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SUMMARY

Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single-
degree-of-freedom oscillator, are well-established tools in the performance-based earthquake engineering
paradigm. Initially, such procedures made recourse to inelastic spectra derived for simple elastic–plastic
bilinear oscillators, but the request for demand estimates that delve deeper into the inelastic range, motivated
investigating the seismic demand of oscillators with more complex backbone curves. Meanwhile, near-source
(NS) pulse-like ground motions have been receiving increased attention, because they can induce a distinctive
type of inelastic demand. Pulse-like NS ground motions are usually the result of rupture directivity, where
seismic waves generated at different points along the rupture front arrive at a site at the same time, leading
to a double-sided velocity pulse, which delivers most of the seismic energy. Recent research has led to a
methodology for incorporating this NS effect in the implementation of nonlinear static procedures. Both of
the previously mentioned lines of research motivate the present study on the ductility demands imposed by
pulse-like NS ground motions on oscillators that feature pinching hysteretic behaviour with trilinear backbone
curves. Incremental dynamic analysis is used considering 130 pulse-like-identified ground motions. Median,
16% and 84% fractile incremental dynamic analysis curves are calculated and fitted by an analytical model.
Least-squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The
resulting equations effectively constitute an R�μ�T�Tp relation for pulse-like NS motions. Potential
applications of this result towards estimation of NS seismic demand are also briefly discussed. Copyright ©
2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the key issues in performance-based earthquake engineering (e.g. [1]) is the assessment of
seismic demand for structures expected to respond inelastically to future earthquakes attaining a
certain intensity. Near-source (NS) seismic input merits special attention, because NS ground
motions often contain prominent wave pulses. In fact, the engineering relevance of NS pulse-like
ground motions has been on the rise during the past decades, because it has been recognized that
such ground motions can induce a distinctive type of inelastic demand and can be more damaging
than motions not displaying similar impulsive features. Perhaps the most important, although not
unique, phenomenon that can cause NS strong ground motion to exhibit such pulse-like
characteristics is rupture forward directivity (FD). Directivity can occur because during fault rupture
the propagation velocity of shear dislocation along the fault will typically be near shear wave
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velocity. As a consequence, there is a probability for shear wave fronts emitted from different points
along the fault to arrive almost simultaneously at sites aligned along the direction of rupture
propagation. This phenomenon can give rise to a constructive wave interference effect, which is
typically observable in the velocity recording as a single double-sided, early-arriving pulse that
contains most of the seismic energy [2, 3]. One such example of pulse-like ground motion registered
during the 2009 L’Aquila earthquake (Italy) is given in Figure 1, where the impulsive waveform
extracted from the velocity time-history by means of the algorithm proposed by Baker [4] and the
associated pulse period Tp are shown, along with the corresponding score assigned by said
algorithm to various horizontal orientations of the record.

On the other hand, procedures relating the structural seismic demand to that of an equivalent single-
degree-of-freedom (SDOF) oscillator, collectively known as nonlinear static procedures [5, 6], have
gradually found their way into performance-based earthquake engineering and modern codes for seismic
design and assessment. At first, static nonlinear procedures based on inelastic spectra (e.g. [7]) employed
spectra obtained from simple elastic-perfectly-plastic or bilinear oscillators. The adaptation of one such
procedure for applicability in NS conditions has been already suggested [8]. However, the request for
demand estimates that involve larger inelastic deformations and arrive at quantifying collapse capacity
(definition to follow) led researchers to also investigate the seismic demand of oscillators with more
complex backbone curves such as the trilinear one in Figure 2.

For the complete analytical description of this backbone curve, three parameters are required. First is
the slope of a hardening (or perfectly plastic) branch, αh, that simulates post-yield ductility. Second and
third are the ‘capping point’ ductility μc and (negative) slope αc that define the softening branch. The
latter intersects the zero-strength axis at ductility μend given by Eqn 1.

μend ¼ μc þ 1þ μc�αh � αhð Þ= αcj j (1)

The presence of such a softening (negative stiffness) branch is typical of the behaviour of most
structures, either brittle or ductile, that reach a maximum strength and then exhibit in-cycle
degradation that in turn leads to strength loss. The phenomena that actually lead to negative stiffness
in a real structure can include P-Δ effects and material strength degradation (often both). Negative
stiffness is thus encountered on the static pushover curves of different types of structures, such as
braced steel frames, moment-resisting steel frames ([9]), concrete frames ([10]) and any type of
structure that exhibits sensitivity to second-order effects ([11]). In general, only systems susceptible
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Figure 1. (a) Original velocity time-history of the Valle Aterno–Centro Valle recording (fault-normal com-
ponent) from the 2009 M6.3 L’Aquila earthquake (Italy), (b) velocity pulse with pulse period Tp extracted
by the methodology in [4], (c) residual velocity signal after extraction of the aforementioned pulse, and
(d) polar plot of pulse indicator score per azimuth for all horizontal orientations of the same ground motion.
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to brittle failures that abruptly lead to global collapse may exhibit pushover curves ending without a
finite-slope negative stiffness segment.

This study employs incremental dynamic analysis (IDA; [12]) in order to investigate the seismic
demand of tri-linear backbone oscillators, when subjected to NS-FD ground motions. The ultimate
goal is that of developing an analytical model for median NS pulse-like demand and the associated
dispersion. IDA can be a computationally intensive procedure. This fact motivated Vamvatsikos and
Cornell to develop a software tool, which provides a shortcut, at the cost of introducing some
approximation in the process [13]. Having observed that summary IDA curves of SDOF systems
with multi-linear backbone curves exhibit a consistent behaviour in correspondence with each
segment of the backbone (elastic, post-yield hardening, and post-cap softening segments), they used
IDA to investigate the response of a large population of oscillators with varying backbone
parameters. Having thus mapped the behaviour of many backbone shapes against a suite of ordinary
ground motions, which are unlikely to have been affected by directivity or soft soil, they proposed a
tool, aptly named SPO2IDA, capable or reproducing the IDA curves of these SDOF systems
without having to run any analysis. Essentially, SPO2IDA is nothing less than a complex R�μ�T
relation applicable to ordinary ground motions [14]. The objective of this study is to adapt the
methodology of [13] to the NS case and employ IDA on trilinear backbone SDOF systems using a
set of one-hundred and thirty pulse-like ground motions, in order to develop the equivalent of an
R�μ�T�Tp relation for NS-FD ground motions.

