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Abstract— The da Vinci Research Kit (DVRK) is a telerobotic
surgical research platform endowed with an open controller
that allows position, velocity and current control. We consider
the problem of modelling and identification of both the Patient
Side Manipulators (PSMs) and of the Master Tool Manipulators
(MTMs) of the platform. This problem is relevant when realistic
dynamic simulations have to be performed using standard
software tools, but also for the design of model-based control
laws, and for the implementation of sensorless strategies for
collision detection or contact force estimation. A LMI-based
approach is used for the identification of the robot dynamics
in order to guarantee the physical feasibility of the parameters
that is not ensured by standard least-squares methods. The
identified models are validated experimentally.

I. INTRODUCTION

The da Vinci Research Kit (DVRK) is a telerobotic
surgical research platform assembled using a collection of
robotic components from the first-generation da Vinci Sur-
gical System provided by Intuitive Surgical. The DVRK
is currently used by 26 research groups around the world
[1]. The platform (see Fig. 1) consists of two patient side
manipulators (PSMs), one endoscopic manipulator and two
master tool manipulators (MTMs). An open controller de-
veloped by the John Hopkins University [2] provides a
full ROS-based control of all the DVRK robotic arms. The
controller allows position, velocity and current control and
thus opens the way for developing and testing advanced
control techniques, like impedance control, force control and
bilateral tele-manipulation control.

Complete and accurate dynamic models of the DVRK
robotic arms are necessary in order to design model-based
control laws, but also for realistic dynamic simulations and
to implement sensorless strategies for collision detection
or contact force estimation [3], [4], [5] in lieu of direct
sensing [6] . These latter can be conveniently employed to
improve surgeons perception and ability.

The aim of this work is to derive a complete dynamic
model of both the MTMs and the PSMs arms of the DVRK
system and use state of the art methods to obtain accurate
identification of the dynamic parameters.

The identification of the dynamic model of a robot is
usually addressed using linear regression techniques based
on the linear dependence of the dynamic equations with
respect to a set of dynamic coefficients, also known as base
parameters [7].

The obtained results are not necessarily physically con-
sistent [8], and may generate problems in simulation or
control. A number of approaches have been developed to

The authors are with the Interdepartmental Center for Advances in
Robotic Surgery of the University of Naples Federico II. Corresponding
author’s email: giuseppeandrea.fontanelli@unina.it

Fig. 1. The da Vinci Research Kit available at ICAROS center

ensure physical consistency (see, e.g., [9], [10]); some of
them allow to formulate the constraints as Linear Matrix
Inequalities (LMIs) and guarantee global optimality of the
solution through semidefinite programming [11].

To the best of our knowledge, this is the first paper
dealing with accurate dynamic modelling and identification
of the DVRK robotic arms. The modelling is complicated
for the presence of a 1-DOF double parallelogram and a
counterweight in the PSM, and of a 2-DOF parallelogram in
the MTM. Moreover, all the motors of the PSM are located
at the base of the robot and the joints are driven through
cables introducing elasticity, backlash and non-linear friction,
which are difficult to model. A constrained optimisation
approach based on LMIs has been adopted to guarantee
physical consistency of the dynamic parameters. The results
of the experimental validation of the identified models are
satisfactory, especially for the PSM, although they could be
further improved.

II. DVRK KINEMATIC AND DYNAMIC MODELLING

In this section the procedure to derive the kinematic and
dynamic model of both the PSM and MTM are presented.

A. PSM arm kinematics

Each PSM is a 7-DOF actuated arm, which moves a surgi-
cal instrument about a Remote Center of Motion (RCM), i.e.,
a fixed fulcrum point that is invariant to the configuration of
the PSM joints [12].

In detail, with reference to Fig. 2:
• the overall structure may rotate about axis J1 of an angle
θ1;

• a double parallelogram mechanism allows the rotation
of the surgical instrument about axis J2 of an angle θ2;

• the surgical instrument may translate along axis J3 of
a length d3 and rotate about axis J4 ≡ J3 of an angle
θ4;

• the axes J1, J2, J3 and J4 intersect in the RCM, whose
position does not depend on the joint variables;



• the revolute joints J5 (angle θ5) and J6 (angle θ6) are
orthogonal and, together with J4, form a non-spherical
wrist.

