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SUMMARY

The piecewise linear (‘multilinear’) approximation of realistic force-deformation capacity curves is investigated
for structural systems incorporating generalized plastic, hardening, and negative stiffness behaviors. This fitting
process factually links capacity and demand and lies at the core of nonlinear static assessment procedures.
Despite codification, the various fitting rules used can produce highly heterogeneous results for the same
capacity curve, especially for the highly-curved backbones resulting from the gradual plasticization or the
progressive failures of structural elements. To achieve an improved fit, the error introduced by the approximation
is quantified by studying it at the single-degree-of-freedom level, thus avoiding any issues related to multi-
degree-of-freedom versus single-degree-of-freedom realizations. Incremental dynamic analysis is employed
to enable a direct comparison of the actual backbones versus their candidate piecewise linear approximations
in terms of the spectral acceleration capacity for a continuum of limit-states. In all cases, current code-based
procedures are found to be highly biased wherever widespread significant stiffness changes occur, generally
leading to very conservative estimates of performance. The practical rules determined allow, instead, the
definition of standardized low-bias bilinear, trilinear, or quadrilinear approximations, regardless of the details
of the capacity curve shape. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decades, improvements in the computational capabilities of personal computers have allowed
the employment of nonlinear analysis methods in many earthquake engineering problems. In this
framework, nonlinear static analysis is becoming the routine approach for the assessment of the seismic
capacity of existing buildings. Consequently, nonlinear static procedures (NSPs) for the evaluation of
seismic performance, based on static pushover analysis (SPO), have been codified for use in practice.
Most of such approaches consist of the same five basic steps: (i) perform static pushover analysis of the
MDOF system to determine the base shear versus (e.g., roof) displacement response curve; (ii) fit a
piecewise linear function (typically bilinear) to define the period and backbone of an equivalent SDOF
system; (iii) use a precalibrated R–m–T (reduction factor–ductility–period) relationship for the extracted
piecewise linear backbone to obtain SDOF seismic demand for a given spectrum; (iv) translate the
SDOF response to the MDOF ‘target displacement’ (usually at the roof level) and use the static
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pushover curve to extract MDOF response demands for the entire structure; (v) compare demands to
capacities; see Ref. [1] for example.

Nonlinear static procedure is a conventional method without a rigorous theoretical foundation for
application on MDOF structures [2], because several approximations are involved in each of the
above steps. On the other hand, its main strength is that it provides an estimate of structural demand
and capacity in a simple and straightforward way. Although several improvements and
enhancements have been proposed since its introduction, any increase in the accuracy of the method
is worth only if the corresponding computational effort does not increase disproportionately.
Extensively investigated issues are the choice of the pattern considered to progressively load the
structure and the implication of switching from the nonlinear analysis of an MDOF system to the
analysis of the equivalent SDOF sharing the same (or similar) capacity curve. Regarding the shape
of the force distributions, it was observed that an adaptive load pattern could account for the
differences between the initial elastic modal shape and the displacement shape in the nonlinear range
[3–5]. Contemporarily, other enhanced analysis methodologies were proposed to account for higher
mode effects and to improve the original MDOF-to-SDOF approximation (e.g., [6]). Regarding the
demand side, efforts have been made to improve the estimation of the target displacement, especially
by providing advanced R–m–T to better evaluate the inelastic seismic performance at the SDOF level
(e.g., [7, 8]). A comprehensive investigation of many of these issues has recently appeared in the
National Institute of Standards and Technology (NIST) GCR 10-917-9 [9] report.

One of the issues not yet systemically investigated is the approximation introduced by the imperfect
piecewise linear fit of the capacity curve for the equivalent SDOF. The necessity to employ a
multilinear fit (an inexact, yet common, expression to describe a single-variable piecewise linear
function) arises because of the use of predetermined R–m–T relationships that have been obtained for
idealized systems with piecewise linear backbones. This has become even more important recently
because nonlinear modeling practice has progressed towards realistic member models, which may
accurately capture the initial stiffness using uncracked section properties and/or include in-cycle
strength degradation. The gradual plasticization of such realistic elements and models introduces a
high curvature into the SPO curve that cannot be easily represented by one or two linear segments.
It is an important issue whose true effect is often blurred, being lumped within the wider
implications of using an equivalent SDOF approximation for an essentially MDOF system. Despite
these limitations, some light has already been shed on this issue. For example recent studies have
shown the influence of accounting for uncracked stiffness in the structural response of RC
structures [10], while others [9] have shown the importance of accurately capturing both the
precracking and postcracking stiffness for RC shear wall structures; such studies already provide a
general idea on the phenomena that an optimal fit should be able to capture within conventional
NSP approaches to maintain accuracy.

To reach concrete solutions, the effect of the piecewise linear approximation will be investigated in
stages, practically following the progression of modern R–m–T relationships from the simple bilinear to
the more complex quadrilinear backbone shapes by adding one linear segment at a time. Thus, starting
with an elastic segment, we will successively add a perfectly-plastic or positive-stiffness ‘hardening’
segment, a negative stiffness ‘softening’ segment, and a low-strength zero-stiffness ‘residual’
plateau. In essence, the optimal fitting of four different shapes will be examined comprising (i)
bilinear elastoplastic, (ii) bilinear elastic-hardening, (iii) trilinear elastic-hardening-negative, and (iv)
quadrilinear elastic-hardening-negative-residual. While the first two cases are typical in most NSP
guidelines, for example, Refs. [11, 12], the latter two have also become an option in recent codes
(ASCE/SEI 41–06) [13, 14], or literature [15, 16].

The approach employed will be based on the accurate assessment of the effect of the capacity curve
fit on the NSP results. This is achieved by proper quantification of the bias introduced into the estimate
of the seismic response at the level of the SDOF itself. Incremental dynamic analysis (IDA) [17] will be
used as the benchmark method to quantify the error introduced by each candidate fit with respect to the
exact capacity curve of the SDOF. Figure 1(a) shows a typical example, where an elastoplastic
backbone is fitted to a highly-curved SPO shape according to the equal area criterion, that is, by
equalizing the area discrepancy above and below the fitted curve. Such an approximation actually
follows the Eurocode 8 (EC8) provisions [11] and it is not far from the ASCE/SEI 41–06 [13]
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guidelines for a target displacement deep within the plastic plateau. The corresponding median IDA
curves displayed in Figure 1(b) in terms of spectral acceleration (the intensity measure, or IM)
versus displacement (the engineering demand parameter, or EDP) show that the fitted backbone
produces nearly 25% higher displacement demand at all intensity levels. Thus, even code-mandated
fitting rules may lead to an unintended hidden bias that will be shown to be generally conservative
but may often become unreasonably high.