The remainder of this article is structured as follows: after a brief note on the ground motion suite
employed, the methodology is laid out in detail along with the various considerations that
contributed towards the formulation of the analytical model. This is followed by a description of the
parameter-fitting procedure and techniques that were employed for the development of the principal
analytical components of the model. Finally, some key observations on NS pulse-like response
stemming from the proposed equations are made and the applicability of the model is briefly discussed.

2. METHODOLOGY

2.1. Record set of NS pulse-like ground motions and definition of pulse period

The present study employs a dataset of one-hundred and thirty pulse-like NS ground motions, whose
impulsive nature is believed to be related to rupture directivity. The methodologies for pulse
identification adopted while assembling this dataset were those suggested in [4] and [15]. The
NS-FD ground motion dataset employed in [16] served as a starting point and was subsequently
enriched by records from more recent seismic events, such as the Parkfield 2004 (California) event, the
Darfield 2010 and Christchurch 2011 (New Zealand) events, and the South Napa 2014 (California)

Figure 2. Representation of trilinear backbone curve in normalized coordinates (ductility μ in the abscissa
and reduction factor R in the ordinate) and defining parameters: post-yield hardening slope αh, softening
branch negative slope αc, and capping ductility μc, which separates the hardening and softening branches.
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event. A more detailed account of the considerations that went into the compilation of this NS pulse-like
groundmotion dataset can be found in [17] along with a complete list of the records and relevant metadata
(Chapter 4 and Appendix B of [17]).

Given that the objective of the present study is, ultimately, to characterize NS structural response by
means of an analytical model that includes pulse duration Tp, it may be worthwhile to briefly discuss
the definition and identification of Tp. Both pulse identification algorithms mentioned previously
employ the same definition of pulse period, which is the pseudo-period of the highest-coefficient
wavelet returned by a wavelet transform of the velocity signal. This definition has been found to be
efficient, but it is far from unique in the literature (e.g. [18, 19]). Furthermore, both algorithms are
known to be occasionally triggered by impulsive waveforms attributed to soft-soil site effects or
other causes unrelated to FD.

From the inelastic structural response point of view, one has to take into consideration the fact that
velocity pulses significantly deviating from the characteristic double-sided, early-arriving waveform
associated with directivity, may not exhibit the same type of correlation between displacement
demand and pulse period as FD-related pulses do (e.g. [20]). For this reason, in this work, some
efforts were made to discern those velocity pulses most likely to have been the result of directivity
for eventual inclusion in this investigation. In fact, Shahi and Baker report their opinion on whether
or not the impulsive characteristics of the ground motions analyzed in [15] are because of
directivity; their assessment was also taken into account. The least-squares linear regression line of
ln Tp against magnitude of the causal event for this dataset, shown in Figure 3(a), is not far off those
reported by other researchers (e.g. [18]).

Finally, as already mentioned, more than one definitions of Tp appear in the literature. For example,
[19] employed the period which exhibits the maximum spectral pseudo-velocity (previously termed the
predominant period Tg in [21]) to characterize inelastic spectra of NS ground motions. One advantage
of the wavelet-based definition of pulse period is that it is not sensitive to competing peaks of local
maxima on the pseudo-velocity spectrum (refer for example to [4]). However, the two definitions do
produce strongly correlated pulse duration estimates. This can be seen in Figure 3(b), from which it
also becomes obvious that Tg displays a consistent trend of corresponding to a duration around 70%
of Tp. This leads to the conclusion that while no definition of pulse period can be said to be
demonstrably superior to all others, some care must be exercised when combining pulse duration
information from NS hazard ([22, 23]) with inelastic spectra referring to specific T/Tp ratios (e.g. as
in [16, 19]) in order to ascertain that the two are compatible.

2.2. Incremental dynamic analysis for SDOF systems using pulse-like NS records

Incremental dynamic analysis is a powerful semi-empirical method for the probabilistic estimation of
seismic structural demand and capacity. This well-established procedure, typically entails a non-linear
numerical model of the structure that is subjected to a suite of ground motion records, all scaled at a
common seismic intensity measure (IM) level. This IM level is gradually increased by applying
scaling to all the records, in order to reveal the entire range of post-yield response of the structure,
conditional to several IM values, up to global dynamic instability and eventual collapse. During

Figure 3. (a) Linear regression of log-pulse period against magnitude and (b) zero-intercept linear regression of
pulse period (Tp) against period of maximum spectral pseudo-velocity (or predominant period Tg). Correlation
coefficient (ρ), coefficient of determination (R2) and estimator of the standard deviation (σ̂InTp) are also reported
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IDA, structural response to each single record is represented by plotting two scalars against each other:
an IM characterizing the various scaled incarnations of the record and an engineering demand
parameter (EDP) representing the amplitude of response, resulting in a single-record IDA curve.
Once a set of IDA curves has been collected, representing the entire suite of ground motions, it is an
efficient practice to summarize the curves into sample statistics; for example medians, 16% and 84%
fractiles [24].

The present study entails performing IDA for a large population of SDOF systems, characterized by
various bilinear or trilinear backbones. As already indicated, pulse period Tp is considered a key
explanatory variable, by virtue of its demonstrable value as a predictor for the inelastic response for
this type of ground motion [25, 26]. In fact, pulse period is included as the denominator of the
normalized period ratio T/Tp, in a manner analogous to [16, 19] (the merit of this decision will see
extensive discussion in the following).

Consequently, the computation of IDA curves for the purposes of this work is performed for given
values of the T/Tp ratio. Because each record in the suite of NS pulse-like ground motions considered is
associated with a different pulse period, this effectively means that each individual IDA curve will
correspond to an SDOF oscillator with different period of natural vibration, determined by the
requisite of maintaining a constant T/Tp ratio within that particular IDA set. This leads to the IM of
choice for these IDAs being the strength reduction factor R, defined as per Eqn 2.

R ¼ Sa Ti ¼ κ�Tp;i; ξ ¼ 5%
� �

=Syielda Ti; 5%ð Þ; κ ¼ T=Tp∈ 0:10; 2:00½ � (2)

On the other hand, EDP of choice for the SDOF systems is ductility μ= δmax/δyield (defined as the
ratio of maximum displacement to displacement at yield).