The first 6 degrees of freedom correspond to Revolute (R)
or Prismatic (P) joints, combined in a RRPRRR sequence.
The last degree of freedom, corresponding to the opening and
closing motion of the gripper, is not considered here since
we are interested in computing the position and orientation
of a frame attached to the center of the gripper (frame g)
with respect to a base frame (frame b) as a function of the
the joint vector:

q = [θ1 θ2 d3 θ4 θ5 θ6]
T .

The homogeneous transformation matrix T bg(q), representing
the pose of the gripper frame g with respect to the base
frame b, can be easily computed by choosing the origin
of frame b in the RCM point and applying the standard
Denavit-Hartenberg (DH) convention [13] to the kinematic
chain {J1, . . . , J6} of Fig. 2.

Noticeably, for the computation of T bg(q), the kinematics
of the double parallelogram can be ignored. Moreover, the
PSM arm is mounted on a passive base (the so-called
setup joint) which allows translating and rotating the arm
with respect to the patient, i.e., modifying the position and
orientation of the frame b attached to the RCM. Hence, a
suitable constant homogeneous transformation matrix Twb
must be introduced to define the position and orientation
of the base frame b with respect to a world frame w.

In computing the dynamic model of the PSM, the constant
rotation Rw

b of the base frame b with respect to the world
frame w must be taken explicitly into account because it
affects the gravity torque reflected at the joints.

TABLE I
DH PARAMETERS OF THE PSM

link joint prev succ ai αi di θi
1 R − 2 0 −π/2 − θ1
2 R 1 2′, χ 0.2 0 − θ2
2′ R 2 2′′ 0.5 0 − θ2′

2′′ R 2′ 3 0 −π/2 − θ2′′

3 P 2′′ 4 0 0 d3 −
4 R 3 5 0 π/2 − θ4
5 R 4 6 0.009 −π/2 − θ5
6 R 5 − 0 −π/2 − θ6
χ P 2 c 0 −π/2 − −
c P χ − 0 0 dc −

B. PSM arm dynamics

The computation of the dynamic model of the PSM arm
can be performed using, e.g., the recursive Newton-Euler
approach [13]. The classical version of the algorithm for
open kinematic chains must be suitably modified to include
the dynamic effects of:
• the counterweight used to balance the motion of the

instrument along the prismatic joint (see Fig. 3);
• the links of the double parallelogram mechanism.
With reference to Fig. 3, representing the complete kine-

matic structure of the PSM, the forward and backward
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Fig. 2. Patient Side Manipulator (PSM) kinematics

y1 z0

x0=x1

RCM

y2 x2x2''

x2' y2'
z2''

L2

L2'

z5

x3=x4

z3
y4

x5

1
2

2'

2''

3

4

5

L2''

L3

L4

L5

L6

CLC

Counterweight

xC

zC

6

z6

y6

Fig. 3. Schematic of the PSM kinematics with the Denavit-Hartenberg
frames

recursions can be applied to the open kinematic chain
composed by joints {1, 2, 2′, 2′′, 3, 4, 5, 6}. An additional
branch of the chain must be considered to take into account
the counterweight. The effects of the double parallelogram
can be accounted by imposing constraints to the kinematic
variables and to the joint torques.

Table I reports the Denavit-Hartenberg parameters corre-
sponding to the reference frames set as in Fig. 3, using the
notation of the book [13]. In particular, the joint variable qi
is denoted as θi in case of revolute joint and as di in case
of prismatic joint.

The last two rows of the table allows to take into account
the counterweight, modelled as a link which slides along
a prismatic joint attached to link L2 and linked by a
tendon driven mechanism to the actuator of the prismatic
joint 3. In detail, row c specifies a frame attached to the
counterweight, while row χ corresponds to a frame attached
to a fictitious link Lχ, which coincides with link L2 and
must be introduced to comply with the Denavit-Hartenberg
convention.

Thus the Newton-Euler algorithm, which is omitted here
for brevity, allows computing the (6× 1) vector of the joint
torques τ taking into account the inertia, Coriolis, centrifugal
and gravity generalised forces. The contributions due to joint
friction and to elastic forces acting on some of the joints can
be added separately, i.e.: τPSM = τ + τ f + τ e.