In the sections that follow, the methodology considered will be fleshed out and applied to quantify
the approximation errors. By extensive investigation of numerous candidate piecewise linear fits, a set
of fitting rules will be established that can offer a standardized near-optimal capacity curve
approximation, suitable for immediate application in NSPs with superior performance compared
with fitting approaches currently in use.

2. METHODOLOGY

The main target is the quantification of the error introduced in the NSP-based seismic performance
assessment by the replacement of the original capacity curve of the system, termed the ‘exact’ or
‘curved’ backbone, with a piecewise linear approximation, that is, the ‘fitted’ or ‘approximate’ curve
(e.g., Figure 1(a)). This will enable a reliable comparison between different fitting schemes in an
attempt to minimize the observed discrepancy between actual and estimated performance. In all
cases, to achieve an accurate and focused comparison of the effect of fitting only, it is necessary to
disaggregate the error generated by the fit from the effect of approximating an MDOF structure via
an SDOF system. Thus, all the investigations are carried out entirely at the SDOF level, using a
variety of capacity curve shapes, different periods and hysteresis rules and using IDA as the method
of choice for assessing the actual performance of the different alternatives. Such an approach is
meant to single out a near-optimal fit that can be directly included in current NSP procedures.

2.1. Exact versus approximate single-degree-of-freedom systems

An ensemble of SDOF oscillators is considered with varying curved shapes of force-deformation
backbones. Their strength and stiffness is essentially provided by bundling together multiple
uniaxial springs in parallel (i.e., a fiber section), each with its own bilinear, trilinear, or quadrilinear
capacity curve but having the same general hysteretic (cyclic) behavior. The first part of the
investigation addresses nonsoftening behaviors; the backbones, in fact, display a monotonically
decreasing stiffness that starts from its elastic value and degrades with increasing displacement to
reach a final zero or positive stiffness that remains constant afterwards (e.g., Figure 1(a)). According
to their final constant stiffness, these will be termed ‘generalized elastoplastic’ and ‘generalized
elastic-hardening’ systems, respectively. They are all fitted accordingly with bilinear elastoplastic or
elastic-hardening shapes. The second part of the investigation focuses on backbones displaying
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Figure 1. (a) Example of exact capacity curve versus its elastoplastic bilinear fit according to EC8 and (b) the
corresponding median IDA curves showing the negative (conservative) bias because of fitting for T = 0.5 s.
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negative stiffness, that is, softening, termed ‘generalized elastic-hardening-negative’ systems. First, the
use of an elastoplastic fit that is extended beyond the peak of the backbone to take into account the
early negative slope will be investigated (e.g., as recommended by the current Italian building code
[18]). Then, the higher fidelity three-segment or four-segment piecewise linear fit for backbones
with nontrivial softening behavior will be addressed.

For each considered curved backbone shape, 5% of critical viscous damping was used and
appropriate masses were employed to obtain a range of matching ‘reference’ periods of 0.2, 0.5, 1,
and 2 s. The concept of the ‘reference’ period, instead of the actual initial (tangent at zero
displacement) period, is introduced because of the highly curved shape of some backbones. In some
cases the backbones show a strictly localized significant change in the initial stiffness, resulting in
periods lower than 0.01 s. Because this initial stiffness disappears almost immediately for any kind
of loading history, a more representative reference period is required for each exact (curved)
capacity curve. The reference period (T herein) was defined as the secant period at 2% of the
displacement corresponding to the peak force capacity.

Actually, in the vast majority of the cases, there was insignificant difference between the initial
tangent period and the reference secant period. In all cases, both the exact and the approximate
system share the same mass, but because of the typically lower initial stiffness of the latter, the
‘equivalent’ period of the fitted curve tends to be higher than the ‘reference’ one, thus replicating
the approach followed in the conventional NSP methodology [1]. In addition, it is assumed that the
backbone curve itself suffices to capture via its shape all the in-cycle degradation effects (e.g.,
because of material nonlinearity, P-Delta effects, etc.) without needing to use approximate
coefficients (FEMA-356 [12]) or two separate analyses with and without P-Delta (FEMA-440 [14]).

To draw general conclusions that are independent of the cyclic hysteretic behavior assumed, two
distinct cyclic hysteretic rules were initially considered for each curved backbone and its fit. The
first is a standard kinematic strain hardening model without any cyclic degradation characteristics.
The second is a pinching hysteresis featuring cyclic stiffness degradation [19]. In all cases, when
comparing an original system with its approximate having a piecewise linear backbone, the same
hysteretic rules are always employed, so that both systems display the same characteristics when
unloading and reloading in time-history analyses. In other words, all differences observed in the
comparisons to follow can be attributed to the fitted shape of the approximate backbone, obviously
also capturing any differences because of mismatches between the exact (‘reference’), in the
following always referred to as T, and the ‘equivalent’ oscillator period.

When working with the backbone shapes and their fits, it is useful to avoid the appearance of
arbitrary scales and units of force F or displacement d. Thus, using the normalized counterparts, Fn

and dn, becomes attractive. Unfortunately, the concise definition of a yield point on curved (exact)
backbones is impractical, unless tied to some preselected fitting rules; therefore, it is not possible to
use a strength reduction factor, or equivalent ductility, without bias. Instead, it was chosen to
uniformly normalize force and displacement by the reference values of 1 kN and 0.10m,
respectively. These values correspond to the point where the generalized elastic–plastic backbones
reach their plastic plateau (e.g., Figure 1(a)) by becoming fully plasticized. More complex backbone
curves have been generated building upon the elastoplastic ones in a consistent manner; that is, by
replacing the individual bilinear uniaxial springs forming the overall SDOF system with trilinear or
quadrilinear ones sharing the same yield points. Thus, the above reference values generally represent
a point in the ‘hardening’ region, between near-elastic behavior and peak strength, where a nominal
yield point would normally reside.

