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Abstract 

Earthquakes are clustered in space and time. This means that structures in seismically active regions can be subjected to 

multiple consecutive instances of base acceleration, with insufficient in-between time for repair operations to take place. 

In such situations, buildings may experience degradation of their lateral-force-resisting capacity due to damage 
accumulation. Consequently, the use of seismic fragility functions developed for the intact structure may not be enough, 

in the context of seismic risk assessment studies that consider the effect of seismic clusters. In these cases, one may 

employ state-dependent fragility curves, which are separate fragility functions assigned to the same structure, depending 

on distinct damage states that it may be brought to by prior shocks. 

State-of-the-art analytical estimation of structure-specific fragility entails the use of dynamic analysis of a numerical 

model of the structure, for example, incremental dynamic analysis (IDA), which can be computationally laborious, thus 

motivating the development of simplified, less time-consuming methods, often based on substituting the structural model 

by equivalent single-degree-of-freedom (SDOF) systems that can be defined via pushover analysis. In fact, existing 

procedures in the literature, such as back-to-back IDA, that can be used to estimate state-dependent fragility curves, tend 

to increase computational costs, rendering the development of simplified methodologies for this case a topical issue. 

In this context, the present paper presents a method for estimating state-dependent seismic fragility functions, based on 

pushover analysis and a predictive model for constant-ductility residual displacement ratio. This ratio is defined as the 
absolute value of the of residual-to-peak-transient seismic displacement ratio of an equivalent SDOF structure. The 

residual displacement model, which considers yielding SDOF systems that exhibit stiffness and strength degradation, 

with natural periods between 0.3 s and 2.0 s and post-yield hardening ratios from 0 % to 10%, is outlined first. The model 

also estimates the joint probability distribution of normalized elongated period and strength degradation, for a given 

ductility demand. This information allows for a probabilistic evaluation of the pushover curve characterizing a damaged 

structural system, which is then used to obtain state-dependent fragility, when damage states are defined via ductility 

demand thresholds. The state-dependent fragility curves are estimated via IDA of SDOF oscillators with pushovers that 

were previously determined from the model. An illustrative application showcases the ability of the proposed 

methodology to provide state-dependent fragility estimates in an expedient manner.  

Keywords: sequence-based seismic reliability; damage accumulation; residual displacements. 
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1. Introduction 

Seismic risk analysis, in its classical form, does not consider structural failure that is reached progressively 

due to damage accumulation in multiple events. This can be justified by considering that, for example, after 

some seismic event damages the structure of interest, enough time will elapse until the next earthquake for the 

stakeholders to repair it back to its initial state. However, earthquakes are known to be clustered in both space 
and time and this means that the necessary repair time between seismic shocks may not be available. One such 

typical case is that of short-term emergency management, during the aftershock sequence that follows an 

earthquake characterized as the mainshock. In that case, the possibility of aftershock-induced ground shaking 

exacerbating any damage caused by the main event, must be taken into account in risk assessment [1,2]. 

Fragility functions are well-established tools, used in seismic risk analyses to probabilistically quantify 

structural vulnerability (discussion to follow). Traditionally, one fragility per structure is assigned, assuming 

that earthquake-induced shaking will find the structure in the absence of seismic damage. In order to extend 
the use of this tool to sequence-based risk assessment, the concept of a set of state-dependent seismic fragility 

functions must be introduced. State-dependent fragilities provide a full picture of the seismic vulnerability of 

a structure in which damage can accumulate due to transitions across damage states ( )DSs . State-of-the-art 

analytical estimation of structure-specific fragility involves the use of dynamic analysis of a numerical model 

of the structure; e.g., incremental dynamic analysis (IDA) [3,4]. For the evaluation of state-dependent fragility 

curves, an extended version of IDA has been suggested in several studies [5–11], referred to as back-to-back 

IDA. The main disadvantage of deriving fragility functions based on nonlinear dynamic analysis is the high 
computational cost involved, which includes both the time investment required for effectively modelling 

nonlinear structural behavior and computer time needed to run multitudes of analyses and post-process the 

results. This has motivated the development of simplified procedures for analytical fragility estimation, based 
on static nonlinear analysis, which is often termed pushover analysis. These methods make recourse to a 

surrogate structure in the form of an equivalent inelastic single-degree-of-freedom (SDOF) system, whose 

definition is based on the original structure’s pushover curve. One such example, used in the case of traditional 

fragility estimation, is the method proposed in [12], which has been recently streamlined into a dedicated 

software tool [13]. 