The friction contribution τ f has been set as the sum of
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Fig. 4. Master tool Manipulator (MTM) kinematics with Denavit-
Hartenberg frames

viscous and static friction:

τ f = F vq̇ + F ssgn (q̇), (1)

with F v = diag{Fv1, . . . , Fv4,F vl}, where F vl is a (2× 2)
matrix and F s = diag{Fs1, . . . , Fs6}. Matrix F vl models
the viscous friction for the last 2 joints, that are coupled by
a tendon driving mechanism.

The elastic contribution τ e models the elastic forces acting
on some joints. In particular, for joint 1 and 2 the elasticity is
created by the power cables, while an elastic torque produced
by a torsional spring is present on joint 4. These torques tend
to bring back the joints to their zero angular positions and
can be modeled as:

τ e =Keq, (2)

with Ke = diag{Ke1,Ke2, 0,Ke4, 0, 0}. Finally, for the
last three links, the mass and inertia properties have been
neglected and the corresponding parameters have been set to
zero.

C. MTM arm kinematics

The two MTMs, used to remotely teleoperate the two
PSMs and the endoscopic manipulator, are identical except
for their wrists, that are mirrored. Each MTM is an 8-DOF
manipulator. The last degree of freedom is not actuated by
a motor and is used to command the opening and closing
of the gripper of the instrument. Only the first 7 degrees of
freedom are considered in the kinematic and dynamic model
described here.

In detail, with reference to Fig. 4:
• the overall structure may rotate about the vertical axis
J1 of an angle θ1;

• the revolute joints with axes J2, J ′2, J2′′ and J3 form
a 2-DOF parallelogram mechanism; the two actuated
joints of the parallelogram are those about axes J2
(angle θ2) and J3 (angle θ3);

• the axes J4, J5, J6 and J7 intersect in the same point
and correspond to revolute joints with angles θ4, θ5, θ6
and θ7.

All the joints are actuated by a motor, with the exception of
the two revolute joints of the parallelogram about axes J2′
and J2′′ .

The kinematic model of the MTM arm can be computed
as a function of the vector of the actuated joints: q =
[θ1 . . . θ7]

T by using the DH convention extended to closed
kinematic chains [13]. The reference frames corresponding
to the DH table reported in Table II are shown in Fig. 4.
Note that the base frame b coincides with frame 0.

The homogenous transformation matrix T b7(q) can
be computed, e.g., by considering the kinematic chain
{1, 2, 3, 4, 5, 6, 7} and taking into account that the parallel-
ogram mechanism imposes the following constraints to the
joint variables:

q2′ = q2 + q3, q2′′ = −q3. (3)
TABLE II

DH PARAMETERS OF THE MTM

link joint prev succ ai αi di θi
1 R − 2, 2′ 0 π/2 0 θ1
2 R 1 3 0.279 0 0 θ2
2′ R 1 2′′ 0.1 0 0 θ2′

2′′ R 2′ − 0.279 0 0 θ2′′

3 R 2 4 0.365 −π/2 0 θ3
4 R 3 5 0 π/2 0.151 θ4
5 R 4 6 0 −π/2 0 θ5
6 R 5 7 0 π/2 0 θ6
7 R 6 − 0 0 0 θ7

D. MTM arm dynamics

The computation of the dynamic model of the MSM arm,
as for the PSM arm, can be performed using the recursive
Newton-Euler approach. The version of the algorithm for
closed kinematic chains must be adopted, to take into account
for the parallelogram mechanism.

The algorithm allows computing the (7 × 1) vector of
the joint torques τ taking into account the inertia, Coriolis,
centrifugal and gravity torques. The contributions due to joint
friction and to elastic torques acting on some of the joints are
added separately, i.e.: τMTM = τ + τ f + τ e. The friction
contribution τ f has been set as the sum of viscous and static
friction as in (1) with F s and F v set as diagonal matrices.
The torque τ e, set as in (2) with diagonal Ke, models the
elastic torques acting on joint 1, due to the power cables,
and on joints 4, 5 and 6, caused by torsional springs.