For each exact shape of the SDOF’s capacity curve and for each period value, several piecewise
linear fit approximations have been considered according to different fitting rules. These include
typical code-suggested fits, for example, as laid out in Eurocode 8 [11], FEMA-356 [12], ASCE/SEI
41-06 [13], and the Italian Code (Circolare 617/2009, [18]). In addition, several bilinear, trilinear,
and quadrilinear fits, including solutions available in literature [15, 16, 20], have been investigated.
Different fitting criteria, for example, varying initial stiffness, yield point definition, and softening
slope, have been employed in an attempt to pinpoint the consistent characteristics that can define an
optimal or near-optimal fit. In all cases, the aim is to provide a standardized approximation that
delivers accuracy yet remains largely independent of the NSP target displacement, to offer a single
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representation of the static pushover curve for a wide range of limit-states considered. Choosing among
such candidate fits necessitates a precise comparison on the basis of their nonlinear dynamic response.
Thus, as mentioned, IDA will be employed.

2.2. Performance-based comparison via incremental dynamic analysis

Incremental dynamic analysis is arguably the most comprehensive analysis method available for
determining the seismic performance of structures. It involves performing a series of nonlinear
dynamic analyses by scaling a suite of ground motion records to several levels of intensity,
characterized by a scalar IM, and recording the structural response via one or more EDPs. The
results typically appear in terms of multiple IDA curves, one for each record, plotted in the IM
versus EDP space. These can be in turn summarized into the 16%, 50%, 84% fractile curves of EDP
given IM (EDP|IM) or, equivalently [21], as the practically identical 84%, 50%, 16% fractile curves
of IM given EDP (IM|EDP). The summarized curves thus provide the (central value and the
dispersion of the) distribution of EDP seismic demand given the IM intensity of the earthquake or,
vice versa, the distribution of a structure’s IM-capacity that a ground motion’s intensity should reach
to achieve the given value of EDP response.

To perform IDA for each exact and approximate oscillator considered, a suite of 60 ground motion
records was used, comprising both horizontal components from 30 recordings from the Pacific
Earthquake Engineering Research (PEER) database [22]. They are all characterized by relatively
large moment magnitude (between 6.5 and 6.9) and moderate distances of the recording site from
the source (15–35 km), all recorded on firm soil and bearing no marks of directivity. Using the ‘hunt
and fill’ algorithm [21], 34 runs were performed, per record, to capture each IDA curve with
excellent accuracy. The IM of choice was Sa(t), the 5% damped elastic spectral acceleration at the
period t of the oscillator, this being the reference period for the exact systems or the equivalent for
the fitted ones. The oscillator displacement d (or its normalized counterpart dn) was used as the
corresponding EDP, being the only SDOF response of interest for NSP.

Once the IM and EDP are decided, spline or linear interpolation [21] allows the generation of a
continuous IDA curve from the discrete points obtained by the 34 dynamic analyses for each ground
motion record. The resulting 60 IDA curves can then be employed to estimate the summarized IDA
curves for each exact and approximate pair of systems considered. Still, to be able to compare an
exact system with reference period T with its approximation having an equivalent period Teq, it was
necessary to have their summarized IDA curves expressed in the same IM. In this case it is chosen
to be Sa(T), that is, the spectral ordinate at the reference period of the curved (exact) backbone
oscillator. Thus, while the approximate system IDA curves are first estimated as curves in the Sa
(Teq) – d (or dn) plane, they are then transformed to appear on Sa(T) – d axes. This is achieved on a
record-by-record basis by multiplying all 34 Sa(Teq) values comprising the i-th IDA curve
(i= 1,2,. . .,60) by the constant spectral ratio [Sa(T)/Sa(Teq)]i that characterizes the i-th record [23].

The error is evaluated for every value of displacement in terms of the relative difference between the
two systems’ median Sa-capacities, both evaluated at the reference period T of the exact system

e50 dnð Þ ¼ Sfita;50 dnð Þ � Sexacta;50 dnð Þ
Sexacta;50 dnð Þ (1)

Alternatively, one could use the relative error in the median displacement response given the level of
spectral acceleration

e50 Sað Þ ¼ dfitn;50 Sað Þ � dexactn;50 Sað Þ
dexactn;50 Sað Þ (2)

Similarly, the same definitions can be used to estimate the errors for different demand or capacity
fractile values, for example, 16% or 84%, or even for the dispersion in response or capacity, which,
assuming lognormality, can be defined as one half the difference between the corresponding 84%
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and 16% values. Thus, two different ways of measuring the discrepancy between IDA curves are
available, for example, for the two median IDA curves shown in Figure 1(b). In one case ‘horizontal
statistics’ are employed, working with the median EDP given IM, and in the other case ‘vertical
statistics’ of IM given EDP (with compliments to Professor H. Krawinkler for these very descriptive
terms). As Vamvatsikos and Cornell [21] have shown, the median IDA curve is virtually the same,
regardless of how it is calculated, while, as discussed earlier, the 16%, 84% fractiles are simply
flipped. In addition, although there might be differences in the error estimates using these two
different methods, they are only an issue of scale. Figures 2(a) and (b) compare the two error
quantification methods for the median IDAs shown in Figure 1(b) (an example of generalized
elastic–plastic behavior). The observed trends are actually the same, but simply inverted: obviously,
an overestimation in response becomes an underestimation in capacity and vice versa.

Why then should one method be preferred over the other? There are three important reasons that
make the IM-based method (IM|EDP) a more attractive solution. First, parameterizing the error in
terms of the displacement response simplifies its visualization because displacement is directly
mapped to specific regions of the oscillator force-deformation backbone. Thus, it is possible to see
directly in Figure 2(b), when it is compared vis-à-vis Figure 1(a), whether it is the ‘elastic’ or the
‘postelastic’ part that is causing the accumulation of error. Figure 2(a) is much more difficult to
understand, especially if more complex backbones, than the ones used here, are considered. Second,
comparing the exact versus the fitted equivalent system on the basis of Sa-capacity, links directly
to comparison in terms of seismic performance, as expressed by the mean annual frequency
(MAF) of violating limit-states defined by the oscillator displacement [24]. An over-estimation/
under-estimation of Sa-capacity maps to a consistent (although not commensurable) under-
estimation/over-estimation of the MAF of limit-state exceedance, provided that the difference
between the reference and the equivalent period is not overly large. Finally, when collapse enters the
problem it is obvious that the error in displacement may easily diverge when, at a given intensity
level, one system has collapsed, while the other has not. On the contrary, this is never a problem
for the Sa-based error. These are all compelling reasons to recommend only the Sa-based comparison
for general use.