Therefore, these SDOF IDA curves obtained by scaling a suite of impulsive records (which shall be
occasionally referred to as pulse-IDAs for brevity in the remainder of this work) will result in summary
fractile curves that collect the responses of diverse oscillators plotted in dimensionless {μ,R} coordinates.
An example of such pulse-IDAs can be seen in Figure 4, where the {μ,R} coordinates also permit
plotting the curves superimposed against the backbone of the corresponding oscillator. Strictly speaking,
there is a subtle difference in the definition of strength reduction factor and ductility used for the
representation of the backbone and those used to plot the IDAs. In the case of a monotonic loading
backbone curve (e.g. Figure 2), reduction factor and ductility are defined using the instantaneous values
of force and displacement on the numerator: R=F/Fyield and μ=δ/δyield. On the other hand, in the case of
IDA curves, the numerator becomes the maximum absolute value of force or displacement recorded over

Figure 4. Thirty individual IDA curves of trilinear-backbone SDOF oscillators subjected to pulse-like
records. Each curve corresponds to a distinct SDOF system with different vibration period, chosen in order to
maintain a constant T/Tp ratio for all pulse-IDAs. The IDA curves are plotted over the oscillators’ (common)
backbone curve, which is only possible in normalized, dimensionless coordinates (ductility μ—reduction factor R).
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the entire time-history of response to a scaled record: R ¼ Fmax=Fyield ¼ Sa=Syielda and μ=δmax/δyield.
However, for the sake of brevity, whenever backbones and IDAs are plotted together (e.g. Figure 4) and
hence both definitions apply, only the definitions corresponding to the IDA will be reported on the graph
axes.

One final comment to be made about this type of pulse IDAs concerns the actual scaling of the
impulsive ground motions. Although scaling is conceptually intrinsic to IDA, some ground motion
classification algorithms ([4, 15]) propose maximum ground velocity thresholds, which a record
should surpass in order to be identified as pulse-like. This implies that a given pulse-like record,
when scaled downwards with respect to its registered amplitude, could cease to satisfy such a
classification criterion. However, any evaluation of pulse identification procedures and their
implications is certainly beyond the scope of the present work.

2.3. Hysteretic rule

For the present study, a peak-oriented, moderately pinching hysteresis rule developed by Ibarra and
Krawinkler [27] was adopted for all SDOF systems subjected to IDA. No cyclic strength
degradation has been included; eventual loss of strength only occurs when the response crosses
capping ductility μc into the softening (negative-stiffness) branch (Figure 2). One of the reasons
behind this choice is that when oscillators featuring a descending branch are concerned, it has been
established that kinematic hardening hysteresis is not entirely representative of how actual structures
have been observed to behave during experiments [28]. Furthermore, the issue of strength
degradation is considered to be of secondary importance in this case. Strength degradation only
tends to supersede the shape of the backbone in importance when severe degradation is encountered
in low-period structures. However, given the range of pulse-periods associated with the NS-FD
record suite employed in this study (refer for example in Figure 3 or [17]), the model is more
oriented towards moderate to long period structures (refer to next paragraph for the treatment of low
period oscillators) and cyclic degradation is not included in the hysteretic rule used in the analyses.

2.4. Analytical model for NS pulse-like seismic demand

2.4.1. Median and scatter of pulse-like seismic demand. For the development of the analytical model
for the prediction of a central value of NS pulse-like seismic demand (e.g. median of EDP given IM)
and the associated dispersion around this central value, the methodology of [13] is followed. In this
approach, the parameters of analytical functions are fitted against the 16%, 50% (median), and 84%
fractile IDA curves of pulse-like FD ground motions. In the case of random variables following a
normal distribution, which is a ubiquitous assumption in earthquake engineering for the logarithms
of seismic demand quantities, the 16% and 84% fractiles correspond to the mean minus/plus one
standard deviation interval boundaries, respectively.

In the literature, the question of which measure of central value (mean or median) is most
convenient for the development of predictive equations for inelastic seismic demand will
sporadically emerge (e.g. [29, 30]). For this particular case, the sample median is chosen because of
its characteristic of robust estimator. The presence of a descending branch on the backbone of the
oscillators examined, means that the model will have to tackle the issue of predicting the
distribution of collapse capacity Rcap, defined as the intensity level which causes dynamic instability
of the SDOF system. Yet with the appearance of collapse points on the individual IDA curves
(Figure 4), the sample mean of EDP given IM (EDP|IM) can be no longer defined. On the other
hand, the counted median is not subject to such restrictions [31]. Furthermore, it was shown in [12]
that the x% fractile IDA curves of EDPx%|IM and (100�x%) IDA fractiles of IM(100� x) %|EDP are
almost identical, with collapse capacity fractile points Rcap,(100� x) % belonging to both the μx%|R
and R(100� x) %|μ fractile IDA curves. It was observed during the present study that the same
properties hold for pulse-IDAs. Therefore, the use of the three fractiles to capture central value and
dispersion provides some flexibility, which in turn allows for the efficient modelling of seismic
demand in terms of both EDP|IM and IM levels causing dynamic instability.
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A final point to address regarding the statistical aspects of the model is that of preferring a triple
curve-fitting operation of the three fractiles rather than regression analysis. Ordinary least-squares
regression works under the typical assumption of Gaussian, independent and identically distributed
(i.i.d.) residuals [32]. Although the Gaussian distribution of the residuals can sometimes be achieved
by some transformation of the independent variable, meeting the i.i.d. conditions of an oscillator’s
responses across all IM levels is problematic. First of all, the variance of SDOF inelastic response is
known to increase at higher IM levels [33] (identical distributions imply constant variance).
Furthermore, the probabilistic distribution of the responses is disrupted when reduction factor tends
to unity, or when very long period oscillators are considered, or when dynamic instability occurs. It
is therefore unconvincing to make a priori assumptions on the probability distributions underlying
the model for the purposes of regression analysis; it is preferable to simply fit parametric curves to
their sample fractiles. Assumptions on the nature of these distributions can then be made in due
time, as dictated by the necessities of eventual applications of the model (refer also to [17]).