III. IDENTIFICATION OF THE DYNAMIC PARAMETERS

The methods of identification of the dynamic model of a
rigid robot are based on the property of linearity of the equa-
tions with respect to a suitable set of dynamic parameters. In
general, for a n-DOF manipulator, the dynamic model can
be written in the form:

τ = Y (q, q̇, q̈)δ (4)

where δ is a suitable (p×1) vector of dynamic parameters and
Y is a (n×p) matrix known as regressor; in our application
the torque τ must be set as τPSM or τMTM . In principle,
vector δ can be obtained by stacking the vectors δi of the



dynamic parameters of link Li, that, in the general case,
includes:
• the mass mi

• the three components of the first moment mi;
• the six independent elements of the inertia tensor Ii;
• the static (Fsi) and viscous (Fvi) friction coefficients.

Moreover, in the robots considered here, the link parameters
include also:
• the elasticity coefficients Kei for some of the links;
• a constant additive torque τo,i modelling the static

friction offset, which may also take into account the
motor current offset and the residual elastic force of
the cables.

Note that the inertia tensor and first moment of link Li are
computed with respect the origin of frame i− 1 (frame i) if
joint i is revolute (prismatic).

It is known that not all the dynamic parameters of the
links appear explicitly in the dynamic model (4) and can be
identified. There are some parameters that are unidentifiable
due to the mechanical structure of the manipulator and some
others that are identifiable only in linear combination [14].

A reduced vector β of r < p parameters can be found
using, e.g, a numerical algorithm based on the Singular Value
Decomposition (SVD) of the regressor Y [14], so that:

τ = Y r(q, q̇, q̈)β, (5)

where Y r is the (n × r) reduced regressor. Vector β can
be computed as β = KIδ, where KI is a constant (r × p)
matrix of coefficients.

The standard method proposed in the literature to identify
the robot dynamic parameters is based on a simple least-
squares optimal solution. Namely, if the robot joint torques,
as well as the joint positions, velocities and accelerations
are measured at given time instants t1, . . . , tM along a given
trajectory, one may write:

τM =

 τ (t1)
...

τ (tM )

 =

 Yr (t1)...
Yr (tM )

 β = YM β. (6)

The least-squares optimal solution to (6) is obtained through
the left pseudo-inverse matrix of Y M . More advanced ap-
proaches allow to preserve the physical consistency of the
parameters [9]. In this work, the method proposed by Sousa
e Cortesão [11] is adopted, which is based on a semidefinite
programming reformulation of the least squares method.

Since the joint torques of both the PSM and MTM arm
may have very different values, numerical errors may occur.
These errors can be reduced by multiplying both sides of
Eq. (5) by a suitable diagonal weighting matrix W =
diag{w1, . . . , wn} whose elements are inversely proportional
to the maximum torque measured on the respective joint
along a given trajectory, namely: wi = 1/τi,max.

Another weighting matrix P can be introduced to nor-
malise the regressor Y M with respect to the difference in
magnitude of the parameters, defined as:

P = diag
(

1

‖YM,1‖
, . . . ,

1

‖YM,r‖

)
, (7)
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Fig. 5. Identification trajectory for the PSM and the MTM arms

where ‖YM,i‖ is norm of the i-th column of the regressor
Y M . The optimal solution computed using the weighted
regressor Y MP must be multiplied by P−1 to obtain β∗.

IV. OPTIMAL TRAJECTORY GENERATION

The trajectory used for the identification must be suffi-
ciently rich to allow an accurate estimation of the dynamic
parameters. On the other hand, the trajectory must not excite
the unmodeled dynamics, like link or joint elasticity. The
condition number of the regression matrix YM is a measure
of the sensitivity of the solution β̂ respect to the errors on
YM or τM . Therefore the problem of the optimal trajectory
generation can be formulated as that of minimising the
condition number of the matrix YMP with P the weighting
matrix defined in (7). The method proposed in [15] is
adopted, based on the composition of sinusoidal trajectories
for joint i of the form:

qi(t) =

L∑
l=1

ail
ωf l

sin (ωf l t)−
bil
ωf l

cos (ωf l t) + qi0 (8)

