation
of an open distributed platform for synthetic traffic generation,”
Proceedings. 10th IEEE International Workshop on Future Trends of
Distributed Computing Systems (FTDCS), 2004. [Online]. Available:
http://dx.doi.org/10.1109/FTDCS.2004.1316627

[43] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?” IEEE Communications Magazine, vol. 48, no. 9, pp.
158–165, Sept 2010.

[44] D. Mills, U. Delaware, J. Martin, J. Burbank, and W. Kash, “Network
Time Protocol version 4: Protocol and algorithms specification.”
Internet Requests for Comments, Internet Engineering Task Force, RFC
5905, 2010. [Online]. Available: https://tools.ietf.org/html/rfc5905

[45] T. Mizrahi and Y. Moses, “Time-based updates in openflow: A pro-
posed extension to the openflow protocol,” Technion–Israel Institute of
Technology, CCIT, Tech. Rep. 835, 2013.

[46] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM Symposium on SDN Research (SOSR), 2015.

Péter Megyesi received his BSc and MSc in Elec-
trical Engineering from the Budapest University of
Technology and Economics (BME), Budapest, Hun-
gary, in 2010 and 2012, respectively. Since 2012, he
is a PhD student at the High Speed Networks Lab-
oratory at the Department of Telecommunications
and Media Informatics, BME. His PhD research is
focused on synthetic network traffic generation. His
research interests also include traffic measurements,
traffic modeling and analysis and traffic identifi-
cation. Since 2013, Péter is also enrolled in the

Doctoral School on Innovation & Entrepreneurship organized by the EIT
Digital of the European Institute of Innovation and Technology. In 2014 Péter
spend six months as a visiting researcher at Traffic Group, University of
Naples Federico II. Since then his main research is focused on Software
Defined Networking and Network Function Virtualization. He is now also
paricipating in the 5GEx H2020 EU project at BME.

Alessio Botta received the M.S. degree in telecom-
munications engineering and the Ph.D. degree in
computer engineering and systems from the Univer-
sity of Naples Federico II, Naples, Italy. He currently
holds a post-doctoral position with the Department
of Computer Engineering and Systems, University
of Naples Federico II. He has co-authored over
50 international journal (the IEEE COMMUNICA-
TIONS MAGAZINE, the IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS,
and Elsevier Computer Networks) and conference

[the IEEE Global Communications (Globecom), the IEEE International Con-
ference on Communications (ICC), and the IEEE Symposium on Computers
and Communications (ISCC)] publications. His current research interests
include networking, and, in particular, network performance measurement
and improvement, with a focus on wireless and heterogeneous systems. Dr.
Botta has served and serves as an independent reviewer of research and
implementation project proposals for the Romanian government. He was
a recipient of the Best Local Paper Award at the IEEE ISCC 2010. In
the research area of networking, he has chaired international conferences
and workshops, served and serves several technical program committees of
international conferences (IEEE Globecom and IEEE ICC), and acted as
a reviewer for different international conferences (the IEEE Conference on
Computer Communications) and journals (the IEEE TRANSACTIONS ON
MOBILE COMPUTING, the IEEE NETWORK MAGAZINE, and the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY).

Giuseppe Aceto is a Post Doc at the Department
of Electrical Engineering and Information Technol-
ogy of University of Napoli Federico II. Giuseppe
received a PhD in telecommunications engineering
and a MS in telecommunications engineering from
the University of Napoli Federico II, Naples, Italy.
His work falls in measurement and monitoring of
network performance and security, with focus on
censorship. Giuseppe is the recipient of a best paper
award at IEEE ISCC 2010, and of ETIC AICA &
Rotary International Prize for PhD Thesis on Ethics

and ICT. He acted as a reviewer for different international conferences
(the IEEE International Conference on Computer Communications, the IEEE
International Conference on Communications, etc.) and journals (the IEEE
Transactions on Computers, Future Generation Computer Systems, Journal of
Network and Computer Applications, Computer Networks, etc).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004
http://dx.doi.org/10.1109/FTDCS.2004.1316627
https://tools.ietf.org/html/rfc5905