2.4.2. Predictor variables and explanatory value of the T/Tp ratio. An analytical model of seismic
demand for SDOF oscillators featuring a generic trilinear backbone will necessarily include all the
parameters that uniquely define the geometry of the backbone curve. Therefore, αh, μc, and αc
(Figure 2) should be included as covariates in the model. The effect of varying these parameters on
the seismic response to pulse-like ground motions has already been the object of previous
investigation [34]. The additional variables that will be included in the model are pulse period, by
virtue of its demonstrable value as a predictor of inelastic response for NS-FD ground motions that
was confirmed numerous times in past studies [16, 25, 26] and the period of natural vibration T. In
fact, these two variables are combined into the normalized period ratio T/Tp, in a manner analogous
to [16, 17, 19]. The decision to base the model on the T/Tp ratio was alluded to during the definition
of pulse-IDA curves. Nevertheless, in a preliminary version of the model by the same authors [35],
a concern had already been raised about mixing the response of very low period oscillators with that
of long-period systems within a single T/Tp cross section of data. In fact, in that work, it was
suggested that at each T/Tp ratio, responses from oscillators with natural period T≤ 0.30s be omitted
from the model. That decision was based on engineering judgement, which dictated that it is prudent
to keep the responses of low-period oscillators, which are characterized by high ductility demands
even when ordinary records are concerned, separated from the responses of moderate-to-long period
oscillators subjected to long-duration pulses.

In the present study, the intention is to evaluate the explanatory value of the ratio T/Tp with respect
to NS pulse-like inelastic demand in a systematic way. More specifically, it will be examined whether
or not there is a statistically significant effect of the period of natural vibration in the prediction of said
inelastic response, which is not captured in its entirety by the T/Tp ratio. The methodology chosen for
this investigation of the role of period T employs statistical hypothesis testing. The first step of this
procedure is to obtain the sample of ductility demand responses of a specific SDOF system at a
‘stripe’ of given reduction factor R and T/Tp ratio. These original samples of responses from 130
FD records are then divided into smaller subsets, each subset consisting of responses corresponding
to oscillators with period T contained within a predefined interval TA<T≤TB (non-overlapping
period intervals are always employed). The second step consists of comparing the central values of
these new subsets among one another for systematic differences. Because of the dispersion of each
stripe, a direct comparison between sample means or medians is not meaningful; instead, a statistical
comparison must be performed by each time testing the null hypothesis (denoted Ho) that ‘the two
sets of responses have been sampled from normal distributions with equal medians (but possibly
unequal variances)’.

The practical end result of this procedure is to identify such boundaries TA,TB as to observe systematic
rejection of Ho among the corresponding intervals, thus hinting at the need for separate analytical
modelling of NS-FD seismic demand for each interval. Note, however, that because of the probabilistic
nature of these tests it is possible to encounter some rejections even if Ho holds true and vice-versa. In
order to perform the test, one should define what can be considered as acceptable risk, α, of rejecting the
null hypothesis, when it is actually correct (which is also known in statistical literature as a type I error,
[36]). This concept is represented as a conditional probability in Eqn 3. In this case, α=0.05 is considered.
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α ¼ P reject HojHo correct½ � (3)

For the purposes of this investigation, Ho was subjected to the Aspin–Welch test ([37]) for the cases
of three bilinear oscillators with hardening stiffness ratios αh = {0.00, 0.10, 0.30}, five normalized period
ratios T/Tp = {0.20, 0.30, 0.40, 0.80, 1.20}, three levels of strength reduction factor R={2.4, 4.0, 5.5},
and a non-overlapping tri-interval partitioning of the period domain T≤TA,TA<T≤TB and T>TB.
Thus, each time the interval limits TA,TB were shifted in order to explore the period domain for
statistically significant differences in median ductility demand within a T/Tp cross section, a
maximum of 180 t-statistics and corresponding p-values were calculated (at times less as some
combinations of T/Tp and TA,TB leave some stripes devoid of records).

Note that the analytical model for the bilinear hardening case also serves as a component of the
complete trilinear model (both presented in the following). Therefore, examining bilinear hardening
oscillators for eventual statistically significant effects of T will eventually reflect upon the entire
model. Some characteristic results are given in Table I and a graphical representation in Figure 5.

The choice of test type can be explained by the fact that the two stripes to be compared each time contain
responses from oscillators with different periods and thus heteroscedasticity (unequal variances) was
assumed. Because of the assumption of sampling normally distributed populations, the test is performed
on the logarithms of ductility demands of hardening bilinear systems for each pair of stripes. This is
consistent with the methodology followed in [38] and [39] (in the latter case equal, yet unknown,
variances were a more logical assumption leading to a simple t-test being adopted). The degrees of
freedom of the distribution of the test statistic in the presence of the heteroscedasticity assumption were
approximated according to [40].

Generally speaking, rejecting the null hypothesis or not was dominated by the ratio T/Tp and the
interval boundaries TA,TB. In other words, given T/Tp, TA, TB, the tendency to reject Ho or not at
α=0.05 was more or less uniform across the three bilinear oscillators and the three reduction factors
considered. Most cases of statistically significant differences in the median ductility demands (i.e.
cases when Ho was rejected) were encountered for T/Tp ratios between 0.20 and 0.40. These
hypothesis tests emphatically confirmed the premise already made in [35], that NS seismic demand
is systematically different for oscillators with 0.10s<T≤ 0.30s compared with that of SDOF
systems with T>0.30s. Less pronounced systematic differences were detected between low to
moderate-period oscillators and long to very-long-period oscillators, when T/Tp< 0.50.

Another interesting observation is that when long period values were selected for TB and stripes at T>TB
and T/Tp=1.20 or higher were tested (corresponding to very-high-period systems), Ho was consistently
rejected across all parameters considered. In order to interpret this behaviour, one has to look at the entire
logical complement of Ho and deduce that rejection does not only come from existence of a statistically
significant difference between the logarithmic means but it can also result from not sampling a Gaussian
distribution. In fact, when very long period oscillators are considered, inelastic displacements tend to
cluster around the peak ground displacement even at high levels of inelasticity (for an explanation of this
phenomenon refer to Chopra and Chintanapakdee [41]) in a quasi-deterministic manner, thus departing
from the empirical distributions encountered for lower period systems.

