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SUMMARY 
 

Seismic risk assessment on a large scale may be defined as the prediction of the fraction of 
buildings expected to reach a conventional limit state in the region and time period of interest. 
This definition is the frequentistic interpretation of the failure probability for a homogeneous class 
of structures. Empirical post-event survey methods for vulnerability evaluation may not fit the 
purpose of seismic risk analysis at class level and a pure analytical approach may be required; to 
this aim this paper proposes the extension of structure-specific reliability procedures. The class-
capacity function is approximated by regression of significant cases analyzed by Static Push-Over 
(SPO); the seismic demand is obtained by Probabilistic Seismic Hazard Analysis (PSHA). The 
seismic risk is computed by simulation of the former being exceeded by the latter via the Capacity 
Spectrum Method (CSM). Explanatory application refers to six classes of Italian rectangular R.C. 
buildings; three classes are of pre-code constructions, designed only for gravity loads, whereas the 
other three consider seismic buildings designed with old codes not accounting for capacity design 
concepts. 
 
 

1.  INTRODUCTION 
 

When specific structure is concerned, to assess the seismic risk, the engineer will seek the frequency of one or 
more events leading to conventional structural failure [Cornell, 2004]. It is possible to define, for those limit 
states, a function (Z) which is non positive if the failure condition is reached or exceeded. If some of the 
parameters Z depends on are uncertain, then the assessment of whether the structure is safe or not can only be 
given in probabilistic terms. The probability that Z is non-positive is the failure probability (Pf); its complement 
Ps=(1 - Pf ), the probability of survival, is a measure of the structural reliability. In the seismic case the Z-
function is expressed in terms of nonlinear capacity (C) versus demand (D), Eq. (1). The latter is the required 
performance for the structure at a specific site and the former is the supply of such performance.  
 

 [ ] [ ]0= ≤ = ≤fP P Z P C D   (1) 
 
The rate of the capacity being exceeded by the demand, in a given time interval, may be interpreted as the 
seismic risk. Several methods are available to compute P[C≤D] in close or even approximate form and a 
comprehensive review of these methods is given in Pinto et al. [Pinto et al, 2004] and references thereof. A 
possible strategy is to separate the estimation of the structural response from the probabilistic characterization of 
the seismic threat it is subjected to, Eq. (2): 
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The second term in the right hand side of Eq. (2) is the occurrence probability of a ground motion Intensity 
Measure (IM), typically reflecting some spectral properties, computed by means of Probabilistic Seismic Hazard 
Analysis (PSHA) [McGuire, 1995];P[C≤D|IM], the fragility, is the failure probability for a given IM value.  
Equation (2) may also apply to a class of structures and the failure probability may be interpreted as the fraction 
of buildings within the class expected to collapse. It is required to probabilistically characterize the seismic 
capacity and demand for the class and an analytical evaluation of these terms seems the appropriate approach to 
the risk assessment. In the case of class/regional scale seismic assessment, in fact, vulnerability data are often 
represented by means of statistical analysis of post earthquake damage surveys [Rossetto et al., 2003]. The 
empirical approach is adopted worldwide, in Italy for example, by the procedures issued by Gruppo Nazionale 
Difesa dai Terremoti – GNDT [Di Pasquale et al., 2005], [CNR-GNDT, 1994]. The accuracy of empirical 
methods may be affected by the unavailability of a sufficient database of damage observations, which usually 
consists of heterogeneous structural data. Moreover, those empirical studies often formulate damage probability 
as function of macro-seismic intensity scales [Dolce et al, 2006] and, therefore, do not fit the seismic risk 
computation including PSHA as in Eq. (2) because the two terms are not consistently expressed by the same 
variable (even though some conversion is possible it would introduce further uncertainty in the process). 
Consequently, much research has been attempted to obtain vulnerability curves by alternative approaches less 
dependent on post-event surveying. An advance in this direction is represented by HAZUS methodology 
[HAZUS, 1999], which provides vulnerability functions for categories of structures depending, for example, on 
the design code enforced at time of construction: a bilinear capacity curve, associated to each category, is 
compared to inelastic spectral demand to get the performance point so that class-scale lognormal fragility curves 
can be obtained. However, the HAZUS loss assessment procedure is optimized for scenario analysis (e.g. for a 
given ground shaking level and/or magnitude-distance pair) rather than for risk evaluations as also pointed out 
by Crowley et al. [Crowley et al, 2004]. A further attempt to estimate the vulnerability of the class by some 
representative mechanical models is given by the “semi-quantitative” methods [Calvi, 1999] which need a 
limited number of input data in compliance with the amount of information generally available. In conclusion, 
even though some interesting effort exists [Fischer et al., 2002], the degree of knowledge about structural models 
required by structure-specific methods and the computational exertion to perform non-linear dynamic analysis to 
compute Eq. (2), are not of easy application to a class-scale analysis. On the other hand the traditional 
observational vulnerability methods seem to be inadequate to probabilistic seismic risk assessment.  
Herein, the formulation of an analytical method for class-scale risk analysis is discussed.  A set of cases 
representative of the buildings within the class is reproduced by means of a simulated design with reference to 
the codes, the available handbooks and the current practice at the time of construction. 
The capacity of the class is retrieved by performing a set of Static Push-Over (SPO) analysis for these significant 
cases. Then, multiple regression allows the expression of capacity as a function of the parameters of interest 
(materials, geometrical and structural features), derived from inventory. The seismic demand is given by 
inelastic modification of the probabilistic elastic spectra resulting from PSHA. The expected number of failures 
within the class is estimated comparing C and D by a simple simulation method (i.e. Montecarlo). The approach 
allows the explicit account of several uncertainties related to both seismic response and structural damage, 
avoiding the shortcomings of empirical vulnerability analysis, moreover the spectral seismic inelastic demand 
analysis ensures a computational effort appropriate to the scale of the problem. As for explanatory application 
the method is used to compute seismic risk of Italian existing rectangular plan view R.C. buildings seismically 
and pre-code designed.  
 