As a final note, it should be stated that when applying to actual NSP, there are many factors that will
determine the final error. Thus, the error found herein, either represented in Sa or in displacement terms,
is only indicative of the magnitude of the overall error that would be observed in NSP of a given
structure. Other details, based on the nature of the structure itself will often matter more. Still, the
error estimated here is an accurate measure of the quality of the fit itself, and it will allow selecting
the one that best fits any given backbone curve and minimizes the contribution of this source of
error to the overall results.
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(grey line) as introduced by the bilinear fit in Figure 1(a). It is expressed on the basis of (a) response given
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3. BILINEAR FITS FOR NONSOFTENING BEHAVIOR

Bilinear elastic–plastic or elastic-hardening fits are the fundamental force-deformation approximations
employed in NSP guidelines. The simplicity of the bilinear shape means that the only need is to
estimate the position of the nominal ‘yield point’ and select a value for the constant postelastic
stiffness. Eurocode 8 [11], following the original N2 method [1], suggests an elastic–plastic
idealized backbone based on the balancing of the area discrepancy above and below the fit,
optionally using an iterative procedure. Federal Emergency Management Agency (FEMA)
documents [12, 14] generally employ a bilinear elastic-hardening curve up to the target point.
Although a third softening segment was also considered indirectly by FEMA-356 [11], for demand
estimation, FEMA-440 [13] and consequently ASCE/SEI 41-06 [12] only use it to limit the
allowable value of the R-factor to protect against global collapse. In all cases, the idealized
elastic-hardening shape is fitted through an iterative procedure: the nominal yield point and the
post-yield slope are selected to achieve a balance of the misfit areas above and below the capacity
curve up to the target displacement, while also requiring that the elastic segment remains secant at
60% of the nominal yield strength.

To develop an improved bilinear fit, the fitting of the initial ‘elastic’ segment is investigated
separately and then the postelastic non-negative stiffness part is added. Generalized elastic–plastic
systems will be first studied, where the stiffness becomes zero beyond a displacement of 0.10m,
followed by generalized elastic-hardening backbones were the post-yield stiffness is positive. In all
cases the target is developing a standardized fitting rule that performs well for a continuum of
limit-states in the non-negative stiffness region.

3.1. Elastic–plastic fits

First, elastoplastic bilinear fits are considered for a family of generalized elastic–plastic capacity curves
that exhibit a stiffness gradually decreasing with deformation, starting from the initial elastic and
reaching zero slope. The shapes are mainly characterized by the rate and magnitude of the changes
in stiffness with increasing displacement. Figures 3(a) and (b) give an example of the shapes
employed and emphasize two opposing cases. The first (Figure 3(a)) is not characterized by
significant curvature, while the second (Figure 3(b)) shows a significant change in slope that can be
representative of the behavior of a model that accounts for uncracked stiffness (e.g., for RC or
masonry structures) or displays progressive yielding of elements.

Three basic fitting rules are compared: (a) the ‘FEMA-style’ fit (60% fit); (b) the ‘EC8-style’ fit
using a simple area-balancing criterion (equal area); and (c) the 10% fit, defined so that the
intersection between the capacity curve and the fitted elastic segment is at 10% (instead of 60% for
the ‘FEMA-style’ fit) of the maximum base shear. The latter is a simple standardized rule that has
been derived from extensive testing to better (near-optimally) capture the early seismic behavior. In
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Figure 3. Comparison of generalized elastic–plastic capacity curves and their corresponding fits having
(a) insignificant versus (b) significant changes in initial stiffness. Note: 0.1m displacement becomes

1.0 normalized.
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all three cases the post-yield linear segment is chosen to match the exact plastic-plateau. Strictly
speaking this marks a slight deviation from the actual FEMA fit, which stipulates a variable
postelastic segment depending upon the target displacement and the area-balancing rule. Still, our
approach may be thought of being representative of the code-mandated fit for a target displacement
deep into the plastic plateau.

Figure 3(a) shows that when the capacity curves are not characterized by significant stiffness
changes, the three fits are very similar to each other. They differ significantly, however, when the
initial stiffness diminishes rapidly, as in Figure 3(b). To investigate the differences between the three
fitting rules when applied to the two different backbones, IDA is performed for each of the actual
and approximate SDOF systems for a range of periods. Figure 4 shows the comparison in terms of
the normalized difference in the median Sa-capacity (Equation (1)) for T equal to 0.2 and 1.0 s.
Obviously, the shape of the original backbone has a significant impact. In all cases, the error
increases with curvature while its maximum always appears at the earlier backbone segments.
Curiously, the 10% fit leads to a remarkable decrease in the error for any deformation level, even
for the highly curved shape of Figure 3(b) where it clearly violates any notion of equal area
(or equal energy) that seems to be prevalent in current guidelines. It leads to a slightly
nonconservative estimation of the capacity for displacements before the full plasticization (for dn up
to 1) and only for short-period systems, T= 0.2 s. In addition, even in case of highly-curved
backbones (Figure 4(b)) only a 10% underestimation appears at most. Conversely, code approaches
are always conservative for all the displacement levels and all the shapes considered, but at a cost of
almost 20%–40% underestimation of capacity when high curvature is present. The trends identified
are generally confirmed for all other periods considered. As noted previously, such conclusions are
mirrored when operating on demands (e.g., via Equation (2)) rather than capacities. Thus, for
example, code fits are found to cause a significant (conservative) overestimation of displacement
demand at all levels of intensity in comparison with the near-optimal 10% fit.
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Figure 4. The relative error in the median Sa-capacity of the 10%, 60% and equal area fits, when applied
to the capacity curves of Figure 3. (a) and (c) insignificant versus (b) and (d) significant changes in