Herein a preliminary version of a simplified pushover-based methodology is discussed, adapted 

specifically for the estimation of state-dependent fragility functions. While traditional fragility estimation 
requires a large number of non-linear runs, governed by the need for obtaining accurate estimates in the face 

of record-to-record variability of structural response [14,15], this is even more so for state-dependent fragility, 

when the analysis should ostensibly represent all the possible effects, in terms of damage, of two consecutive 
earthquakes. Therefore, there is reason for exploring possible simplification in the latter case. In fact, in the 

case of sequential loading of the structure by consecutive instances of base-acceleration, without the possibility 

of intermediate remedial measures, the first shaking determines an intermediate damaged state of the structure, 

which will be called upon to sustain the second shock. This intermediate incarnation of the damaged structure 
is itself subject to some variability in terms of the fundamental dynamic structural properties, such as loss of 

stiffness and strength against lateral loads, and also residual displacements due to plastic deformation. In this 

context, a possible shortcut could be to account for the variability in structural properties of the damaged 
system via an analytical stochastic model, eschewing the need for dynamic runs representing the first shock, 

which brings the system to the damage state of interest. 

The present study discusses exactly such a simplification, by considering this variability in structural 
properties, at the given damage state, directly on the static pushover; i.e., on the backbone curve of the 

equivalent SDOF. This can be achieved by using a semi-empirical predictive model for constant-ductility 

residual displacement ratios proposed in [16,17]; this model provides the joint probability distribution of 

residual displacement and other parameters necessary for the definition of the post-(first-)shock static pushover 
of an inelastic SDOF system, conditional on the attainment of a specific displacement demand during that 

shock. Thus, in lieu of executing sequential dynamic runs in order to represent a succession of damaging events 
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within a sequence, the damaged structural configuration is obtained via Monte-Carlo simulation and analyses 

are executed only to account for the second shock, further reducing the computational cost.  

The remainder of this paper is organized as follows: first comes a discussion on the analytical derivation 
of fragility functions, both for the case of an intact structure and for an already-damaged structure. 

Subsequently the procedure for simulating the damaged structures’ pushovers is outlined, starting from a brief 

presentation of the residual displacement model and going on to describe the stochastic generation of backbone 
curves, given that the structure is in a specific damage state. Finally, the simplified methodology for state-

dependent fragility derivation is illustrated via an application, whose results are then compared to those of a 

more rigorous procedure that involves sequential dynamic analysis. The article closes with some concluding 

remarks.  

2. State-dependent structure-specific seismic fragility 

A structure-specific seismic fragility function defines the conditional probability that, given a ground-shaking 

intensity measure ( )IM  is at a specific level ( )im , the structure fails to meet some performance objective. This 

failure is often termed exceedance of a limit- or damage-state and traditionally considers an intact structure 

that experiences a single seismic event. In the simplest of cases, fragility can be defined considering an 

appropriate measure of structural response, often termed an engineering demand parameter ( )EDP , and a 

threshold value thereof, 
DSedp , whose exceedance is taken to signify transition of the structure from its initial 

state to the generic damage state DS , as expressed by Eq. (1):  

 
DSP DS IM im P EDP edp IM im =  =   =     . (1) 

One of the possible strategies for fragility assessment, via dynamic analysis of a structure’s non-linear 

numerical model, is the so-called IM-based approach [18], which employs the results of IDA [3,4]. IDA scales 

a set of acceleration records to progressively higher im  values, for which the numerical model provides the 

corresponding EDP responses. For every record used, the obtained EDPs can be plotted against the 

corresponding im  level that the record had been scaled to – a graph which is usually designated as an IDA 

curve (Fig. 1).  

 

Fig. 1 – Example of IDA curves used for the evaluation of fragility curves for an intact structure (a); example 

of back-to-back IDA curves for the evaluation of state-dependent fragility curves (b); fragility curve 

estimation obtained by means of the IM-based approach (c). 