 

2. FORMULATION AND METHODOLOGY 
 
The estimation of the fraction of structures in the class expected to not survive the period of observation may be 
formulated assuming that the class is the entity the failure probability has to be computed for, as seismic 
reliability methods compute Pf for specific structures. To this aim a probabilistic characterization of the class-
capacity and of the class-demand are needed. These are functions relating to any building belonging to the class 
its seismic performance. In the case of structure-specific problems the uncertainties affecting C and D reflect the 
intra-structure variability of some global or local factors as material properties and the variability of response to 
ground motion. At the class-scale, in addition, uncertainty also includes the structure-to-structure variability of 
structural system and details. For example, if the class of interest is the one of Italian pre-code rectangular R.C. 
frames with a given number of storeys, the class is represented by a generic building as in Figure 1.  
A particular structure belonging to the class is defined by a realization x of a vector of random variables, 
X={X1,X2,…,Xn}, which components may also include plan dimensions, bay lengths and inter-storey height. Then 
the limit state function may be expressed as in Eq. (3):  
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Since for any x , the C( X ) and D( X ) functions return the seismic capacity and demand respectively of the 
structure defined by x , the risk assessment is possible only if statistics of the X  vector components are 
available. This paper will discuss the analysis of C and D and will not deal with the even relevant issue of 
estimating the distributions they depend on, which may be carried out for example, by sampling the population 
which is under analysis; details on the topic may be found in [Ozceb et al., 2004], [Steimen et al., 2004].  
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Figure 1: Generic element representing the class and geometric random variables 

 
2.1 Class scale capacity 
 
The class-capacity may be defined as a function mapping the capacity curve to the vector X ; so that for any 
realization x , which identifies a particular structure, the function returns the appropriate set of effective period, 
ultimate displacement and strength able to define its capacity curve (to follow). At least two options are available 
to get an approximate form of such capacity. 
 
Option A: The marginal statistics of the n terms of the X  vector within the class are assumed to be known and 
s-independent. The approach consists of a preliminary planning of a number of structural analyses defined 
according to the distributions of the parameters. Then one may consider, for example, a 3n factorial plan as for 
the Design of Experiments (DoE) in the Response Surface Method (RSM) [Iervolino et al., 2004], [Cosenza et 
al., 2005]. The levels of factors X  are selected to capture their variability in the class; for instance, if a relevant 
factor is a narrowly normally distributed around its mean in the population of structures to be investigated, the 
three levels for experiments may be mean (µX) plus or minus one standard deviation (σX). From this standpoint, a 
series of meaningful levels of the vector X , hence a series of particular structures, are defined and analysed to 
observe the capacity; finally these results are interpolated, by a multi-parametric regression, for further 
predictions. In other words, considering three different values for each Xi variable, 3n structures belonging to the 
class are defined. If a SPO evaluation is performed at each point of the DoE, the capacity depending on X , for 
example in terms of ultimate displacement Cd, is obtained. Results from these analyses (i.e. ultimate roof 
displacement) are fitted by multi-parametric regression (i.e. linear) which provides capacity for any structure of 
the class (e.g. x  realization) not specifically investigated (Eq. (4)):  
 

