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ABSTRACT  

 
Modern earthquake resistant design procedures are based on inelastic deformation of structures as the primary 

source of seismic energy dissipation. On the other hand, design actions are based on probabilistic seismic hazard 

analysis (PSHA), which refers to elastic acceleration response spectrum ordinates. Reconciliation between 

reference elastic demand and required inelastic performance is made via relationships calibrated on single degree of 

freedom (SDoF) systems, developed in the last decades and widely adopted by codes (mostly in approximate 

forms). Recently, is earning interest the possibility to develop PSHA directly in terms of nonlinear structural 

response to improve accuracy in definition of structural design targets. This may require a prediction equation (also 

referred to as attenuation model) for the structural response measure of interest. In this paper, the possibility to 

develop an attenuation law for nonlinear SDOF responses based on the recent Italian Accelerometric Archive 

(ITACA) is explored. Other than being specifically based on Italian data, the study has the advantage of 

considering more than one hysteretic loops, at different oscillation periods, for one strength reduction factor. 

Moreover, cyclic response is also considered, together with prediction of peak structural deformation. Interestingly, 

preliminary results indicate that standard deviation of residuals is practically not changing passing from elastic to 

inelastic response.  

1 INTRODUCTION 

It is easy to recognize that seismic design would 

benefit of hazard expressed in terms of nonlinear 

structural performance. In fact, currently, the 

conversion of common ground motion intensity 

measures (IMs), such as elastic spectral ordinates 

for which hazard is available, to inelastic 

deformations is essential for most of the design 

procedures based on static or modal response 

analyses. This is carried out via strength, 

ductility, and oscillation period relationships 

(often referred to as R-μ-T) or simply based on 

the equal displacement rule (e.g., Veletsos and 

Newmark, 1960).  

Available relations, for generality purposes, 

were calibrated in the past via regression of data 

from relatively limited ground motion sets (see 

also Vidic et al., 1994; Miranda and Bertero, 

1994). These refer to single degree of freedom 

(SDoF) systems, typically with an elastic-plastic 

backbone
1
, to which the structure of interest is 

somehow rendered equivalent during design. 

The relationships between elastic and inelastic 

response, for practicality and manageability, are 

only taken in approximate format within codes, 

which often means to neglect significant 

associated uncertainty. In fact, recent attempts 

aim at performing probabilistic seismic hazard 

analysis (or PSHA, McGuire, 2004) directly in 
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terms of inelastic response. This would provide 

the seismic threat at a site by means of a 

parameter more informative for engineering 

practitioners.  

Two possible approaches to incorporate 

nonlinear structural response in seismic hazard 

are: (1) to analytically model the inelastic to 

elastic response ratio (e.g., Tothong and Cornell, 

2006); or (2) to develop prediction equations (or 

attenuation models) in terms on nonlinear 

response (e.g., Buratti et al., 2009; Bozorgnia et 

al., 2010a and 2010b). The latter approach is 

pursued in this study where relationships are 

developed for several nonlinear SDoFs, based on 

the large set of ground motion data contained in 

the ITalian ACcelerometric Archive or ITACA 

(Luzi at al. 2008; Pacor et al., 2011). 

Estimating directly inelastic structural 

response rather than converting the elastic one, 

although equivalent in principle, may also allow 

to reduce the consequences of semi-empirical 

estimation issues propagating when predicting 

nonlinear behavior. 

Considered SDoF systems include bilinear 

with hardening backbone with and without 

stiffness’ degrading hysteretic behavior. 

Structural response measures (or engineering 

demand parameters, EDPs), despite previous 

work on the same topic, include both cyclic (e.g., 

energy dissipation) and peak response (e.g., 

maximum inelastic deformation) quantities. 

Elastic periods of SDOFs range in a broad 

interval sampled by 20 values. Level of 

nonlinearity is accounted for by considering one 

strength reduction factors (Rs) equal to 6.  

The functional forms relating EDPs to source, 

site, and path characteristics are derived starting 

from those employed to compute the elastic IMs’ 

attenuation relationships of Bindi et al. (2011). 