initial stiffness.
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To verify the above observations, a sample of five different generalized elastic–plastic shapes (see
Figure 5(a)) was also considered for each of the two hysteretic rules described in Section 2, and
shown in Figure 5(b). Figure 6 display the statistics of the relative error on the median Sa-capacity
evaluated at T= 0.2 and 1.0 s for the proposed 10% fit versus the conventional FEMA-style 60% fit.
The bias (computed on median response) is evaluated up to dn = 2 (roughly a ductility of 2), where
most of the significant differences appear. The cyclic hysteretic rules were found to be relatively
insignificant, because the magnitude of the error depends primarily on the shape of the fitted
backbone (see also Ref. [15]); this result has also been confirmed for other types of backbones and
essentially frees us from the problem of having a hysteresis-dependent optimal fit. Hysteresis aside,
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Figure 5. (a) Monotonic backbones and (b) the two hysteretic rules considered for the generalized elastic–
plastic systems, resulting in a sample of ten generalized elastic–plastic systems.
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Figure 6. The relative error in the median Sa-capacity for the 10% and 60% fit, for a reference period of
T= 0.2 and 1.0 s, computed for 10 generalized elastic–plastic systems, represented by the grey dotted lines.
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all the previously drawn conclusions are confirmed. The 10% fit enjoys an insignificant bias, on
average, for all the periods considered and its error never exceeds 20%. FEMA-style fits (60% fit),
and similarly EC8-style approximations, again show a strictly negative, that is, conservative, bias of
20% or even 60%, depending on the shape of the original backbone, most of which is concentrated
at the low displacement range. However, if the target displacement falls in this region, a strict
application of the code guidelines would reduce the latter effect because they call for a more
localized fit.

The above stated results must still be viewed with caution whenever the equivalent ‘fitted’ and the
reference ‘exact’ period (T) differ significantly [24]. Because the 10% rule, by nature, maintains a close
match to the actual period, our conclusions regarding its excellent performance remain robust. On the
other hand, the code-based fits may result to disproportionately large equivalent periods for
highly-curved backbones. Then, the results of a more accurate MAF-based performance comparison
might differ from the Sa-based results discussed above depending on the nature of the seismic
hazard. Actually, it is possible that employing a code-based fit for NSP assessment may prove to be
unconservative because of this effect. For example, if using a uniform-hazard spectrum with
significant differences between short and long-period hazard, the 20%–40% conservative bias
predicted earlier can be nullified or reversed. This restriction should be kept in mind for all
comparisons in the following sections.

Error comparisons for the Sa-capacity (record to record) dispersion are not shown because all fits
generally achieve equally good estimates. Of course, differences appear in the region preceding the
nominal yield point of each approximation. Therein the fitted system will predict no dispersion,
being essentially elastic and perfectly predicted by Sa, whereas the actual one shows some small
variability because of early inelasticity. This is to be expected and it cannot weigh in favor of one fit
over another.

Summing up, it can be stated that capturing the initial stiffness of the actual backbone is of primary
importance, as suggested also in [9, 10]. Existing guidelines fail to achieve this for highly curved
backbones, leading to biased results that may become overly conservative. Thus, the optimal fit
should capture, as close as possible, the initial stiffness of the backbone, being careful to avoid
unreasonable estimates for initially ultra-stiff systems that quickly lose their initial properties. Thus,
fitting the ‘elastic’ secant at 5% or 10% of the maximum base shear, as opposed to 0.5% or 1%, is
considered a robust strategy that delivers excellent results.

Despite solid numerical verification, the above findings viewed against Figure 3(b) may become
puzzling because the near-optimal fit does not resemble the curved backbone. This seems to violate
a fundamental ‘rule’, where fitting should be ‘close’ to be accurate. In spite of our findings above,
such intuition is not in danger. As results show (e.g., see also [9], Appendix C), when using more
than two linear segments to fit the non-negative curved backbone, then indeed higher fidelity in
capturing the backbone shape is possible and the accuracy increases, as long as the initial stiffness
(and period) is sufficiently represented. Thus, when utilizing better and better discretization, things
become indeed consistent with our current views: being closer to the actual curve works best. The
problems appear when working with a limited set of linear segments; the indiscriminate use of
area-balancing leads us to believe that the ‘area under the curve’ holds the same meaning for an
elastic, a hardening or (later on) a softening segment. In particular, the reason why the 60% fit is
inferior to the 10% fit (e.g., Figure 3(b)) is simply because misrepresenting the initial stiffness has
very important implications for seismic response; much more important than misrepresenting the
total area under the curve, as the 10% fit does. Therefore, the proposed near-optimal fitting rules are
simply a product of compromise driven by the fact that R–m–T relationships currently exist only for
simple shapes.

3.2. Elastic-hardening fits

The second type of approximation investigated is the bilinear elastic-hardening fit for a family of
shapes characterized by a generalized elastic-hardening behavior. Only the pinching hysteretic rule
was considered, given the insignificant differences observed earlier when compared with the
kinematic hardening. Each backbone investigated is characterized by different curvatures and final
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hardening stiffness, allowing a wide coverage of the typical shapes that can be obtained considering
different structural behaviors and modeling options.

When attempting to fit such shapes by a bilinear, determining the post-yield segment often involves
some kind of optimization to better fit the curved shape. Guidelines, such as EC8 [11] or ASCE-41 [13]
prescribe the graphical method of balancing the area discrepancy above and below the fitted line, or,
equivalently, of balancing the area enclosed by the fitted with the area enclosed by the exact curve.
While easy to apply graphically, area-balancing is an ill-defined criterion that can yield mixed
results: consider two coincident linear segments where one, the ‘approximation’, is rotated by an
arbitrary angle (other than 90o) around the common center (Figure 7). Obviously, the rotated
segment always satisfies the area balancing rule as a valid approximation to the original. This is
rarely a problem when applying by hand, because engineers will intentionally make sure that the
fitted curve is also close to the exact by minimizing the absolute area discrepancy between the
curves as well. Actually, pure area minimization practically leads to the same result as the typical
engineering approach above. In the thought experiment of Figure 7, it produces a single solution,
because the absolute discrepancy is A +A= 2A and it becomes zero only when the fitted coincides
with the exact segment. Thus, area minimization is algorithmically and mathematically superior and
it will be our optimization criterion of choice for all discussions that follow.