 ( ) 0
1=

≈ + ∑d d

n

d C , C ,i i
i

C X a a X   (4) 

 
Since for the 3n structures a capacity curve is available by SPO, similarly may be defined approximated 
functions for the strength (Cs) and the effective period (T) as in Eq. (5) and Eq. (6): 
 



 4

 ( ) 0
1=

≈ + ∑s s

n

s C , C ,i i
i

C X a a X   (5) 

 

 ( ) 0
1=

≈ + ∑
n

T , T ,i i
i

T X a a X    (6) 

 
Option B: The procedure just discussed requires an intentionally limited number of structural analyses and it is 
able to provide an approximate form for the class-capacity with comparatively little effort. However, if the 
statistics of the X  variables are disperse the points of the DoE are relatively far from each other, the linear or 
even quadratic regressions may not be appropriate for capturing the actual variation of capacity within the class. 
In other words, if the dispersion of the component of the X  vector is large, the fitting by a regression may 
approximate the capacity too roughly. Therefore, another possible option may be to compute capacity for many 
cases defined by scanning the ranges of the X variables. This kind of dense experimental plan does not require 
fitting of a function covering a broad region of the X  domain, but rather a series of local interpolating functions 
defined between adjacent points of the DoE.  
The number of SPO required may be much larger than Option A, but it has the benefit of reducing the 
approximation of the C function. The limits of this experimental plan have to be defined, as in Option A, trying 
to capture as much as possible the variability of the X  components; the density of the DoE has also to be 
calibrated accounting for the available computational capabilities. 
 
2.2 Seismic demand 
 
Demand (D( X )) refers to inelastic spectral analysis, in the sense of the Capacity Spectrum Method (CSM) 
[Fajfar, 1999]. According to this approach it is necessary to get inelastic displacement demand for any possible 
period (T( X )). In the light of seismic risk this implies each spectral ordinate having a corresponding 
probabilistic distribution reflecting the seismic hazard at the site. This task may be carried out referring to the 
common PSHA. In fact, Probabilistic Seismic Hazard Analysis provides probabilistic distributions of pseudo-
acceleration spectral ordinates Sa,e(T); therefore the corresponding elastic displacement’s PDF can be obtained by 
a deterministic transformation as in Eq. (7), where 12 Tω π −= : 
 

 ( ) ( )
( )2

a ,e
d ,e

S T
S T

Tω
=   (7) 

 
In order to evaluate the inelastic demand, the elastic spectral ordinates should be adequately modified by spectral 
amplification factors, CR(R,T) [Miranda et al., 2002]: 
 

 ( ) ( ) ( )d ,i d ,e RS T S T C R ,T=   (8)  
 
where (Sd,i(T)) is the demand for the structure; R  is the strength reduction factor defined, for an elastic-
perfectly-plastic oscillator, as the ratio of Sa,e(T) times the mass m  over its strength CS: 
 

 
( )a ,e

S

S T m
R

C
=   (9) 

 
In order to account for all uncertainties in computation of Equation (1) the variability of CR has to be included. 
The conditional distribution of CR, given {T, R}, may be assumed to be lognormal (Miranda, personal 
communication, 2005) and therefore the random variable may be written as in Eq. (10): 
 

 
RR R C

ˆC C ε=   (10) 
 
where RĈ  is the median and the log of 

RCε  is normally distributed with zero mean and variance equal to the 

variance of RC . Finally, if the displacement capacity of the structure is indicated as dC , the limit state function 
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can be written as in Equation (11) depending on the vector X  of structural random numbers (e.g. materials, 
members size, plan view geometry, etc.): 
 

 ( ) ( ) ( )d d ,e RZ X C S T C R ,T= −   (11)  