Preliminary, results refer to the geometric mean 

of the two horizontal components of ground 

motion.  

In the following, details of the considered 

simple structural systems and response measures 

are given first. Then, the main features of the 

ground motion dataset are illustrated. Finally, the 

obtained equations for different nonlinear 

responses, and their dependency on the 

earthquake covariates, are discussed highlighting 

the use in the next generation of seismic hazard 

analysis, and as a benchmark for engineering 

validation of other types of ground motions 

obtained, for example, by means of physics-based 

simulations. 

2 STRUCTURAL CASES AND RESPONSE 

MEASURES 

The structural cases considered in this 

preliminary study were selected to emphasize 

both peak and cyclic response issues; thus two 

classes of hysteretic behaviors were selected. For 

each class of SDoFs, 20 elastic periods varying 

from 0.04s to 2s were considered, assuming the 

same sampling values selected in Bindi et al. 

(2011). The first structural behavior is 

represented by an elastic hardening backbone 

with the post-yielding stiffness assumed as 0.03 

of the initial stiffness (kel). These systems are 

characterized by a standard kinematic strain 

hardening hysteretic model (EPH-k), without any 

cyclic degradation, see Figure 1. This SDoF 

family is the same considered in the study by 

Tothong and Cornell (2006). The second 

structural behavior (EPH-p) features cyclic 

stiffness degradation, characterized by pinching 

hysteresis (Ibarra et al., 2005) and by the same 

elastic hardening backbone of the previous family 

of SDoFs; see Figure 2. 

A single value of Rs equal to 6 was considered 

being representative of a significant inelastic 

structural behavior. It is possible to achieve the 

same value of Rs either for each record in a 

dataset (constant R approach) or on an average 

sense (constant strength approach) keeping 

constant the yielding strength. The former was 

adopted in this case, allowing every single record 

to show inelastic behavior in the SDoF. 

Therefore, the value of the yield strength (Fy) at a 

given oscillation period T is a record-specific 

quantity.  

Two EDPs were selected to investigate both 

peak and cyclic seismic response. The 

displacement-based parameter is the peak 

inelastic displacement (Sdi). The cyclic response-

related parameter is the equivalent number of 

cycles (Ne). This latter is given by the cumulative 

hysteretic energy (EH), evaluated as the sum of 

the areas of the hysteretic cycles (not considering 

contribution of viscous damping), normalized 

with respect to the largest cycle, evaluated as the 

area underneath the monotonic backbone curve 

from the yielding displacement to the peak 

inelastic displacement (Aplastic), see Equation (1). 

This allows separating peak demand, already 



 

considered in the first EDP, from cyclic demand 

(Manfredi, 2001). 

HE
e

plastic

N
A

 (1) 

Once the peak and cyclic inelastic response to 

each single horizontal component of the record 

selected is evaluated according to the EDPs 

defined above, the geometric mean of the EDPs is 

considered for regression. 
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Figure 1. Elastic hardening monotonic backbone with 
standard kinematic strain hardening hysteretic model, 
(EPH-k). 
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Figure 2. Elastic hardening monotonic backbone with 
pinching hysteresis featuring cyclic stiffness degradation, 
(EPH-p). 

3 GROUND MOTION DATA 

To compute peak and cyclic response 

parameters, the accelerograms corresponding to 

the strong ground-motion dataset used to develop 

the Italian Ground Motion Prediction Equations 

(ITA10, Bindi et al., 2011), were selected. The 

dataset is comprised of 769 records (three-

components), with hypocentral depth within 30 

km, and 150 stations over the magnitude range 

4.1 ≤ Mw ≤ 6.9 and distance, RJB, range from 0 to 

200 km (Figure 3). This dataset is extracted by 

the new Italian strong motion data base, ITACA 

(http//itaca.mi.ingv.it/) and includes all Italian 

events with Mw > 4 recorded from 1972 up to 

2007 and the most relevant data from recent 

moderate earthquakes (Mw = 6.3, 2009 L’Aquila 

and Mw = 5.4, 2008 Parma) and aftershocks. 