The IM-based method entails finding the intersections of the IDA curves , 
DSim , with the vertical line 

passing through the threshold DSedp  value (Fig. 1). These 
DSim values can be regarded as realizations of a 

random variable (RV), 
DSIM , which is the seismic intensity to which one needs to scale the ground motion in 

order for the structure to reach damage state DS . It is common practice to assume that 
DSIM  follows a 

lognormal distribution [13,19], in which case the fragility function can be estimated according to Eq. (2):  
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where   and   are the parameter estimates (median and logarithmic standard deviation) of the assumed 

lognormal distribution of 
DSIM , 

,DS iim  is the realization of the RV coming from to the i-th record and ( )   is 

the standard Gaussian (cumulative) function.  

When seismic reliability calculations are expected to account for earthquake clusters, the need arises to 

evaluate the probability that an already-damaged structure transitions from one damage state, say ADS , to 

another more severe one, BDS , in one seismic event. A state-dependent fragility function will provide that 

probability, conditional on occurrence of a shaking intensity im during one of the shocks in the cluster, which 

can be expressed as 
B A

ADS DS
P EDP edp DS IM im   =
 

. In this case, the notation 
B ADS DS

edp  denotes the EDP 

threshold for BDS  when the structure is already found in ADS  and the state-dependent fragility can simply 

denoted as 
B AP DS DS IM im  =   . 

As already mentioned, one way of analytically estimating a state-dependent version of a fragility 
function, is my means of a variant of IDA, which is termed by some authors back-to-back IDA. In this type of 

dynamic analysis, the structural model is first subjected to a set of records hitting the structure at its intact (or 

initial) state, each scaled in amplitude to the lowest im  value that results in 
ADSEDP edp= . At the end of each 

run, a different realization of the structure is produced, which can be considered to have made the transition to 

ADS . Subsequently, each damaged incarnation of the structure is subjected to a second set of accelerograms 

representing a subsequent event of the same cluster. These records of the second set are scaled to progressively 

increasing im levels, similar to the traditional IDA procedure, until 
B ADS DS

EDP edp=  is verified for the 

damaged structure, at an intensity of the shock which can be noted as 
,BDS iim  for the i-th succession of base 

accelerations. These intensity values can be used for the estimation of the parameters of a lognormal model 
for the state-dependent fragility, according to Eq. (2), in the same manner as in the case of traditional fragility. 

In Fig. 1b an example of back-to-back IDA curves is provided, where it can be seen that at zero intensity, the 

curves start from a residual EDP value that the damaged structure has inherited from the first event.  

3. Simulating the static pushover of an earthquake-damaged structure 

3.1 Predictive model for constant-ductility residual displacement ratio 

As mentioned previously, this study introduces a further simplification in pushover-based state-dependent 

fragility assessment; i.e., apart from use on an equivalent SDOF substitute structure, in the form of analytical 

probabilistic definition of the possible pushover curves that characterize the structure that has been damaged 
by a previous shock. This can be achieved by random sampling of the parameters that define a set of pushover 

curves, which represent different realizations of the damaged system. In this case, the chosen parameters are 

the residual displacement res , the relative period elongation T , and the loss of lateral strength R  (to 

follow). The analytical arsenal for performing this simulation is provided by a predictive model for the 

constant-ductility residual displacement ratio, C ,  developed by the same authors; a preliminary version of 

this model, limited to non-degrading systems, was presented in [17], while the complete model that includes 

cyclic strength degradation in the hysteresis is given in [16] but is also briefly outlined here, since the focus of 

the present article is to propose an application of said model. 
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The constant-ductility residual displacement ratio is defined as maxresC =    , that is the absolute value 

of the ratio of residual displacement res  to peak transient displacement max , corresponding to a certain 

ductility  . Relative period elongation is a measure of the loss of lateral stiffness of the structure during 

ground shaking and is defined as ( )T T΄ T T= − , where 'T  is the elongated post-shock period and T  is the 

initial period of the SDOF structure. The elongated period is calculated as 2T΄ m k΄=   , where 'k  is the 

post-shock reloading stiffness (Fig. 2a). Finally, loss of lateral strength is defined as ( )max max maxR F F΄ F= − , 

where ( )max 1 1y hF F=  +  −     is the restoring force reached along the hardening branch of the initial 

backbone when pushed at ductility   under static regime (i.e., in the absence of cyclic strength deterioration) 