Because of the previously mentioned observations, it was decided to develop the analytical model by
providing separate pulse-IDA curve fits for certain ‘spectral regions’ (i.e. period intervals) and T/Tp ratios.
Therefore, in what follows, parameter estimation for the analytical functions is always performed by
fitting the model against the data for the following distinct cases:

• Systems with 0.10s<T≤ 0.30s when 0.10≤T/Tp≤ 0.30.
• Systems with 0.30s<T≤ 0.80 s when 0.10≤T/Tp≤ 0.50.
• Systems with T> 0.80s when 0.15≤T/Tp≤ 0.50.
• Systems of all periods not falling into one of the previously mentioned categories are covered by a
single model valid for 0.10≤T/Tp≤ 2.00.

In overview of the salient points pertaining to the methodology adopted for this study, it can be said that
IDA is performed for a population of moderately pinching SDOF systems with bilinear and trilinear
backbones, using a suite of NS-FD ground motions. Median and 16%, 84% sample fractile IDA curves
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are obtained for each oscillator at various constant T/Tp ratios and are subsequently modelled analytically
by means of least-squares curve fitting. The model distinguishes between specific spectral regions in
order to better capture the combined effect of T and Tp on NS pulse-like seismic demand. Details on the
functional forms and the actual curve-fitting procedures are provided in the following sections.

3. BILINEAR HARDENING SDOF SYSTEMS

The analytical functional form selected to model the pulse-like IDA curves for bilinear oscillators with
hardening behaviour (positive post-yield slope) is given by Eqn 4. It is a rational function (in log-
space) of ductility given reduction factor fractiles, containing four parameters to be determined by
fitting the model to the data. A total of four-hundred sets of IDA curves were obtained for this
purpose, corresponding to combinations of post-yield stiffness ratios αh spanning the interval [0, 0.9]
and T/Tp ratios belonging within [0.1, 2.0].

lnμx% ¼ ax%�ln2Rþ bx%�lnR
cx%�lnRþ dx%

; x ¼ 16; 50; 84f g;R∈ 1;R 100�xð Þ% μcð Þ� �
;μc∈ 1; 15ð �;

ax%; bx%; cx%; dx% ¼ g αh;T=Tp;T
� �

; αh∈ 0; 0:9½ �;T=Tp∈ 0:1; 2:0½ �;T > 0:10s (4)

The term R(100� x) %(μc) appearing in the domain definition of reduction factor R in Eqn 4 is the
reduction factor corresponding to the capping point of a trilinear backbone oscillator. The
implication is that up to the point of capping ductility μc, this equation is also valid for the general
trilinear case (detailed treatment to follow).

Figure 5. Graphical representation for some of the stripes of log-ductility demand given reduction factor, T/Tp
ratio and period range, whosemeans have been statistically tested for equality (detailed results of the corresponding
tests are among those provided in Table I) . Stripes in panels (a) and (b) correspond to bilinear systems with αh=0
(elastic-perfectly-plastic oscillators), which maintain a ratio of T/Tp=0.20. Panel (a) refers to oscillators within the
0.10s<T≤ 0.30s interval, while panel (b) to those within 0.30s<T≤ 0.80s. Samples between (a) and (b), at each
level of reduction factor shown, have been used to test the null hypothesis Ho at α=0.05. The same is true for the
response samples between panels (c) and (d) (αh=0, T/Tp=0.30, test between 0.30s<T≤ 1.20s and T> 1.20 s
intervals) as well as (e) and (f) (αh=0.10, T/Tp=0.40, test between 0.30s<T≤ 0.80s and T> 0.80s intervals).
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The curve-fitting procedure entails obtaining non-linear least-squares estimates for the model
parameters ax %, bx%, cx % and dx% for each distinct combination of αh, T/Tp and each fractile x%
={16%, 50%, 84%}. As elaborated during the preceding discussion on methodology, these fractiles
are also calculated among sub-sets of the employed record suite. This means that for T/Tp∈ [0.1, 0.3]
the three fractiles are also calculated among the pulse-like records which correspond to oscillator periods
within the interval T∈ (0.10s,0.30s], and this is repeated for T/Tp∈ [0.1, 0.5],T∈ (0.30s,0.80s] and for
T/Tp∈ [0.15, 0.5],T>0.80s. Thus, separate sets of parameters are derived for such period intervals (or
spectral regions) as have been deemed statistically meaningful by prior analysis.

Overall, this curve-fitting procedure leads to groups of model parameters ax%, bx%, cx% and dx%
that, given period T, are implicit functions of post-yield stiffness ratio αh (which uniquely
characterizes the shape of this type of backbone), normalized period T/Tp and the x% fractile IDA
of interest—hence the notation g(αh, T/Tp, T) in Eqn 4. In a preliminary version of the model [17]
and also in [13], a second stage of fitting was conducted, in order to render the model parameters
explicit analytical functions of αh and T/Tp (in [17]) or T (in the case of ordinary records [13]).
However, these past endeavors also showed that the dependence of the model parameters on αh and
T/Tp or T is quite complex and can lead to very elaborate equations. These additional analytical
functions have the advantage of lending elegance to the solution but also the disadvantages of
lacking straightforward physical interpretation and adding a second source of misfit of the model to
the data.

In the present study, it was decided to obtain results for a finer grid of αh, T/Tp values and
subsequently tabulate the single stage fit results in a manner that lends itself to linear interpolation.
In fact, these results have been gathered into MATLAB® data structures and incorporated into
MATLAB scripted functions that handle the necessary interpolations. These tools are available as
electronic supplements to this paper [42]. In Figure 6, several examples of the fitted model against
the original pulse-IDA fractile points are presented, highlighting the efficiency of the chosen
functional form of Eqn 4 in capturing the shifting trends of the data among variations in spectral
region, T/Tp and αh.