The development of ITA10 was feasible, 

thanks to the improvements in the quality and 

quantity of data and metadata in the new release 

of the ITACA database. In the selected dataset, 

distances larger than 10 km are well sampled over 

the entire magnitude range, while the recordings 

for distances shorter than 5 km are relevant in 

number for earthquakes with Mw < 6. All stations 

are classified following the Eurocode 8 or EC8 

(CEN, 2004) scheme. The local site conditions 

values were obtained either from measurements 

or inferred by geological and geophysical data. 

Classes D and E (soft soils according to EC8) are 

poorly sampled, while the other classes are well 

represented with about 200 records in each class. 
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Figure 3. Magnitude versus distance plot. The data are 
grouped according to the EC8 site classification (A: red, B: 
blue; C: green, D: grey, E: black). 

The accelerometric waveforms were 

downloaded from ITACA in the processed 

version form. The procedure for processing the 

data, consists in (Paolucci et al., 2011; Pacor et 

al., 2011): 1) baseline correction; 2) application 

of a cosine taper, based on the visual inspection 

of the record (typically between 2% and 5% of 

the total record length); records identified as late-

triggered are not tapered; 3) visual inspection of 

the Fourier spectrum to select the band-pass 

frequency range; 4) application of a 2nd order a-

causal time-domain Butterworth filter to the 

acceleration time-series padded with zeros; 5) 

double-integration to obtain displacement time 

series; 6) linear de-trending of displacement; 7) 

double-differentiation to get the corrected 



 

acceleration. The applied procedure ensures the 

compatibility among acceleration, velocity and 

displacement time series. 

A check on the displacement waveform 

resulting from the double-integration of the 

corrected accelerograms supported the choice of 

the high-pass corner frequency, fh. Digital records 

are generally filtered with fh ≤ 0.5 Hz, down to 

values < 0.1 Hz (for the L’Aquila seismic 

sequence). On the other hand, analogue data, due 

to their lower quality, are generally high-pass 

filtered at frequencies higher than 0.2 Hz, with 

few exceptions, especially for large magnitude 

earthquakes. 

4 RESULTS AND DISCUSSION 

The equation used for the regression is similar 

to the model considered by Bindi et al. (2011) 

except for the exclusion of the style-of-faulting 

term and of a term linearly decreasing with 

distance (accounting for anelastic attenuation). 

Further tests will be performed to assess the 

effect of these simplifications.  

Equation (2) shows the functional form 

considered in this study; e1 is the constant term, 

FD(R,M), FM(M) and Fs represent the distance (R) 

function, the magnitude (M) scaling and the site 

amplification correction, respectively. Magnitude 

measure is the moment magnitude (Mw), distance 

is the Joyner-Boore distance (RJB), or the 

epicentral distance (in km), when the fault 

geometry is unknown (generally when Mw <5.5). 

As mentioned, the structural response measures Y 

considered for the regressions are the peak 

inelastic displacement (Sdi in cm) and the 

equivalent number of cycles (Ne). The proposed 

equation for the distance function (FD) is shown 

in equation (3), while the magnitude function 

(FM) is shown in equation (4), where Mref, Mh, 

Rref are coefficients to be determined through the 

analysis. 

The term FS in equation (2) represents the site 

amplification and it is given by FS = sjCj, for 

j=1,...5, where sj are the coefficients to be 

determined through the regression analysis, while 

Cj are dummy variables used to denote the five 

different EC8 site classes (A to E).  

The regressions are performed by applying a 

random effect approach (Abrahamson and 

Youngs, 1992) to the geometrical mean of the 

horizontal components. After some trial 

regressions and after Bindi et al. (2011) the 

following variables have been fixed: Rref=1 km; 

Mref=5;Mh=6.75; b3=0. Overall, the model was 

calibrated over 11 period dependent parameters 

(e1, c1, c2, h, b1, b2, s1, s2, s3, s4, s5). 
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The regression coefficients for EPH-k and 

EPH-p systems, although should be taken as 

preliminary, are reported in Table 1 and Table 2 

respectively, for both Sdi and Ne. For the sake of 

brevity the dependence on site condition is not 

discussed here (i.e., the results are presented for 

rock sites only, A site class). Thus, in equation 

(2), Fs=0 which means that we constrain the class 

A site to have no site amplification. In the 

following the mean estimates (and related 

standard deviations of the residuals) are discussed 

as a function of earthquake magnitude, source-to-

site distance and oscillation period. 