, 
yF and h  are, respectively, the yield force and hardening slope of the intact structure and maxF΄  represents 

the restoring force that can be reached at the same ductility on the backbone of the damaged SDOF system, 
when it exhibits cyclic strength degradation. As shown in Fig. 2b, cyclic strength degradation entails a gradual 

offset of the force-displacement envelope towards the horizontal axis, due to progressive deterioration of 

structural elements. This is often modeled analytically by updating the backbone each time a hysteretic half-

cycle is completed, with a reduction in resistance that is proportional to the dissipated energy [20], by a factor 
that can be calibrated to represent a certain range of structural behavior, in terms of susceptibility deterioration 

phenomena. In this case, four deterioration levels are considered, termed as no degradation and low-, medium-

, high-degradation cases, with the first being representative of modern code-conforming structural elements 
and the last of structural elements with poor dissipative characteristics. In analytical terms, these lateral 

strength degradation levels are represented by the dummy variable  0,1,2,3DL = , with  0DL =  corresponding 

to no degradation, 3DL =  to high-degradation level etc. 

 
Fig. 2 - Examples of an SDOF structure’s monotonic pushover (backbone) curve before and after 

incurring seismic damage (a); example of peak-oriented hysteresis at medium strength degradation level (b). 

For a given ductility demand, that can represent the threshold DSedp  of some DS , the parameters C ,

T  and R  are RVs whose joint distribution is provided by the predictive model given in [16,17], and which 

is reported herein as Eq. (3): 
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, (3) 

where i  and i  represent the slope and intercept of each linear regression model, 
max y=    is the ductility 

demand, o  is a standard Gaussian variable and  1 2,   is a bivariate zero-mean Gaussian vector with 

covariance matrix provided by Eq. (4): 

F
  

δ 

Hysteresis

-7 -5 -3 -1 1 31 5 7

(b) max yF  /F

max yF  /F

maxF  /Fy
'

max-F  /Fy
'

( )a Fmax
'

Fmax

-Fmax

Fy

-Fy

δ -δ yy

k

-Fmax
'

'k

δ res δ max-δ max

Pushover of intact structure

Pushover of damaged structure 

Initial point of equilibrium

Residual displacement  δ
res

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

R

μ

8d-0010 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 8d-0010 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

6 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

ln ln ln ln ,ln

2

ln ln ln ,ln ln

2 3

1 2 3 4ln ,ln
ln 1 ln 1 ln 1

T T R T R

T R T R R

hT R
e e e e

   
  =
     


= +  − +  − +  −            

    

    

 

   


   

    

 (4) 

where ( ) ( )ln ,lnT R 
  is the correlation coefficient, which is modelled as a function of ductility demand and 

hardening slope, with   1 2 3 4, , ,e e e e   being model coefficients. Additionally,  , ( )ln T
  and ( )ln R

  are the 

standard deviations of regression residuals, which, along with the regression parameters i , i , are also 

modelled as functions of the variables T ,  , h  and DL , which is expressed, in compact form, in Eq. (5):  
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, (5) 

where 
i jf  are functions of the variables in the brackets and 

i jb ,
i jc ,

i jd ,
je  are model coefficients, with indices

 1,2,3i = corresponding respectively to the functions/coefficients for ( ) ( ) max , ln , lnres T R     as they 

appear in Eq. (3) and j  counts the number of functional terms 
i jf  used in each part of the model.  These 

functional forms and coefficient values can be found in [16,17], but are also available in the supplemental 

material to the present article (http://wpage.unina.it/georgios.baltzopoulos/papers/17WCEE_Esupp.pdf). This 
model was developed considering the modified Ibarra-Medina-Krawinkler (mIMK) hysteretic model [21] with 

peak-oriented response. The model’s range of applicability is for vibration periods T  between 0.3 s and 2.0 s, 

post-yield hardening ratios h  ranging from 0 to 10% and ductility demands   along the hardening branch 

between 1.5 and 9. Examples of the model are given in Fig. 3&4, where Fig. 3 shows the model for the expected 

value of maxres   (denoted by the overbar) and the model of standard deviation   in presence of strength 

deterioration, while Fig. 4 shows a graph of logarithmic mean of period elongation, ( )ln T , (Fig. 4a) and 

standard deviation ( )ln T
  in case of high DL (Fig. 4b). On the other hand, Fig. 4c and Fig. 4d show the models 

for central tendency and standard deviation of ( )ln R  in the case of 1DL =  (low stregth degradation level). 