 
2.3 Risk Analysis 
 
Given that the seismic class-capacity and class-demand may be computed, the CSM may be applied virtually to 
any structure, either specifically analyzed in the DoE or not, and the limit state function may be also checked for 
collapse or survival. Then, considering the marginal distributions of the components of X , the risk of the class 
may be estimated by a conventional simulation method as Montecarlo applied to Eq. (11).  
In any single run, indicated by the ordinal j, the X  vector is sampled (1) according to the marginal distributions 
of its components and a realization  { }1 2j , j , j n , jx x , x ,..., x=  is obtained; (2) the capacity of the building 

defined by jx  may be retrieved by option A (the X ’s realization is plugged into the global capacity regression 

functions) or by Option B (just a local regression is made among points adjacent to the X  realization and 
already analyzed by the dense DoE) and a particular { }d , j s , j jC ,C ,T  set, e.g. a capacity curve, is retrieved; (3) 

the ( )a ,e jS T  distribution is sampled; (4) the ( )d ,e jS T  and jR  are retrieved as in Eq. (7); (5) the median 

( )R j jĈ T , R  factor is calculated; (6) the conditioned distribution of the residual ( )RCε  of RC  is sampled and 

the actual R , jC and the inelastic demand are obtained; (7) the capacity and the demand are compared to see if 
the collapse occurs in the j-th run. At the end of all runs the seismic risk of the class is estimated by the ratio of 
counted failures over total number of runs. 
 
 

3. CAPACITY ANALYSIS FOR A CLASS OF R.C. BUILDINGS  
 
At the urban level of analysis collecting buildings in a homogenous class may help to reduce epistemic 
uncertainty in the seismic capacity assessment. To this aim the definition of the class should be based on 
parameters which affect the seismic behaviour of the buildings, while they are available at a large scale [ATC, 
1996]. The very simple features which may be directly related to the seismic assessment are: plan morphology, 
number of storeys and design code enforced at time of construction. Similar classification is adopted by HAZUS. 
The procedure presented above requires the nonlinear analysis of a series of buildings in the Design of 
Experiments plan. Then a specific structure has to be associated to any realization of the X  vector of the DoE; 
to this aim a specific re-design procedure, based on a simulated design, has been developed. In this step a crucial 
aspect of knowledge of the structural characteristics of a building is the period of construction. Using all 
information obtained through reference to the codes, the design methods and the typical current practice at the 
time of construction, a group of structural characteristics typical of the buildings of a certain period and of a 
certain region can be determined. Specifically, through an examination of the codes enforced, specifications on 
the prescribed values of loads and material strengths, the minimum values of the dimensions of structural 
elements and of reinforcement amounts can be drawn up. More difficulties occur for the evaluation of the 
location of reinforcement and of the detailing solutions. For this reason, reference has to be made to the 
handbooks commonly adopted in the period and to the technical documentation of real buildings found in the 
archives of public administrations, building firms and professional offices. From the handbooks more accurate 
indications can be obtained regarding the design methods and the arrangement of reinforcement in the structural 
elements. Finally, the technical documentation of real buildings enables verification of the reliability of the data 
obtained from codes and handbooks, as it shows the design and construction rules actually adopted in practice. 
All this process assures that the set of buildings is representative of the class.  
The steps of building re-design process may be summarized in three steps: (1) definition of geometric/structural 
model; (2) elements design; (3) definition of the mechanical model.  
The procedure herein discussed refers to rectangular plan shape; nevertheless, it could be extended to other 
morphologic configurations. Non-linear analysis allows the retrieval of the seismic capacity of the building in 
terms of { }d SC ,C ,T . Among non-linear tools, SPO is an attractive solution for the trade-off of investigating 
the building seismic behaviour performing a comparatively simple, yet accurate, analysis. In particular, lumped 
plasticity models seem to be sufficiently accurate to assess seismic performance including different sources of 
deformability [Cosenza et al., 2002]. 
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3.1 Re-design process 
 
Adopting a three-dimensional mesh with variable module’s linear dimensions xa , ya , za  it is possible to 

reproduce a geometric model that is consistent with the global building dimensions xL , yL  and zL , as shown in 