Figure 4 shows the residual distribution as 

function of the distance (RJB) from the source and 

of the earthquake magnitude (Mw). Residuals are 

presented for Sdi and Ne at two different periods 

and, as example, for the EPH-k systems. The 

distributions confirm that the derived models 

produce residuals independent on the explanatory 

variables.  

The good performance of the predictive 

models is also confirmed by Figure 5 where the 

estimates for a magnitude 6.0 earthquake at two 

periods (T equal to 0.2 s and 1.0 s) are plotted as 

a function of distance.  

The predictions are reported for both the 

considered systems (EPH-k and EPH-p) and they 

are compared with Sdi and Ne data for a 

magnitude interval of 6.0±0.3. 

The scaling with magnitude of the predictions 

for Sdi and Ne is illustrated in Figure 6 for the 

EPH-k systems. The Sdi curves are also compared 

with the predictions for elastic spectral 

displacement (dashed lines) derived using the 

same functional form and the same magnitude-

distance distribution of records, see Equation (2). 
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Figure 4. Residual distributions for EPH-k SDoFs as function of magnitude (Mw) and distance (RJB) of the two EDPs 
considered in this study: Sdi for peak response and Ne for cyclic response. 
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Figure 5. Estimates for a magnitude 6.0 earthquake at two natural periods (T=0.2s and 1.0s), plotted as a function of RJB and 
compared with Sdi and Ne data for a magnitude interval of 6.0±0.3. 

 



 

 

The difference between elastic and inelastic 

displacement is more evident at short periods 

(e.g., 0.2s) and moderate to large magnitudes (Mw 

> 6), where larger values are predicted for the 

latter. At longer periods (e.g., 1.0s) elastic and 

inelastic spectral ordinates are comparable and 

for the largest magnitudes slightly larger elastic 

response is predicted. 

Ne regression is characterized by a dependence 

on magnitude less evident and differences in the 

mean prediction are relevant mostly for distances 

smaller than 10 km. The decreasing trend with 

increasing period of the cyclic response 

(recognizable from the comparison of the Ne 

panels for different periods in Figure 6 and Figure 

7) is typical of EDPs referring to cyclic response. 

Given the good correlation of Ne with intensity 

measures related to ground motion duration, such 

as the so called Cosenza and Manfredi index (ID), 

found in other studies (Iervolino et al., 2010a), 

the increasing trend of this EDP with distance can 

be easily justified, since this kind of IMs is 

characterized by the same increasing trend with 

distance, (see Iervolino et al. 2010b). 

The magnitude dependency seems to be not 

very significant especially for medium to large 

distances; these results are in accordance with the 

findings of the ID attenuation relationship where 

magnitude coefficient is close to zero (Iervolino 

et al. 2010b). On the other hand Mw effect on Ne 

appears larger for small oscillation periods. For T 

= 1.0s there is an inversion of scaling for 

distances larger than 10 km. In fact, the Ne trends 

with magnitude have to be assessed for statistical 

significance. Moreover, also suitability of the 

same functional form considered for peak 

displacement has to verified for EDPs related to 

cyclic structural response. 
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Figure 6. Scaling with magnitude of the predictions for Sdi and Ne for EPH-k SdoF systems. 
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Figure 7. Scaling with magnitude of the predictions for Sdi and Ne for EPH-p SdoF systems. 

 

The standard deviation of residuals (σlogY) 

associated to the mean predictions of the model 

presented in Equation (2), is shown in Figure 8, 

as a function of period, for all the considered 

structural response measures and for both EPH-k 

and EPH-p systems.  
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Figure 8. Standard deviation trends with periods of inelastic 
and elastic displacements, elastic acceleration (from Bindi 
et al., 2011) and equivalent number of cycles.  