Figure 6. Comparison of the fitted model of Eqn 4 with the underlying data for SDOF systems (a) with
αh = 10% at T/Tp = 0.20 when 0.10s<T≤ 0.30s, (b) αh = 10% at T/Tp = 0.20 when 0.30s<T≤ 0.80s, (c)
αh = 10% at T/Tp = 0.50 when T> 0.80s, (d) αh = 0 at T/Tp = 0.40 when 0.30s<T≤ 0.80s ,(e) αh = 20% at

T/Tp = 0.60 for all periods T, and (f) αh = 50% at T/Tp = 0.80 for all periods T.
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4. NEGATIVE POST-YIELD STIFFNESS BILINEAR SDOF SYSTEMS

The model-fitting procedure in the case of bilinear SDOF oscillators with softening behaviour
(negative post-yield stiffness ratio) is in principle similar to what has been already presented for the
hardening case. The main difference stems from the fact that the appearance of a negative-stiffness
branch on the backbone curve requires the introduction of collapse capacity fractiles Rcap,x % into the
model (i.e. strength reduction factor that causes dynamic instability in x% of the ground motions, as
defined previously). This important additional consideration, led to the adoption of the functional
form of Eqn 5, which models reduction factor given ductility (fractile Rx%|μ), as opposed to the μ
given R fractiles (μx %|R) of Eqn 4 fitted against the hardening cases. It is recalled that according to
[24], the μx%|R and Rx%|μ fractile IDA curves are almost identical, even when the typical IDA
properties of continuity and monotonicity are slightly violated. The reason for invoking this
‘reversal’ property is related to the analytical treatment implemented for the inclusion of collapse
capacity Rcap into the model and shall become apparent shortly.

lnRx% ¼ ax%�lnμ
lnμþ bx%

; μ∈ 1;μcap 100�xð Þ%
� i

; x ¼ 16; 50; 84f g;

ax%; bx% ¼ g αcj j;T=Tp;T
� �

; αc∈�4:0;�0:01½ �;T=Tp∈ 0:1; 2:0½ �;T > 0:10s (5)

As in the hardening case, Eqn 5 represents a non-linear model with respect to its parameters ax% and
bx%. Weighted least-squares estimates are obtained by fitting the relevant fractiles (for the same period
intervals as before) against six-hundred and twenty combinations of T/Tp∈ [0.1, 2.0] and post-cap
stiffness ratio αc∈ [�4.0,� 0.01]. The fractile ductility μcap(100� x) % appearing in Eqn 5 is the
ductility at capacity (not to be confused with capping ductility μc), that is ductility where dynamic
instability occurs and therefore collapse capacity Rcap,x % is reached. While dynamic instability is
strictly expected at the point of crossing the zero capacity axis at μend — Eqn 1 — issues of
numerical accuracy may often cause its earlier appearance, thus necessitating the introduction of μcap
(100� x) % to reconcile the practical with the ideal. The weighting scheme implemented into the
fitting procedure is intended to guarantee good local fit of Eqn 5 at the capacity point {μcap
(100� x) %,Rcap,x %}. Then, the fractiles of ductility at capacity are included into the model by also
fitting Eqn 6 against the results of the same bilinear softening systems:

μcap;x% ¼ μc þ cx%� 1þ αh� μc � 1ð Þ½ �= αcj j;
αh∈ 0; 0:9½ Þ; αc∈�4:0;�0:05½ Þ; x ¼ 16; 50; 84f g (6)

The notation in Eqn 6 corresponds to the general trilinear case, and its purpose will be revealed in the
following section. In fact, for a purely bilinear softening case, Eqn 6 reduces to μcap,x %=1+ cx%/|αc|.

Recalling that the weighted least squares fitting of Eqn 5 practically forces it to pass through the
capacity point, we can calculate an analytical prediction for capacity fractiles Rcap,x % by merely
substituting the result of Eqn 6 into Eqn 5 and thus obtain

lnRcap;x% ¼ ax%�lnμcap 100�xð Þ%
lnμcap 100�xð Þ% þ bx%

; x ¼ 16; 50; 84f g (7)

Note that the domain of post-capping slope αc for Eqn 5 is [�4.0,� 0.01], while that of Eqn 6 is
[�4.0,�0.05). The reason behind this is that systems with 0.01≤ |αc|<0.05 will experience
dynamic instability at very high ductility and may exhibit highly-irregular non-monotonic R84%|μ
(or μ16 %|R) fractiles. In fact, it was deemed counter-productive to model this behaviour up to the
point of collapse when said point corresponds to unrealistic ductility demands. Thus, oscillators with

1808 G. BALTZOPOULOS, D. VAMVATSIKOS AND I. IERVOLINO

Copyright © 2016 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2016; 45:1797–1815
DOI: 10.1002/eqe



a softening branch falling in the 0.01≤ |αc|< 0.05 range were modelled via Eqn 5 up to a ductility of
fifteen and were excluded from the Rcap,x % part of the model.

Similar to the hardening case, model parameters ax%, bx%, cx% are treated as implicit functions of
αc, T/Tp for each period range and fractile x% and are available within a MATLAB function
provided among the electronic supplements to this paper [42]. Figure 7 offers a representation of the
curve-fitting results for bilinear softening SDOF systems, for a variety of cases. An interesting
observation stemming from the figure is that, because Eqn 5 tends towards flatter slopes near the
capacity point, eventual misfit of the model in terms of μcap,x % will produce a much lesser variation
in Rcap,(100� x) %. This is advantageous, because the latter is the more important statistic.

5. MODEL FOR THE COMPLETE TRILINEAR BACKBONE

5.1. Equivalent ductility concept

A straightforward, if somewhat impractical, way of tackling the problem of modelling pulse-like IDAs
for systems boasting a complete trilinear backbone could be to simply run a large number of analyses
in an attempt to span the entire parameter space of {αh,μc,αc, T, Tp}, as was performed for the two
bilinear cases already covered. However, structural responses exhibit a complicated interdependency
with respect to these five parameters, which cannot be studied independently one from another.
Actually, considering all their meaningful combinations in an attempt to attain the same refinement
as before would require an estimated one-hundred and twenty thousand IDA sets.

Instead, the methodology developed in [13] can also be adapted to the pulse-like case, drastically
reducing the amount of necessary analyses. More specifically, it was found that the equivalent
ductility concept (Figure 8), which was introduced in the analogous study of ordinary ground
motion SDOF IDAs, could also be employed for the case at hand. In that study it was found that a

Figure 7. Comparison of the fitted model of Eqns 5–7 with the underlying data for bilinear softening systems
with αc =� 30% at T/Tp=0.25 when (a) 0.10s<T≤ 0.30s and when (b) 0.30s<T≤ 0.80 s, (c) αc =� 50% at
T/Tp = 0.40 when T> 0.80s, (d) αc =� 10% at T/Tp = 0.40 when 0.30s<T ≤ 0.80s, (e) αc =� 100%

at T/Tp = 0.80 for all periods T, and (f) αc =� 80% at T/Tp = 0.60 for all periods T.
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‘family’ of oscillators with a generic backbone containing both hardening segments and negative-
stiffness softening branches with coincident post-capping slope, such as those shown in Figure 8,
have a very similar part of the IDA fractile curves between capping ductility and the point of
collapse capacity. Furthermore, collapse capacity Rcap (or ‘flat-line height’ if one were to adopt the
terminology introduced in [12]) among these oscillators varies in an almost linear fashion between
two bounding values, defined by the responses of the αh = 1 and the αh = 0 backbones of the
‘common post-capping-segment family’.