Figure 2. Geometrical mesh discontinuities are explicitly considered; e.g. the number of stairs ( sn ) and the 
length of the stair module sa , and inter-story height of the first floor ( 1za ). The latter may differ from az for 
structural (foundation level) and/or architectural reasons. The Modules’ lengths ( xa , ya , za ) also depend both 
on architectonical and structural issues. Moreover, for each geometric model, it is possible to define a set of 
structural models depending on the number and location of the structural elements. Although the configuration 
of the columns is uniquely determined for a given geometric model, on the other hand, the beam number and 
position are determined by the number of plane frames in x and y direction, pxn  and pyn  respectively (see 
Figure 2). In gravity load design (pre-code building) according to experience from field observations [Verderame 
et al., 2002] it is assumed that only the lateral plane frames exist in the short direction ( 2pyn = ). Conversely, 
when seismically designed buildings are concerned [Pecce et al., 2004] the number of plane frames in short 
direction is equal to the number of bays, pyn = xn . Considering that column orientation ( OR ) complies with 
architectural rules, it is assumed that columns on the perimeter and those adjacent to the stair module are 
oriented so as to lay inside the infill thickness. For the remaining columns, two limit schemes are adopted, 
considering for each direction x and y the extreme situations of strong column and weak column orientation. 
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Figure 2: Building model: geometric mesh and structural model 
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Figure 3: Capacity parameters 

 
Columns and beams identified in the previous step are designed, in terms of cross-section and reinforcement, 
according to code and design practices related with the construction age. In particular, a number of rules 
affecting the entire design process have to be established: Definition of external loads; Definition of analysis 
model; and Material design characteristics. External loads are assigned depending on whether seismic or non 
seismic design is concerned. Definition of analysis models is strongly influenced by common practice, rules and 
manuals adopted at the age of construction. In gravity load design (pre-code building) an element level analysis 
model was generally adopted (e.g. axial load for the columns, simple bending for the beams).  
Regarding seismically designed buildings, it was a common practice to consider the horizontal slabs as 
deformable in their plane; the adopted analysis model assumes simple plane frames extracted from the 3D 
structure and do not consider the stair stiffness. Material properties selected for design derive from prescribed 
codes and consider steel and concrete types commonly used at the age of construction. 

 
3.2 Non-linear analysis 

 
Seismic capacity is evaluated by means of SPO. As mentioned, the flexural behaviour of the beam/column 
element is characterized by a lumped plasticity model; a moment-rotation (M-θ) relationship, depending on 
geometric and mechanical features of the element end sections, has to be drawn. Existing mechanical and/or 
experimental capacity models [Fib, 2003] allow defining yielding and ultimate rotational capacity for the 
elements; in particular, the yielding (θy) and ultimate (θu) rotations were computed as proposed by Panagiotakos 
and Fardis [Panagiotakos and Fardis, 2001]. The influence of shear action was modelled based on a reduction of 
the shear strength depending on the local ductility, expressed in terms of rotation varying with a linear trend 
[Priestley et al., 1994]. These models depend mainly on compressive ( cf ) and steel yielding ( syf ) strengths. 
Beam/column joint failure is not considered. The capacity curve, in terms of lateral strength Vb and displacement 
at the roof level ∆, is determined up to maximum lateral strength (near collapse), consistent with adopted 
mechanical models. Structural failure corresponds to the first attainment among element failure (ultimate 
rotation or ultimate shear strength of a structural member) and the near collapse condition of the structure. The 
MDOF-SDOF equivalence prescribed by CSM is performed referring to the structure’s failure point. 
Furthermore, the transformation of the capacity curve in bilinear form allows estimating non-linear strength 

( )sC X ; the displacement capacity ( )dC X ; and effective period ( )T X , as shown in Figure 3, where 

{ }x y syX L , L , ..., f=  is the vector of parameters the limit state function depends on, as listed in Table 1. 

 
Table 1. Building model parameters 

 
Geometric Structural Mechanical 

Plan dimensions Lx, Ly Bay length ax, ay concrete fc 
Height Lz Number of plane frames npx, npy Steel fsy 

Number of storeys nz Column orientation OR   
 
 

4. APPLICATION  
 
The procedure presented in the previous sections has been applied to compute total risk for R.C. buildings 
classes located in a moderate seismicity site in southern Italy. The application refers to 3, 4 and 5 storeys pre-
code and seismic rectangular buildings. Pre-code, or gravity load designed, represent the majority of the building 
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stock in many areas that have been recently classified as seismic, according to last Italian  hazard map [OPCM 
3431, 2005]. On the other hand, many seismically designed constructions reflect old codes, [R.D.L. 2105, 1937], 
[R.D.L. 640, 1935],[ Legge 1684, 1962], which do not account for capacity design rules.  
Hazard curves, computed by PSHA, used in this application reflect the seismicity of the site where the classes 
are supposed to be located. In Figure 4 selected curves for several T values class are given referring to the 
exceeding probability in fifty years.  
 