Moreover the σlogY for elastic spectral 

displacement (derived in this study) and for 

elastic spectral acceleration (from Bindi et al., 

2011) are also shown as benchmark. The Sdi 

standard deviation varies from about 0.35 to 0.39 

for EPH-k and from 0.35 to 0.37 for EPH-p. The 

values do not increase with respect to those 

derived for elastic acceleration and displacement 

spectra.  

The Ne standard deviation varies from about 

0.14 to 0.19 for EPH-k and from 0.13 to 0.20 for 

EPH-p. Figure 9 shows the inelastic (and elastic) 

displacement and Ne spectra predicted for a 

scenario earthquake (Mw = 6.3 and RJB = 10 km) 

considering EPH-k and EPH-p systems. Inelastic 

spectrum predicts larger values than the elastic 

one for T < 0.5s, while for longer periods elastic 

spectrum is somewhat larger. No dependency on 

the hysteretic behavior of the two models is 

shown in peak response, as expected.  

Considering cyclic response, Ne spectra is 

slightly dependent from the hysteretic model; the 

curves for EPH-k and EPH-p are similar for T > 

0.25s, whereas at shorter periods the EPH-p 



 

model predicts larger values. The only stiffness 

degrading behavior (EPH-p) does not emphasize 

differences on cyclic response if compared to 

non-degrading hysteretic behavior (EPH-k), on 

the other hand when strength degradation is of 

concern the cyclic response dependence on 

hysteretic behavior can play a role in structural 

response (see Iervolino et al. 2010a). This latter 

issue highlights the necessity to consider further 

SDoF models characterized by strength 

degradation (softening in the monotonic 

backbone) to allow a more fulfilling 

characterization of predictive equations for cyclic 

response parameters. 
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Figure 9. Mean inelastic and elastic displacement spectra (on the left) and Ne spectra (on the right) and their one standard 
deviation bands for EPH-k and EPH-p SDoFs, evaluated for a Mw = 6.3 and RJB = 10 km scenario. 

 

 

Table 1. Regression coefficients and standard deviation for EPH-k SDoF, Rs equal to 6 and A site class. 

T 
Sdi Ne 

e1 b1 b2 c1 c2 h σ e1 b1 b2 c1 c2 h σ 

0.04 0.6393 -0.1313 -0.0771 -1.8482 0.3342 10.8708 0.3836 1.3678 0.4203 0.0568 0.3783 -0.1242 0.2268 0.1883 

0.07 0.8287 0.1037 -0.0460 -1.6128 0.2851 10.3363 0.3913 0.8954 0.2031 0.0313 0.4067 -0.0292 0.2722 0.1871 

0.10 0.7610 0.1511 -0.0385 -1.4768 0.2921 8.2848 0.3796 0.8893 0.2337 0.0337 0.3873 -0.0473 0.4320 0.1758 

0.15 0.7605 0.1641 -0.0294 -1.4082 0.3178 7.2440 0.3651 0.8963 0.2459 0.0446 0.3319 -0.0408 0.6491 0.1630 

0.20 0.8666 0.1793 -0.0246 -1.4091 0.3290 7.0687 0.3560 0.8742 0.2427 0.0440 0.3195 -0.0533 0.8425 0.1524 

0.25 0.9947 0.2496 -0.0125 -1.3905 0.3154 6.9055 0.3558 0.8515 0.2224 0.0348 0.3201 -0.0625 0.7481 0.1528 

0.30 1.0985 0.2749 -0.0137 -1.3889 0.3094 7.1412 0.3580 0.8324 0.2137 0.0315 0.3230 -0.0716 0.6232 0.1521 

0.35 1.2274 0.3362 -0.0131 -1.3722 0.2775 6.9974 0.3613 0.8062 0.1986 0.0273 0.3244 -0.0758 0.4645 0.1539 

0.40 1.3163 0.4024 -0.0047 -1.3469 0.2582 6.9916 0.3579 0.7573 0.1568 0.0187 0.3204 -0.0681 0.6437 0.1533 

0.45 1.3755 0.4445 -0.0002 -1.3265 0.2431 6.9669 0.3567 0.7333 0.1277 0.0084 0.3233 -0.0666 0.9061 0.1517 