In analogy with the previous subsection, two different backbones will be presented in detail. The
first (Figure 8(a)) is characterized by mild changes in the oscillator stiffness, in contrast to the
second (Figure 8(b)). The target displacement is assumed to be equal to 0.2m. The EC8 fit is not
applied because it is restricted to elastic–plastic approximations, which are clearly inferior for the
shapes shown in Figure 8. On the other hand, the ‘FEMA fit’ rule can be applied without problems,
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approximations of the exact horizontal segment, because the area discrepancy is always A – A= 0.
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Figure 8. Comparison of generalized elastic-hardening capacity curves and their corresponding fits having
(a) insignificant versus (b) significant changes in initial stiffness. Note: 0.2m displacement becomes

2.0 normalized.
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although, strictly speaking it might call for slightly different approximations depending on the value of
the target displacement. Still, the results and the corresponding conclusions remain the same in all
cases. The alternative fit proposed, based on the 10% rule, determines the initial stiffness at 10%
(instead of 60%) of the nominal yield shear defined in accordance with FEMA, while the postelastic
stiffness is determined by minimizing the absolute area discrepancy between the capacity curve and
the fitted line. In total, the proposed rule came out as the simplest standardizable rule with a
near-minimum error for this family of backbones. In fact, although many other alternatives were
considered, they are not shown for the sake of brevity. It suffices to say that capturing the initial
stiffness by a secant in the range of 5%–10% of the peak strength (or the nominal yield point)
remains the most important aspect of any successful fit. The definition of the nominal yield point is
made according to FEMA [12–14] provisions, thus the imposed intersection at 10% as an alternative
to the suggested 60% and the use of area-minimization represent the only differences with the
codified approach.

The results of the proposed and the FEMA fitting procedures applied to the example shapes appear
in Figure 8. Obviously, when the stiffness of the backbone is not characterized by abrupt changes in the
curvature (Figure 8(a)) both fits tend to be practically the same. Figure 9 shows the error introduced by
each fit, for both backbone shapes considered in Figure 8, in the cases of T= 0.2 and 1.0 s. In analogy
with the results presented for the elastic–plastic case, most of the error is concentrated at the beginning
of the backbone. For low changes in the stiffness (low curvature), it can be observed that the error is
negligible for both fits, while it becomes substantial for higher curvatures. In this case, the error
introduced by the 60% fit misrepresenting the initial stiffness is propagated throughout the results,
even to displacements deep in the nonlinear range, proving our statement that the area under the
curve does not hold the same importance everywhere. Capturing the initial stiffness is the key issue
in the fitting procedure, while the fitted hardening segment is an additional improvement. In fact,
replacing the hardening segment with a plastic plateau intersecting the actual backbone at the target
displacement (in this case 0.2m) gave quite satisfactory results, at least for the cases at hand.
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Figure 9. The relative error in the median Sa-capacity of the ‘FEMA fit’ and 10% fit, when applied to the
capacity curves of Figure 8: (a) and (c) insignificant versus (b) and (d) significant changes in initial stiffness.
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For further verification a family of four different shapes is considered, shown in Figure 10(a) where
only the pinching hysteretic rule is used (Figure 10(b)). In Figure 11 the relative errors in the median
Sa-capacity, are compared for T= 0.2 and 1.0 s. Again, the proposed fit leads to a small and relatively
unbiased error, which seldom exceeds 10%. In this case the sample of backbones considered for the
elastic-hardening case was smaller than the elastic-plastic case, but the robustness of the general
results, showing the same trends in both cases, supports the remarks.

It should be noted that the results of the FEMA approximation will improve if we refit appropriately
for each target displacement. Figure 12(a) presents such an example for the elastoplastic backbone of
Figure 3(b), where both the FEMA fit and the proposed 10% fit are compared by applying them not
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Figure 11. The relative error in the median Sa-capacity the 10% fit and ‘FEMA fit’, for a reference period
of T = 0.2 and 1.0 s, computed for 4 generalized elastic-hardening systems, represented by the grey

dotted lines.
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Figure 10. (a) The backbones and (b) the hysteretic rule considered for the generalized elastic-hardening
systems.
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once for the entire curve but rather refitting them for each target point separately over the range of 0 to
0.4m (or 0 to 4 in normalized terms). Two fit examples are provided for each fit rule in Figure 12(a).
From the error results in Figure 12(b) (in which dots represent the errors at the target displacement for
the two fitting rules), it becomes obvious that although both of the rules benefit by a custom-made fit,
the proposed rule retains its edge, typically halving the error of the FEMA fit.

4. MULTILINEAR FITS FOR SOFTENING BEHAVIOR

Fitting the negative stiffness part of the static pushover curve has lately become an option in NSP. In
some cases (e.g., Italian provisions [18]) an elastoplastic fit is simply extended to cover some portion of
the early negative stiffness range while in others (e.g. FEMA-440 [14]) an additional negative stiffness
linear segment is utilized. Until fairly recently, the negative-stiffness segment was typically employed
only indirectly either to achieve demand modification (FEMA-356 [12]) or to set a limit on the
allowable R-factor (ASCE/SEI 41-06 [12], FEMA-440 [13]) because of the lack of appropriate
R–m–T relationships. With the emergence of SPO2IDA, a set of R–m–T expressions that can provide
the distribution of nonlinear dynamic response for complex SDOF systems [15], it is now possible to
achieve for the entire range of displacements, up to and including collapse, direct seismic demand and
capacity estimation for trilinear or quadrilinear backbone approximations that include negative stiffness.

4.1. Extended elastoplastic fits for generalized elastic-hardening-negative systems

The recent Italian seismic code [18] suggests that elastoplastic systems with extended plateaus may be
used to capture negative-stiffness behaviors up to a 15% loss of the peak base shear capacity.
Specifically, the Italian code is essentially a derivative of the FEMA-356 [12] rule where a
60%-secant defines the initial stiffness and an area-balancing criterion is used to get the plastic
plateau, which may now be extended into the negative stiffness range. Obviously, the yield strength
of such a fit is always lower than the peak strength of the exact backbone.