 
Fig. 3 - Central tendency and standard deviation of the model for the residual displacements in case of 

strength deterioration. 
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A single realization of the pushover curve characterizing a damaged structural system, can be obtained by 
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the threshold 
DSedp  that defines transition to the damage state under consideration. At this point, it should be 

noted that Eq. (3) implies that, given a certain ductility demand, the random vector ( ) ( ) ln , lnT R  is 

conditionally independent of the residual displacement and follows a bivariate normal distribution. This means 

that a sample  , ,x y z , of the random vector ( ) ( ) maxln , ln , resT R    , can be obtained by the following 

procedure: first, given   defining the DS , the level of strength deterioration and the characteristics of the 

initial structure T  and h , a random value of ( )ln T x=  is extracted from a Gaussian distribution with mean 

( )ln T  and standard deviation ( )ln T
  given by Eqs.(3) and (5), respectively. Subsequently, a value of 

( )ln R y=  is randomly sampled from the conditional distribution of ( )ln R  given ( )ln T x= , which is also 

a Gaussian with mean and standard deviation given by Eq. (6): 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

ln ,ln ln ln

2 2

ln ,ln lnln ln
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R T x R x T   = = +   −   

 = − 


   

   

      

  
, (6) 

where ( ) ( )E ln lnR T x =    represents the conditional mean of ( )ln R , 
( ) ( )ln lnR T 

  its conditional standard 

deviation, ( )ln R  the marginal mean from Eq. (3) and ( ) ( )ln ,lnT R 
  is from Eq. (4). Finally, by substituting 

( ) ( )   ln , ln ,T R x y=   into Eqs. (3),(5) and thus evaluating the conditional mean and standard deviation of 

the ratio maxres  , a value of maxres z=   is randomly sampled from the corresponding normal distribution, 

which is, however, truncated between -1 and 1 in order to respect the physical constraints of the problem. 

 

Fig. 4 - Model for the central tendency of period elongation (a) and model of standard deviation ( )ln T
  (b) in 

case of high strength deterioration; model for the central tendency of ( )ln R  in case of 0.01h =  (c) and 

model of standard deviation ( )ln R
  (d) in case of low strength degradation level. 
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corresponding residual displacement res , elongated period 'T  and max'F , all of which were defined 

previously. From this triplet of parameters, it is then possible to univocally define the realization of the 
damaged system’s pushover curve by means of mechanical and geometric considerations. This is illustrated in 
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Fig. 5, where the coordinates of the points defining the initial and post-shock curve are given in the 

displacement-force plane. In the figure, the notation with primes represents the value of the corresponding 

parameter in the damaged system and the signed subscripts indicate the direction; e.g., 'y+  and 'y−  denote 

yield displacements of the post-shock backbone in the positive and negative direction, respectively. In fact, the 

elastic branch of the damaged system’s pushover can be determined by evaluating the yield force and 

displacement in the both directions as reported in Eq. (7):   
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max max

max max
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 (7) 

 
Fig. 5 – Parameters defining the pushover curves; parameters for the definition of the intact structure’s 

pushover curve (a); and the damaged structure’s pushover curve (b).  

On the other hand, the degradation of the hardening branch’s slope due to cyclic strength deterioration 

mode, which is implicit in the hysteretic model of [21], is given by Eq. (8):  
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. (8) 

Apart from 'h  , the other parameters, which are needed to define the post-yield branch, are the capping point 

displacements in the two directions, '
c

  and corresponding forces '
c

F  . These can be calculated as the 

intersection points of the damaged structure’s hardening branch of the and softening branch, whose slope is 

assumed to remain invariant, according to Eq. (9):  
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. (9) 

4. Simplified evaluation of state-dependent fragility curves 

 The SDOF structure’s backbone curves, sampled using the predictive model for C , can be assumed to 

represent the pushover curves that correspond to different realizations of the structure, when that structure has 

transitioned to a certain damage state ADS  due to one shock within an earthquake cluster. Each realization has 
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an asymmetric backbone due to the residual displacement res , exhibiting elongated period 'T  and lateral 

resistance at yield and capping points in the two directions, '

y
F   and '

c
F  .  