0.50 1.4130 0.4634 -0.0005 -1.3126 0.2388 6.8387 0.3605 0.7071 0.1185 0.0073 0.3286 -0.0644 1.0539 0.1516 

0.60 1.4277 0.4529 -0.0105 -1.2876 0.2413 6.7518 0.3589 0.7642 0.1551 0.0126 0.3195 -0.0815 0.6579 0.1529 

0.70 1.4996 0.4990 -0.0121 -1.2566 0.2215 6.6382 0.3557 0.6712 0.1082 0.0079 0.3288 -0.0663 1.3623 0.1527 

0.80 1.4902 0.5055 -0.0180 -1.2175 0.2159 6.3076 0.3579 0.7192 0.1331 0.0117 0.3129 -0.0756 0.9105 0.1551 

0.90 1.5043 0.5087 -0.0248 -1.2012 0.2126 6.1107 0.3579 0.7048 0.1397 0.0178 0.3162 -0.0722 0.8474 0.1512 

1.00 1.5242 0.5380 -0.0260 -1.1717 0.2011 5.8697 0.3629 0.6487 0.1238 0.0167 0.3368 -0.0711 2.9192 0.1473 

1.25 1.5156 0.5321 -0.0367 -1.1392 0.2038 5.5071 0.3660 0.7503 0.1799 0.0314 0.2949 -0.0834 0.4806 0.1466 

1.50 1.5407 0.5729 -0.0362 -1.1029 0.1879 5.0325 0.3699 0.6970 0.1375 0.0200 0.2930 -0.0721 0.9716 0.1797 

1.75 1.5648 0.6035 -0.0315 -1.0873 0.1883 4.9134 0.3708 0.5241 0.0052 0.0065 0.2664 -0.0105 1.5741 0.1641 

2.00 1.5740 0.6157 -0.0312 -1.0784 0.1902 4.9658 0.3736 0.4535 -0.0697 0.0007 0.2168 0.0386 1.2151 0.1837 



 

 

Table 2. Regression coefficients and standard deviation for EPH-p SDoF, Rs equal to 6 and A site class. 

T 
Sdi Ne 

e1 b1 b2 c1 c2 h σ e1 b1 b2 c1 c2 h σ 

0.04 0.5174 -0.1475 -0.0755 -1.8239 0.3540 10.2344 0.3642 1.4544 0.4138 0.0514 0.4494 -0.1363 0.1591 0.1904 

0.07 0.8358 0.0800 -0.0454 -1.6542 0.3014 10.0682 0.3644 1.2132 0.4194 0.0560 0.4784 -0.1091 0.6720 0.1994 

0.10 0.8770 0.1613 -0.0362 -1.5273 0.2855 8.8291 0.3625 0.9722 0.3407 0.0503 0.4682 -0.0682 0.1011 0.1967 

0.15 0.9217 0.2179 -0.0212 -1.4422 0.2970 7.8474 0.3556 0.8195 0.2443 0.0400 0.4084 -0.0306 0.8588 0.1793 

0.20 0.9906 0.2404 -0.0174 -1.4156 0.3068 7.3514 0.3549 0.8036 0.2388 0.0371 0.3838 -0.0458 0.8797 0.1666 

0.25 1.0923 0.2987 -0.0108 -1.3847 0.2937 7.1025 0.3579 0.7625 0.2135 0.0313 0.3742 -0.0480 0.9806 0.1653 

0.30 1.1985 0.3512 -0.0076 -1.3670 0.2797 6.9907 0.3628 0.7215 0.1913 0.0245 0.3755 -0.0553 0.6395 0.1651 

0.35 1.2657 0.3659 -0.0116 -1.3570 0.2724 6.8822 0.3639 0.7583 0.2137 0.0253 0.3625 -0.0723 0.6205 0.1625 

0.40 1.3233 0.4104 -0.0058 -1.3394 0.2652 6.7909 0.3634 0.7186 0.1756 0.0153 0.3607 -0.0699 0.6419 0.1592 

0.45 1.3437 0.4216 -0.0077 -1.3196 0.2626 6.6437 0.3633 0.7165 0.1686 0.0110 0.3586 -0.0766 0.6761 0.1572 