To verify the feasibility of such an approach, a direct search was undertaken by investigating an
array of combinations of different plateau levels and ‘elastic’ secant values in search of the optimal
solution. Out of the large number of candidate fits tried, only four will be showcased (Figure 13(a))
on a highly-curved backbone out of a family of twelve (Figure 13(b)). The initial stiffness is set at
10% or 60% of nominal yield strength combined with two plateau levels at 80% (L) or 100% (H) of
peak shear strength, respectively. The corresponding candidate rules are named 10%L, 10%H,
60%L, and 60%H, and their performance is shown in Figures 14(a) and (b) for 0.2 and 1.0 s,
respectively. Results show that capturing the initial part of the backbone is still important, because
the 10% fit maintains a consistently low-bias whenever there are significant curvature changes in the
exact backbone. Furthermore, foregoing any notions of area-minimization or balancing to match the

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

exact
H10% fit
FEMA fit 
δ

target

(a)

0 1 2 3 4
−60%

−40%

−20%

0

+20%

+40%

+60%

displacement δ (m) normalized displacement, δ
n

no
rm

al
iz

ed
 fo

rc
e,

 F
n

m
ed

ia
n 

S
a 

er
ro

r,
 e

50
(δ

n)

10% fit
FEMA fit

(b)

Figure 12. (a) A sample of alternate fits for target displacements of 0.1 and 0.4m. (b) The fitting error for a
properly executed FEMA-fit [12, 13] versus the proposed 10% fit for a reference period of T = 1.0 s for target

displacements up to 0.4m (4.0 normalized).
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peak point instead (H versus L fits), is always beneficial. The Italian fit rule will always have a plateau
height between 80% and 100% therefore it displays a performance right between the 60%H and 60%L
cases, in general showing a 20%–40% conservative bias. Although only the results for pinching
hysteresis are shown herein, our conclusions persist if kinematic strain is employed instead.

The sample family of 12 backbones, selected for their diversity of shape (Figure 13(b)) was also
tested for the two opposing rules of 60%L and 10%H. Figure 15 displays the relative median
Sa-capacity errors plotted against a displacement axis that has been normalized for each backbone
separately to ensure that the peak (p) and the ultimate (u) displacement points are aligned. The
results verify that the 10%H fit is an unbiased approach with robust performance, at least up to the
point where the structure loses about 20% of its maximum strength. Consequently, it makes sense to
suggest that an optimized rule should forego any strict area-minimization (or balancing)
considerations in favor of accurately capturing the maximum base shear strength. Failing to follow
this approach, the Italian code rule was, again, found to be generally conservative, in analogy with
other code fits. On the other hand, the limit that it enforces when extending the plastic plateau finds
a solid confirmation in the results; in fact, none of the bilinear fits considered can adequately
simulate the softening behavior beyond 20% shear loss, because they would result in a systematical
unconservative underestimation of the actual response.

4.2. Multilinear fits of generalized elastic-hardening-negative systems

It is easy to recognize that if the softening behavior is characterized by mild changes in the negative
slope, any negative stiffness segment that links the peak point with any other specific point in the
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Figure 13. (a) An example of generalized elastic-hardening-negative capacity curve having significant
changes in initial stiffness and its corresponding fits, (b) the backbones considered for the generalized

elastic-hardening-negative system sample.
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Figure 14. The relative error in the median Sa-capacity of the 10%L, 10%H, 60%L, and 60%H fits for (a)
T = 0.2 s and (b) T = 1.0 s, when applied to the capacity curve of Figure 13(a).
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softening branch (such as 60% of the nominal yield strength suggested in ASCE/SEI 41-06 [13]) will
allow a reliable fit that captures softening behavior. The difficulties in determining a single reliable
slope for the softening branch arise when the capacity curve is characterized by significant changes
such as a steep segment followed by a milder one or a milder slope followed by a steeper one and
any combinations of the two. Such phenomena, while rare in the hardening range, can appear quite
frequently in the softening range, thus, typically complicating the fit.

A wide family of capacity curves with nontrivial softening shapes is employed to establish a reliable
fitting criterion independent from the specific shape considered. In addition, a large number of
competing fitting-rules was considered of which only the most promising will be shown. Figures 16(a)
and (c) show two examples of generalized elastic-hardening-negative backbones that differ in two main
aspects: the first (Figure 16(a)) is characterized by a nearly linear initial elastic part with a somewhat
steep–mild (i.e., first steep then mild) trend in the softening segment; the second one (Figure 16(c)),
conversely, is characterized by significant curvature in the elastic-hardening part of the backbone and a
mild–steep trend in softening. To provide a reference basis for all three fits attempted, the prepeak part
of the backbone is approximated according to the optimal rule of Section 3.2, that is, using a 10% rule
with area-minimization for the hardening segment that terminates at the peak strength. To determine
the softening segment, which extends from the peak point to the ultimate, three different approaches
are considered: (a) the first, termed ‘secant’, employs the slope linking the peak point with the ultimate;
(b) the second, termed ‘Han et al.’, which follows the graphical approach suggested in [20], provides as
softening slope the bisector between the peak-to-ultimate point slope and the slope at the end of the
backbone; (c) the third, termed ‘balanced’, uses area-minimization to fit the descending segment,
utilizing a negative slope and, at times, a horizontal residual strength segment. The latter is only added
when it can help achieve a closer fit, typically being needed for steep–mild cases. In all cases, the fit is
terminated at the ultimate displacement, if necessary by assuming a vertical drop to zero strength. The
errors introduced by each fit are shown in Figures 16(b) and (d) for T=1.0 s. For the steep–mild case
(Figure 16(b)), the balanced and the secant fit are clearly the best, with the former being slightly on the

p u
−60%

−40%

−20%

0

+20%

+40%

+60%

normalized displacement, δ
n

normalized displacement, δ
n

m
ed

ia
n 

S
a 

er
ro

r,
 e

50
(δ

n)

normalized displacement, δ
n

normalized displacement, δ
n

m
ed

ia
n 

S
a 

er
ro

r,
 e

50
(δ

n)
m

ed
ia

n 
S

a 
er

ro
r,

 e
50

(δ
n)

m
ed

ia
n 

S
a 

er
ro

r,
 e

50
(δ

n)

mean(a) T=0.2s, 60%L

p u
−60%

−40%

−20%

0

+20%

+40%

+60%
mean(b) T=0.2s, 10%H

p u
−60%

−40%

−20%

0

+20%

+40%

+60%
mean(c) T=1.0s, 60%L

p u
−60%

−40%

−20%

0

+20%

+40%

+60%
mean(d) T=1.0s, 10%H
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T = 0.2 and 1.0 s, computed for the capacity curves of Figure 13(b), represented by the grey dotted lines.
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conservative side. In the mild–steep case, the results of the balanced and the Han et al. approach are
practically indistinguishable, slightly outperforming the secant fit, (Figure 16(d)). Taking into account
numerous tests, not shown, it is the area-minimization fit that generally offers the best performance
across different shapes and periods. Still, it is not strictly optimal.