In order to estimate the state-dependent fragility of the damaged structure, which is already at ADS , each 

SDOF realization from Monte-Carlo simulation is subjected to incremental dynamic analysis, performed using 

a single record, randomly selected from a pool of available ground motions meant to simulate ground shaking 
due to a subsequent shock of the same cluster. The use of a single record per realization of the structure has 

been used before in the past, in the context of accounting for model uncertainty in seismic risk analysis [22]. 

The records used in this phase are scaled to increasing im  levels until the structural response of each realization 

reaches the threshold 
B ADS DS

edp  defining the transition from damage state ADS  to BDS . The final result of this 

procedure is a set of IDA curves, which constitute a more expedient substitute of the back-to-back IDA curves, 

and that can be used to evaluate the state-dependent fragility via the IM-based approach. In other words, the 

intensity values 
,BDS iim , causing the i-th simulated realization of the damaged system to reach 

B ADS DS
edp , can 

be used for the estimation of the parameters defining a lognormal model for the state-dependent fragility, 

according to Eq(2). This simplified procedure for state-dependent seismic fragility estimation is showcased by 

means of an illustrative application, which follows. 

4.1 Illustrative application 

For this application, a simple yielding SDOF structure is considered; although in pushover-based based 

methods the SDOF system is proxy for the actual structure, which introduces additional sources of 
approximation, this illustrative example directly considers an SDOF system, so as to isolate the consequences 

of the proposed procedure from effects stemming from the multi- to single-DOF substitution. The vibration 

period of the SDOF structure is 1.0T s= , the hysteresis is assumed non-degrading and its symmetric backbone 

curve is defined by the parameters reported in Table 1. 

Table 1 – Parameters defining the backbone curve of the intact structure used in the example.  

T [s] yF [kN] 
y [m] 

h  c [m] u [m] c  

1.0 1000 0.11 0.01 0.99 1.105 -1 

In order to showcase the simplified procedure, two generic damage states are arbitrarily defined, denoted 

as ADS  and BDS , with the latter being the most severe of the two. Transition of the intact structure to damage 

state ADS  is considered to occur when the structural response of the system exceeds the threshold 
ADSedp  

defined by a seismic ductility demand  , equal to three, which corresponds to max 0.33 m=  in this case. Along 

the same lines, it is considered that the direct transition of the intact structure into BDS , occurs when   

exceeds the value of six, or max 0.66 m= . It should be noted that the threshold EDP values, 
ADSedp  and 

BDSedp

, considered for the direct transition of the intact system into one of these two generic damage states; i.e., when 

the transition from intact to each DS  is due to a single earthquake shock, are defined solely on the basis of 

transient maximum inelastic displacement. Although the exact value of the threshold displacement should take 

into account the nature of the DS and structural typology, the practice of using displacement demand alone to 

mark the exceedance of limit states on the pushover of the intact structure, is common in earthquake 

engineering; e.g., [23]. 

On the other hand, ductility demand alone may not carry enough information about structural response 

and damage accumulation to also serve as the threshold EDP defining the transition of the already-damaged 

structure from ADS  to BDS . Although this is an open issue, for the sake of this illustrative example, it will be 

considered that the ADS  to BDS  transition occurs whenever ductility demand due to the second shock exceeds 
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six or when the system exhibits a cumulative reduction in elastic stiffness, k , greater than 70%. This can be 

expressed analytically by introducing as EDP a demand-over- capacity ( )D C  ratio according to Eq. (10): 

  maxmax ,
0.66 0.70

k
D C

 
=  

 

 
, (10) 

where 1 'k k k= −  represents the normalized loss of lateral stiffness and 
B ADS DS

edp  is simply unity. 