(C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite this article as: P. Megyesi, et al. “Challenges and solution for measuring Available Bandwidth in Software Defined Networks”,
Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

18

Sándor Molnár received his MSc, PhD and Ha-
bilitation in Electrical Engineering and Computer
Science from the Budapest University of Technology
and Economics (BME), Budapest, Hungary, in 1991,
1996 and 2013, respectively. In 1995 he joined
the Department of Telecommunications and Media
Informatics, BME. He is now an Associate Professor
and the principal investigator of the teletraffic re-
search program of the High Speed Networks Labora-
tory. Dr. Molnr has participated in several European
research projects COST 242, COST 257, COST 279

and recently in COST IC0703 on “Traffic Monitoring and Analysis: theory,
techniques, tools and applications for the future networks”. He was the BME
project leader of the Gold Award winner 2009 CELTIC project titled “Traffic
Measurements and Models in Multi-Service networks (TRAMMS)”. He is
a member of the IFIP TC6 WG 6.3 on “Performance on Communication
Systems”. He is a participant in the review process of several top journals
and serves on the Editorial Board of the Springer Telecommunication Systems
journal. He is active as a guest editor of several international journals such
as the ACM Kluwer Journal on Special Topics in Mobile Networks and
Applications (MONET). Dr. Molnár served on numerous technical program
committees of IEEE, ITC and IFIP conferences working also as Program
Chair. He was the General Chair of SIMUTOOLS 2008. He is a member of the
IEEE Communications Society. Dr Molnár has more than 170 publications in
international journals and conferences (see http://hsnlab.tmit.bme.hu/molnar
for recent publications). His main interests include teletraffic analysis and
performance evaluation of modern communication networks.

Antonio Pescapé is a Full Professor at the De-
partment of Electrical Engineering and Information
Technology of the University of Napoli Federico
II (Italy) where he teaches courses in Computer
Networks, Computer Architectures, Programming,
and Multimedia and he has also supervised and
graduated more than 180 among BS, MS, and PhD
students. His research interests are in the networking
field with focus on Internet Monitoring, Measure-
ments and Management and on Network Security.
Antonio Pescapé has co-authored over 180 journal

(IEEE ACM Transaction on Networking, Communications of the ACM,
IEEE Communications Magazine, JSAC, IEEE Wireless Communications
Magazine, IEEE Networks, etc.) and conference (SIGCOMM, NSDI, Infocom,
Conext, IMC, PAM, Globecom, ICC, etc.) publications and he is co-author
of a patent. He has served and serves as workshops and conferences Chair
(including IEEE ICC (NGN symposium)) and on more than 190 technical
program committees of IEEE and ACM conferences. For his research activities
he has received several awards, comprising a Google Faculty Award, several
best paper awards and two IRTF (Internet Research Task Force) ANRP
(Applied Networking Research Prize). Antonio Pescapé has served and serves
as independent reviewer/evaluator of research and implementation projects
and project proposals co-funded by the EU Commission, Sweden government,
several Italian local governments, Italian Ministry for University and Research
(MIUR) and Italian Ministry of Economic Development (MISE). Antonio
Pescapé is a Senior Member of the IEEE.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2016.12.004

	Introduction
	Background and Related Work
	Monitoring in SDN
	Available Bandwidth
	Available Bandwidth Measurement Methods
	Main issues for traditional Available Bandwidth estimation techniques

	Measuring Available Bandwidth in SDN Networks
	Limitations and constraints for Available Bandwidth estimation in SDN
	Measurement overhead
	Accuracy limitation for lack of synchronization
	Critical time-scale dependence of estimation
	Accuracy limitation for lack of timestamp

	Advantages and novel applications of Available Bandwidth estimation in SDN
	Experiments over Mininet Testbed
	Test Configuration
	Validation of Available Bandwidth Application
	Analysis of Measurement Error
	Measurements with Industrial Controller Platforms

	Novel features for OpenFlow
	Experimenter-based implementation.
	Protocol-wide modification.
	Discussion

	Conclusion
	References
	Biographies
	Péter Megyesi
	Alessio Botta
	Giuseppe Aceto
	Sándor Molnár
	Antonio Pescapé