 
Figure 4: Seismic hazard of this study 

 
Adopting option B, for determining the class-capacity and computing total risk, a large amount of SPO is 
performed considering all the possible cases defined by scanning the significant ranges of the input variables. 
These ranges are defined depending on X  distributions. In particular, the base plan view dimensions xL  ( yL ) 
are assumed to be normally distributed with a mean of 25.0m (10.0m) and a Coefficient of Variation (CoV) of 
12% (6%). These values are chosen based on the results of field surveys carried out in Campanian region 
[Verderame et al., 2002], [Pecce et al., 2004] and expert judgements.  
The height is determined by the number of storeys and assuming za =3.00 m and 1za =4.50 m for all the classes. 
Hence for 3, 4 and 5 storey classes building height zL  is 10.5m, 13.5m, 16.5m respectively. Compatibly with the 
assumed xL  dimension it is hypothesized that one single stair ( sn =1) module accomplishes the building 
functionality. Stair module dimension sa =3.00 m is considered. Accomplishing the design practices and 
common architectural trends the xa  and ya  modules linear dimensions are limited in the range of [3-5] meters. 

Only the strong column orientation is considered as a variable, OR . Finally, concrete and steel strengths cf  and 

syf  are normally distributed with mean 25N/mm2 and 400N/mm2 and CoV 25% and 15% respectively 
[Verderame et al., 2001a], [Verderame et al., 2001b].  
Starting from these assumptions input variables ranges are defined and given in Table 2. The scanning step of 
such ranges was chosen in order to optimize the trade-off between having a dense DoE, as requested by option B 
of class-capacity analysis, and the computational effort. 
 

Table 2. Design of Experiments details 
 

Variable Range Scanning step 
Lx [15-32] 1.0m 
Ly [8-12] 1.0m 
fc [5-45] 10MPa 
fsy [200-600] 50MPa 

ax, ay [3-5] See compatibility equations of Figure 2 
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Table 3. Class failure probability Pf 
 

Number of storeys of the class Pre-code  expected failures fraction Seismic expected failures fraction 
3 4.00×10-3 8.00×10-5 
4 3.30×10-3 2.40×10-4 
5 5.20×10-3 5.80×10-4 

 
Hence, it is possible to compute total risk as outlined in section 2.3. In particular, for each sampling of the 
distribution of the X  variables, local interpolation of the capacity points ( ( )dC X , ( )sC X , ( )T X ) 

corresponding to the closest points in the analysis plan is performed. The so-determined inelastic displacement 
capacity dC  is, then, compared to the inelastic seismic demand D  computed as in Eq. (8). The number of 
collapses ( C D< ) over the total number of trials is the expected fraction of failures in 50 years summarized 
Table 3.  
The given results show that, even not considering any capacity design principle, the seismic classes are 
characterized by a risk one order of magnitude lower than pre-code cases. The different structural system results 
in a shorter effective period of the former in respect to the latter which results in a lower displacement demand. 
However some input of the analysis are arbitrary, i.e. in the distribution of the X  variables, and therefore the 
results in terms of total risk, should only be taken as an example of the application of the proposed methodology. 
 
 

5. CONCLUSIONS 
 
The method presented in this paper deals quantitatively with the large number of factors involved in the total risk 
analysis for classes of buildings. Formulation explicitly takes into account uncertainties in inelastic capacity and 
demand extending the approach of structure-specific reliability methods. The mechanical evaluation of the 
seismic capacity terms allows accounting for uncertainties related to seismic response, avoiding some limitations 
of empirical vulnerability analysis. The limit state function is represented in terms of inelastic displacement and 
demand. Class-capacity is defined as a function mapping the bilinear force-displacement curve to the factors 
identifying a specific structure within the class. Two alternative options are given to get such function by 
interpolation of a number of push-over analyses. A specific computer code has been developed to re-design the 
buildings to be analyzed associating a specific structure to the poor information of the input variables. The 
probabilistic characterization of the limit state function is obtained considering the statistics of the capacity 
affecting variables to be retrieved surveying the population under investigation. Seismic demand refers to PSHA 
modified by inelastic spectral amplification factors; uncertainty related to the latter is also included. The 
application, even though the distributions of the parameters do not reflect a real case, is useful to discuss the 
procedure. The expected fraction of failures refers to three to five storey R.C. buildings with pre or poor seismic 
design. The hazard analysis refers to a moderate seismicity site in southern Italy. Results show that the seismic 
code design, even not considering the capacity design philosophy, lowers the risk of an order of magnitude in 
respect to pre-code buildings.  
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