where ωf is the fundamental frequency and L is the number
of the Fourier series harmonics. For both the PSM arm and
the MTM arm these parameters have been set to ωf = 0.1
and L = 5. The quantities ail , b

i
l and qi0 for l = 1, . . . , L

are the degrees of freedom used to minimize the condition
number, by solving a nonlinear optimisation problem with
2L + 1 free variables per joint. It is possible to consider
also the constraints deriving from joint positions and velocity
limits:

qmin ≤ q (p Ts) ≤ qmax

q̇min ≤ q̇ (p Ts) ≤ q̇max

{k (q (p Ts))} ⊂ S

where p = 0, 1, 2, . . . , Tf/Ts, Tf is the final time, Ts is
the sampling time, S is the robot workspace and k (q) is
the robot direct kinematic function. The constrained nonlin-
ear optimization method active-set included in the function
fmincon of MATLAB® has been used.



TABLE III
JOINT POSITION AND VELOCITY LIMITS FOR THE PSM

J1 J2 J3 J4 J5 J6
qmin[deg − m] −60 −45 0.05 −180 −90 −90
qmax[deg − m] 60 45 0.18 180 90 90
q̇min[rad/s − m/s] −2 −2 −0.4 −6 −5 −5
q̇max[rad/s − m/s] 2 2 0.4 6 5 5

V. EXPERIMENTAL RESULTS

The optimal identification trajectory computed for the
PSM is reported in Fig. 5, with the joint position and velocity
limits of Table III. Since the measured currents and joint

TABLE IV
JOINT POSITION AND VELOCITY LIMITS FOR THE MTM

J1 J2 J3 J4 J5 J6 J7
qmin[deg] −40 −15 −50 −200 −90 −45 −480
qmax[deg] 65 50 35 90 180 45 450
q̇min[rad/s] −1.1 −1.1 −1.1 −2 −2 −2 −2
q̇max[rad/s] 1.1 1.1 1.1 2 2 2 2

TABLE V
CARTESIAN SPACE LIMITS FOR THE MTM

x y z
pmin[mm] −60 −60 −80
pmax[mm] 250 100 100

positions are very noisy, all the signals were filtered using
a moving average filtering technique. Table VI reports the
dynamic parameters of the PSM and their numerical values.
Fig. 6 reports the measured torques and those computed

TABLE VI
PSM PARAMETERS

Param Value
m1x −0.683
Fv1 0.133
Fs1 0.064
Ke1 0.129
τo1 0.004
Fv2 0.136
Fs2 0.15
Ke2 0.35
τo2 0.071

Param Value
m3y −0.672
m3 0.146
m3x 0.033
m3y 0.001
m3z −0.039
Fv3 2.695
Fs3 0.496
Fv4 0.001
Fs4 0.004

Param Value
Ke4 0.003
τo4 0.004
Fv55 0.028
Fv56 0.005
Fs5 0.012
Fv65 0.013
Fv66 0.02
Fs6 0.004
mc 0.179

Param Value
5I2′′yz + 5I3yz +m1z +m2z 0.013

I2′xx + I2′′xx + I3xx + Icxx + I1yy
+I2yy + 0.04m2′ + 0.04m2′′ − 0.4m2′′z −0.07

0.2m2′ + 0.2m2′′ +m2x −m2′′z −0.091
m2y − 5I3xz − 5I2′′xz 0.228

I2xx − I2′′xx − I3xx − Icxx − I2yy + I2′′zz
+I3zz + Iczz − 0.04m2′ − 0.04m2′′ + 0.4m2′′z 0.003

I2′′yy + I3yy + Icyy + I2zz + 0.04m2′

+0.04m2′′ − 0.4m2′′z 0.188
m2′z − 5I3yz −m2′′y − 5I2′′yz −0.022

5I2′′xz + 5I3xz +m2′′x −0.246
I2′′xy + I3xy −0.007

using the dynamic model with the identified parameters,
considering a test trajectory different from that used for the
identification. The dashed line is the reconstruction error. The
corresponding RMS absolute and relative errors are reported
in Table VII. The errors are not negligible in particular for the
joints 5 and 6, for which only the friction forces have been