0.50 1.3602 0.4338 -0.0062 -1.3066 0.2665 6.5278 0.3680 0.6909 0.1506 0.0062 0.3596 -0.0766 0.8362 0.1563 

0.60 1.3883 0.4419 -0.0129 -1.2801 0.2641 6.4350 0.3667 0.7103 0.1646 0.0096 0.3466 -0.0843 0.6875 0.1565 

0.70 1.4693 0.4934 -0.0136 -1.2521 0.2409 6.3539 0.3677 0.6244 0.1184 0.0047 0.3450 -0.0673 1.1988 0.1549 

0.80 1.4695 0.4896 -0.0210 -1.2334 0.2392 6.1461 0.3673 0.6618 0.1457 0.0110 0.3335 -0.0742 0.8330 0.1512 

0.90 1.4793 0.4963 -0.0248 -1.2184 0.2372 5.9864 0.3677 0.6751 0.1582 0.0144 0.3263 -0.0782 0.6621 0.1473 

1.00 1.4854 0.5085 -0.0282 -1.1967 0.2304 5.7153 0.3690 0.6638 0.1608 0.0189 0.3216 -0.0742 0.6658 0.1450 

1.25 1.4916 0.5089 -0.0398 -1.1656 0.2254 5.2469 0.3730 0.6895 0.2151 0.0363 0.3166 -0.0873 0.4081 0.1419 

1.50 1.5233 0.5562 -0.0358 -1.1356 0.2125 4.8475 0.3707 0.6660 0.2196 0.0416 0.3193 -0.0884 0.4205 0.1384 

1.75 1.5480 0.5828 -0.0302 -1.1275 0.2158 4.9016 0.3774 0.6766 0.2442 0.0498 0.3165 -0.0983 0.3486 0.1404 

2.00 1.5595 0.5956 -0.0294 -1.1188 0.2136 4.9221 0.3781 0.6723 0.2798 0.0630 0.3297 -0.1061 0.1953 0.1489 

 

 

CONCLUSIONS 

The possibility to develop prediction equations 

for nonlinear Single Degree of Freedom (SDoF) 

systems’ responses based on the Italian 

Accelerometric Archive (ITACA) was explored 

in the study presented in this paper. Peak and 

cyclic inelastic structural response parameters 

were evaluated for the development of such 

attenuation models, useful for either design or 

assessment of structures. Two families of SDoF 

backbones were studied considering first a non-

degrading behavior with a slight hardening in the 

backbone, and second a stiffness degrading 

behavior with the same hardening backbone of 

the first family.  

A constant strength reduction factor approach 

was followed. In this preliminary enquiry only a 

single strength reduction factor equal to 6 was 

considered. Engineering demand parameters 

examined for regressions are the peak inelastic 

displacement and the equivalent number of 

cycles. The same functional form assumed in the 

traditional ground-motion attenuation models 

based on the same database was assumed. 

The preliminary results indicate that the 

standard deviations of the regressions are very 

similar to the dispersion of GMPEs based on 

elastic parameters. This result may lead to a more 

accurate estimation of nonlinear response with 

respect to what done in current practice where 

estimates of inelastic structural demand (and 

associated uncertainty) are applied on top of 

elastic prediction equations. 

Cyclic response evaluated in term of 

equivalent number of cycles showed similar 

trends with respect to those of duration-related 

measures. This result was expected according to 

the fair correlation found in other studies between 

those intensity measures and structural cyclic 

response. In fact, cyclic response prediction 

equation asks for further investigations since 

consolidated results are not available for this kind 

engineering demand parameters. On the other 

hand, this aspect can represent a useful tool 

especially when assessment of structural systems 

sensitive to cyclic response is of any concern. 



 

Finally, it is to stress that results presented 

herein are preliminary and should be taken by the 

reader as qualitative and informative only. In fact, 

while it is expected that trends of EDPs versus 

IMs will be confirmed in the following of the 

study on this issue, it is likely that models’ 

coefficient will change because of both more 

refinement of regression/dataset or changes of 

functional form of attenuation models.  
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