Thus, for any trilinear oscillator with given hardening slope αh, capping ductility μc, and post-
capping slope αc, one initially needs to determine the defining parameters of these two auxiliary
limit cases in the backbone family, that is peak ductility μpeak and equivalent ductility μeq:

μpeak ¼ 1þ μc� αcj j þ αh� μc � 1ð Þ½ �= 1þ αcj jð Þ (8)

μeq ¼ μc þ αh� μc � 1ð Þ= αcj j (9)

Since the first auxiliary backbone is nothing more than a bilinear-softening case scaled by a factor of
μpeak and has therefore already been covered by the analytical model, all that is missing are the collapse
capacity fractiles Rcap,x % of the ‘equivalent ductility’ oscillator with αh = 0 and μc =μeq.

5.2. Complete model for trilinear backbone SDOF oscillators

For a given generic trilinear backbone, it is trivial that up to capping ductility μc all individual pulse-
IDAs coincide with those of a bilinear system with the same αh, and therefore, the same is true for
the fractiles. Therefore, Eqn 4 can be used to analytically model this segment. The remaining part of
the fractile pulse IDAs for the trilinear backbone corresponds to an μpeak—times scaled version of the

corresponding bilinear softening system, adjusted vertically to produce the bRx% μcð Þ , which is the
capacity obtained by substituting μ(100� x) % =μc in Eqn 4, in order to ensure continuity:

Rx% ¼ Ro
x% μcð Þ þ μpeak�exp

ax%�lnμ
lnμþ bx%

� �
; μ∈ μc;μcap 100�xð Þ%
� i

; x ¼ 16; 50; 84f g (10)

Ro
x% μcð Þ ¼ bRx% μcð Þ � μpeak�exp

ax%�lnμc

lnμc þ bx%

� �
; x ¼ 16; 50; 84f g (11)

Finally, an adjustment is applied to the collapse capacity to account for the fact that the generic
trilinear oscillator is observed to exhibit dynamic instability at reduction factors progressively

Figure 8. Illustration of a set of backbones belonging to the same family and auxiliary parameters pertaining
to the equivalent ductility concept
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greater than the μpeak softening bilinear model, with the largest adjustment corresponding to the
equivalent ductility system. In order to model this effect, the collapse capacities for various trilinear
backbones with αh = 0 (e.g. Figure 9a) were obtained and a correction factor dx% was fit against
these results, leading to Eqn 12.

Rcap;x% ¼ 1þ dx%� μc � 1
μeq � 1

 !
� Ro

x% μcð Þ þ μpeak�exp
ax%�lnμcap 100�xð Þ%

lnμcap 100�xð Þ% þ bx%

 !" #
; x ¼ 16; 50; 84f g;

dx% ¼ g μeq; αcj j;T=Tp;T
� 	

; αc∈�4:0;�0:05½ �;T=Tp∈ 0:1; 2:0½ �;T > 0:10s (12)

A comparison between the analytical predictions of the model and the calculated fractile pulse-IDAs
for some trilinear backbones are shown in Figure 9. It is worth noting that the numerical results plotted
in that figure against the analytical curves were not directly used to fit the model and were only
obtained for the sake of evaluating the model’s effectiveness.

6. DISCUSSION AND PROSPECTIVE APPLICATIONS

One of the most relevant evaluations that can be extracted from the analytical model presented in this
paper is a direct comparison with the case of ordinary (i.e. non-impulsive) ground motions. To this end,
the predictions of the SPO2IDA tool [14] were selected as representative of ordinary seismic demand at
the SDOF level. Figure 10 presents some comparisons between median ordinary IDAs for a bilinear
oscillator with αh = 20%, as provided by SPO2IDA, and the corresponding predictions of the NS
pulse-like demand model proposed herein. The comparisons include several T/Tp ratios and span all
three ‘spectral regions’ of the proposed model.

At first glance, the comparison of pulse-like and ordinary median IDA curves makes it abundantly
clear that the ratios of T/Tp≤ 0.50 contain pulse-like ground motions which are, in terms of median
response, more aggressive than ordinary records. This comes as no surprise, as it only confirms
what has been known from previous investigations [16, 25, 43]. However, the relative paucity of
records that characterized earlier research on pulse-like seismic demand did not permit to fully
appreciate if oscillators of various vibration periods behave in potentially different manner under
these T/Tp conditions.

In fact, it can be seen that low T/Tp ratios of around 0.20 are particularly aggressive towards low-
period oscillators, whereas for a ratio of around 0.60 the response is already slightly more benign
than the ordinary case. On the other hand, for medium-period systems it is a T/Tp of around 0.40

Figure 9. Comparison of the complete trilinear model prediction with corresponding numerical results for
systems with (a) αh = 0 , μc = 4 and αc =� 50% at T/Tp = 0.40 when 0.30s<T≤ 0.80s, (b) αh = 20%,
μc = 2 and αc =� 20% at T/Tp = 0.20 for 0.30s<T≤ 0.80 s, and (c) αh = 5% , μc = 2.5 and αc =� 200% at

T/Tp = 0.20 when 0.10s<T≤ 0.30s.
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that creates the highest median impulsive NS demand with the entire range of T/Tp≤ 0.60 still being on
the aggressive side with respect to ordinary demand. For medium- to long-period oscillators, the most
demanding pulses still appear to be centred around T/Tp = 0.40 with the region around 0.20 in close
pursuit. For all spectral regions, it can be seen that in cases where the vibration period becomes
comparable to or longer than the pulse duration, benign responses are to be expected on average.
This is less pronounced in the medium- to long- period range, where response for 1.00≤T/Tp≤ 2.00
and low reduction factors is comparable to ordinary demand. This last observation is also in
agreement with previous research, since in [16] it was found that for T/Tp>0.80 mean inelastic
displacement ratios fall below unity.