For this application, the conditioning value of 3= , i.e., 
ADSedp , is used to simulate a set of one-hundred 

backbone curves, according to the sampling procedure previously described. These backbones represent one 

hundred possible realizations of the pushover of the structure having reached damage state ADS . An example 

of the backbone curves, thus extracted from the predictive model, is given in Fig. 6a, where it can be seen that, 

in the absence of strength degradation, they differ among themselves only in residual displacement and elastic 
stiffness. Subsequently, each realization of the damaged system is subjected to IDA, using one record per 

extracted pushover, which is scaled upwards until the transition from damage state ADS  to BDS  occurs, 

defined by 1
B ADS DS

edp = . The IM considered during IDA is the spectral acceleration at the period of the intact 

structure, ( )Sa T . Fig. 6b compares the backbone curve of the intact structure with one realization of the system 

damaged by the first shock and shows the hysteretic behavior of the damaged system following the application 

of a record representing the second shock. These analyses were run using the OPENSees finite-element 

platform [24], where a custom-made version of the mIMK hysteretic model was implemented, which also 

allows for user-defined unloading stiffness. 

 
Fig. 6 Examples of backbone curves representing different realizations of the damaged system (a); 

comparison of the intact system and a single realization of the post-shock damaged structure with the 

hysteresis obtained applying a subsequent-shock record to the damaged system (b).   

The IDA curves obtained in this manner are shown in Fig. 7a, where the 
BDSim points, obtained from their 

intersection with the 1D C =  line, are shown as red crosses. At this point, these 
BDSim  values can be used to 

estimate the parameters of a lognormal model for the state-dependent fragility  |B AP DS DS IM im = , 

according to Eq. (2).  

In order to obtain some points of reference for comparing the results of this procedure, the same state-
dependent fragility was estimated by means of back-to-back IDA, using a set of twenty records to represent 

the first damaging shock of the cluster, scaled so as to cause a ductility demand of three, and another five 

subsequent-shock accelerograms per initial shock, for a total of one-hundred curves. Additionally, a twenty-
record IDA was used to estimate the scaled intensity causing a ductility demand of six, that is, incurring the 

condition 
BDSEDP edp , for the intact structure; the latter analysis was therefore used for the derivation of the 

intact structure’s traditional fragility,  |BP DS IM im= . These runs were performed using an OPENSees user 

interface developed to streamline the back-to-back IDA [11]. The resulting logarithmic means and standard 
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deviations of the intensities causing transition to 
BDS , obtained for the three cases of analysis, are reported in 

Table 2; the corresponding cumulative probability functions are given in Fig. 7b. The comparison shows that 

the simplified procedure provided a state-dependent fragility estimate which is similar to the one coming from 
the more rigorous back-to-back IDA. On a side-note, the fragility function of the intact structure serves as a 

reference, showcasing the characteristic shift-to-the-left of the state-dependent curves, due to the drop in 

median capacity caused by the transition to 
ADS  due to the damage induced by the first shock. 

 

Fig. 7 – IDA curves obtained from the application of the simplified methodology (a); state-dependent 
fragility curves evaluated with the simplified methodology and the back-to-back IDA approach and fragility 

curve of intact structure evaluated at the BDS damage state by means of IDA (b). 

Table 2 - Logarithmic mean and standard deviation defining the fragility curves. 

State-dependent fragility 

via simplified method 

State-dependent fragility 

via back-to-back IDA 

Fragility for the intact 

structure via IDA 
            

0.57 0.28 0.61 0.34 0.85 0.33 

5. Conclusions 

The main objective of this article was to present a preliminary version of a simplified pushover-based 
procedure aimed at the estimation of state-dependent seismic fragility curves. The proposed methodology uses 

a semi-empirical predictive model for constant-ductility displacement ratios to obtain, through Monte-Carlo 

simulation, a set of realizations of the damaged structure’s pushover curve. The usefulness of this shortcut lies 
in the fact that, due to the record-to-record variability of structural response to strong earthquakes, a structure 

subjected to a single instance of base-acceleration may fall under a generic damage state while exhibiting 

different permutations of basic dynamic properties, such as resistance to inertial load, stiffness and residual 

displacement. Such variability is typically accounted for via sequential runs to accelerogram couples that 
represent the alternation of two damaging shocks within an earthquake cluster, as in the case of back-to-back 

incremental dynamic analysis. In the simplified proposal, the first part of the sequential analysis is avoided, 

replaced by simulation of the principal characteristics of the equivalent SDOF system at a given damage state. 
The illustrative application presented as part of this article, shows that the proposed methodology can represent 

a viable alternative to the more computationally intensive procedures, at least for regular structures for whom 

pushover-based procedures are a viable approximation. 
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