TABLE VII
RMS ERRORS ON THE TORQUES FOR THE PSM

J1 J2 J3 J4 J5 J6

Abs err 0.05 0.08 0.194 0.0010 0.017 0.015
Rel err % 22.07 31.55 29.55 11.93 35.1 45.3

TABLE VIII
RMS ERRORS ON THE TORQUES FOR THE MTM

J1 J2 J3 J4 J5 J6 J7

Abs err 0.031 0.097 0.102 0.029 0.011 0.004 0.0005
Rel err % 27.06 21.04 39.07 28.36 43.54 25.42 42.83

considered in the model; however, the results are globally
satisfactory considering the high sensors noise, especially
on the joint velocities and accelerations, that are computed
numerically, and the unmodelled dynamics, like friction and
elasticity of the tendons.

TABLE IX
MTM PARAMETERS

Param Value
Fv1 0.129
Fs1 0.037
Ke1 0.249
τo1 −0.032
m2y 0.558
I2xy 0.008
Fv2 0.119
Fs2 0.053
m2′y 0.205
m2′′y −0.541
m2′′z −0.484
m3y −0.014

Param Value
Fv3 0.068
Fs3 0.0001
m4x 0.008
m4z −0.034
Fv4 0.066
Fs4 0.034
Ke4 0.042
τo4 0.052
m5x 0.002
m5y −0.053
Fv5 0.0001
Fs5 0.011

Param Value
Ke5 −0.018
τoff5 0.009
mpx6 0.0001
Fv6 0.0001
Fs6 0.005
Ke6 0.003
τo6 −0.002
m7x 0.0001
m7y 0.0001
I7zz 0.0001
Fv7 0.001
Fs7 0.0001

Param Value
I1yy + I2yy + I2′yy + I2′′yy + I3zz + 0.01m2′′

+0.078m3 + 0.21(m4 +m5 +m6 +m7) 0.217
0.279m3 − 0.739(m4 +m5 +m6 +m7)

+m2x − 2.793m3x −0.839
I2xx + I2′′xx − I2yy − I2′′yy

−0.078(m3 +m4 +m5 +m6 +m7) 0.029
I2zz + I2′′zz + 0.078(m3 +m4 +m5 +m6 +m7) 0.123

0.1m2′′ + 0.36(m4 +m5 +m6 +m7) +m2′x +m3x 0.031
I2′xx + I3xx − I2′yy − I3zz + I4zz − 0.01m2′′

−0.13m4 − 0.11(m5 +m6 +m7) −0.588
I3yy + I2′zz + I4zz + 0.01m2′′ + 0.13m4

+0.15(m5 +m6 +m7) 0.131
1.02(m4 +m5 +m6 +m7) +m2′′x + 2.79m3x 0.951

0.15(m5 +m6 +m7) +m4y +m3z −0.186
I3xz − 0.055(m5 +m6 +m7)− 0.36m4y 0.038

I4xx − I4zz + I5zz −0.037
I4yy + I5zz −0.001
m6y +m5z −0.004

I5xx − I5zz + I6zz 0.001
I5yy + I6zz 0.002

The optimal identification trajectory computed for the
MTM is reported in Fig. 5, with the joint position and
velocity limits of Table IV. Table V reports the Cartesian
space constraints needed to avoid the collision between the
MTM arm and the console. Fig. 7 reports the measured and
computed torques as for the MTM and the corresponding
RMS absolute and relative errors are reported in Table VIII.
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Fig. 6. Measured and computed torques for the PSM along a test trajectory

VI. CONCLUSION AND FUTURE WORKS

In this work the dynamic model identification of the
DaVinci Research Kit robotic arms was presented. The
minimum number of parameters required to compute the
complete dynamic models of the PSM and of the MTM have
been derived. An LMI-based constrained approach was used
to ensure the physical feasibility of the dynamic parameters
and suitable exciting trajectories were derived using an
optimality criterion to improve the identification results. The
error between the measured torques and those computed
using the identified dynamic model remains below 30% for
almost all the joints. Future work will be devoted to reduce
this error, for example using non-linear friction models for
the tendon driven joints, and to test the accuracy of the
model-based sensorless estimation of the contact forces.
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