Extending the comparison between pulse-like and ordinary ground motion-based models to trilinear
SDOF systems with descending branches, one can also consider differences in predicted collapse
capacity. In this case, it was observed that for systems with moderate-to-large ductility reserves, the
same trends hold as seen in the preceding texts for bilinear hardening oscillators: pulse-like records
appear more aggressive on average (lower collapse capacity) than ordinary ones for T/Tp ratios
lower than 0.60–0.75, with the lower bound corresponding to the low-period range and the upper to
the longer periods. This can be seen in Figure 11(a–c), where median collapse capacity, for a
moderately ductile system (capping ductility μc = 4), as predicted by Eqn 12 is plotted as a function
of T/Tp and the SPO2IDA (ordinary) median prediction is denoted by a dashed horizontal line.

However, this trend does not hold for low-ductility, brittle systems, as can be seen in the second
row of panels in Figure 11(d–f). In fact, for medium- to long-period systems with limited ductility
reserves (e.g. the oscillator with capping ductility μc = 1.5 used in Figure 11) the aggressive/benign
threshold appears to move on to larger T/Tp ratios with increasing period. For brittle systems at the
longer-period ‘spectral region’, the same trend continues to a point where most T/Tp ratios
considered in the present model result in lower collapse capacities than ordinary records—on
average. Furthermore, it can be seen that T/Tp ratios around 0.50 tend to consistently exhibit the
lowest Rcap,50 % among impulsive records. Finally, it can be observed that past a certain T/Tp

ratio, whose value also varies according to available ductility, median collapse capacity remains
relatively stable.

These observations are generally consistent with the findings of past research on collapse capacity
of multiple degree of freedom systems subject to NS pulse-like motions [44, 45]. In [44] the transition
T/Tp ratio that sees stabilization of pulse-like collapse capacity was investigated against 10 building
structures. A linear regression relation was established between available ductility of the structure
and this transition ratio, which is found in good agreement with the predictions of Eqn 12. A
similar trend was encountered in [45], where moving average curves of collapse capacity as
functions of Tp/T were calculated for 23 concrete frames. In that work, it was further observed
that for some ductile multiple degree of freedom systems, pulse-like records with T/Tp> 1.0 can
also be, on average, more aggressive than ordinary records. This effect can be attributed to
excitation of the higher modes by the shorter pulse periods ([43, 45]), which cannot be captured
by the SDOF model.

Figure 10. Comparisons between ordinary ground motion median IDA predictions (by SPO2IDA [13, 14])
for a bilinear SDOF system with αh = 20% and median IDA predictions for NS pulse-like ground motions
for the same system and various T/Tp ratios, according to the model presented in this study. The comparison
is made for three periods of vibration, (a) T = 0.30s, (b) T = 0.60s, and (c) T = 1.00s, corresponding to all

spectral regions of the pulse-IDA model.
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Past investigations, where NS probabilistic seismic hazard analysis was implemented [22, 23],
showcased the fact that a NS design scenario will not be necessarily restricted to a single Tp

dominating NS structural response (elastic and inelastic). In fact, it was found in certain case-studies
that not only are different source to site configurations associated with different probability
distributions of causal Tp but that this is also true for a given site when increasing levels of seismic
intensity are considered [8, 35] . It was also observed in those studies that at increasing IM levels,
NS-FD can become increasingly important for the determination of site-specific mean inelastic
demand. Be that as it may, it has been shown that as long as disaggregation of NS hazard can
provide the necessary information on the probabilistic distribution of Tp conditional on the design
scenario of interest, analytical models containing pulse period as a predictor variable can be
employed to estimate NS seismic demand or assess performance-based objectives under NS
conditions. This was demonstrated in [8] for the case of single-stripe pushover-based simplified
analysis using an earlier equation for NS-FD inelastic spectra [16]. More pertinent to the present
model is the illustrative example included in [35], where a methodology for probabilistically
incorporating Tp into the calculation of NS inelastic demand at increasing levels of seismic intensity
was demonstrated for a simple bilinear system. Extending that methodology into the realm of more
complex multi-linear backbones is a necessary next step that will permit the application of the
model presented in this study towards performance-based assessments in NS conditions.

7. CONCLUSIONS

The present study saw the use of IDA to investigate and model analytically the response of oscillators
with trilinear backbone curves to near-source (NS) pulse-like ground motions. The proposed model
uses equations to capture efficiently both median pulse-like demand and the associated
heterogeneity. The analytical equations include pulse period as a predictor variable in the form
of T/Tp ratio but are also based on an extensive investigation that makes use of statistical inference to
evaluate the simultaneous effect of vibration period within each T/Tp bin. In order to describe
mathematically the full range of response for the generic moderately pinching SDOF system
subjected to pulse excitations, while keeping the computational load within manageable levels, the
model is based on two primary components. Bilinear systems with either hardening or softening post-
yield behaviour are investigated at length and non-linear least-squares curve fitting is employed to

Figure 11. Comparison between median collapse capacity Rcap,50 % predicted by Eqn 12 for pulse-like exci-
tation at various T/Tp ratios and SPO2IDA prediction for ordinary ground motions. The first row of panels
refers to the trilinear backbone of a moderately ductile system (αh = 0.20,μc = 4.0, αc =� 0.50) with periods
of vibration: (a) T = 0.30s, (b) T= 0.60s and (c) T = 1.00s. The second row corresponds to the trilinear back-
bone of a brittle system (αh = 0, μc = 1.50, αc =� 0.50) with periods of vibration: (d) T = 0.30s, (e) T = 0.60s,

and (f) T = 1.00s.
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simulate the corresponding pulse-IDA fractile curves. Subsequently, empirical rules and observations
stemming from past research are exploited in order to assemble these results into a compact
predictive model for the demand and capacity of the complete trilinear case, without having to resort
to voluminous computations. The end-result constitutes an effective R�μ�T�Tp relation, which is
provided to potential users in the form of MATLAB® code. Such a relation can draw upon the results
of NS seismic hazard calculations in order to provide estimates of NS seismic demand that take FD
effects into account in a consistent quantitative manner within the performance-based earthquake
engineering framework.
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