Curiously, all three fits are conservatively biased for almost the entire displacement range in the case of
Figure 16(c). They were found to be even more so for extreme steep–mild behavior in Figure 17(a). In
both these highly curved backbones, a linear softening segment, or a softening-residual segment
combination that would produce near-zero error would need to be high above and to the right of the
actual backbones, clearly enveloping them in the negative stiffness range. Apparently, the curvature in
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Figure 16. Generalized elastic-hardening-negative capacity curve having steep–mild (a) and mild–steep
(c) negative slope and the relative median Sa-capacity errors of the secant, Han et al. and balanced fits

for T= 1.0 s.
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Figure 17. A generalized elastic-hardening-negative capacity curve having extreme steep–mild negative
slope and its corresponding optimized fit, (a) the curve and (b) relative median Sa-capacity errors

for T= 1.0 s.
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the shape of the actual backbone has a protective effect on the system that cannot be replicated by a linear
segment and cannot be easily captured in a practical rule. A possible explanation is that typical ground
motion records (e.g., non-pulse-like) produce most of the damage in just one or two large pushes
within the post-peak negative stiffness range. Perhaps the change in stiffness, and correspondingly in
the tangent period, take the edge off any large nonlinear excursion that can proceed unchecked in a
constant-stiffness linear segment. Especially for the extreme steep–mild case of Figure 17(a) this effect
is so strong that even using a residual plateau that starts at the intersection of the two different slopes
and maintains the same strength until the ultimate displacement is not enough to reach a fully unbiased
solution (Figure 17(b)). Nevertheless, the latter amendment to the area-minimization rule was found to
be the only simple practical rule that can reliably reduce the bias in all such cases to an acceptable level
of 20%–30%. Therefore, this will form the final part of our ‘optimal’ practical fitting rule.

5. DEFINITION AND TESTING OF THE NEAR-OPTIMAL FIT

Combining all previous results, it is now possible to propose an ‘optimal’ fitting rule that, while not
strictly optimized, manages to maintain low error and low bias and can be standardized to be
applicable to a wider range of capacity curve shapes than the ones investigated. Essentially, it is
based on fitting the distinct regions of structural behavior that may typically be observed in realistic
pushover curves, namely ‘elastic’, ‘hardening’, and ‘softening’ (see Ref. [25]). These will be
approximated by linear segments defined by three specific points, namely the nominal yield (y), the
nominal peak strength (p), and the ultimate displacement (u) point:

1. The ‘elastic’ prenominal-yield part is captured by a secant linear segment with initial stiffness
matching the secant stiffness of the capacity curve at 5%–10% of the peak or the nominal yield
base shear. Using the peak is preferable as, without any loss of accuracy, it allows a fast
estimation without needing multiple iterations.

2. The ‘hardening’ prenominal-peak non-negative stiffness segment is chosen to terminate at the
maximum base shear while minimizing the absolute area difference (formally the integral of
the difference) of the fitted and the exact curve between the displacements corresponding to
the nominal peak and the nominal yield points, as defined by the intersection of this segment with
the preceding and succeeding one.

3. The ‘softening’ post-nominal-peak negative stiffness segment is also defined by minimizing the
absolute area difference between the fitted and the exact curve in the negative stiffness region. It
may be further augmented by a fourth, residual plateau segment in two cases: (i) if the negative
stiffness region is characterized by steep slopes that partway down grow significantly milder, a
plateau should be drawn at the intersection of these two distinct zones; (ii) if instead the negative
stiffness progressively grows steeper, then a residual should be used only if found to improve the
fitting according to the area-minimization rule.

To properly assess the error induced by the proposed rules, a new sample of curves is needed. These
should not be involved in deriving the rules to achieve objectivity by blind testing. Forty capacity
curves were randomly generated, mostly considering relatively highly curved shapes with nontrivial
softening behavior, thus including either steep–mild or mild–steep negative slopes combined with
various rates of change in the initial stiffness, as shown in Figure 18(a). Essentially, they are complex
shapes created by varying the parameters of the uniaxial springs composing each SDOF system that are
meant to provide a severe test for the proposed rule. Each curve was fitted according to the ‘optimal’
fitting rule, resulting in the 40 fits shown in Figure 18(b). The relative median capacity errors appear in
Figure 19 for 0.2, 0.5, 1.0, and 2.0 s. To facilitate comparison, the displacement axis has been
nonhomogeneously normalized to match the three characteristic points (y, p, u) of the exact pushover
curves. Typical applications of NSP would normally fall within the y and p points. The mean value of
the error never exceeds 20% and the trend is always conservative except for the first part of the
hardening behavior (between y and p points) when low period values are considered (see Figure 19(a)).
Still, it should be noted that different shape backbones will result to different errors, in many cases
lower than the ones shown because of the deliberate high curvature of the tested curves.
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In Figure 20 normal probability plots of the errors are shown at the three characteristic points for
T= 0.2 and 2.0 s and for all the 40 curves considered, showing a strong resemblance to a normal
distribution. Table I shows mean and standard deviation of the relative errors at the three
characteristic points y, p, and u, respectively for T= 0.2, 0.5, 1.0, and 2.0 s; the data shows that the
distributions are generally conservative (negative errors). Some slightly unconservative bias can be
found only at the yielding point (y) for T= 0.2 s. There is also some significant conservative bias
(red points with negative errors in Figure 20) close to the ultimate point (collapse) that can be
attributed to the abundance of severe steep–mild cases in the tested sample.

A Kolmogorov–Smirnov hypothesis test [26] was performed on the sample of 40 relative errors at
each of the three characteristic points (y, p, and u) for each of the four periods. At the 95% significance
level this cannot reject the null hypothesis that they follow normal distributions with the means and
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Figure 18. Blind testing sample of (a) capacity curves and (b) their optimized fits.
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Figure 19. The statistics of the relative error in the median Sa-capacity for T= 0.2, 0.5, 1.0, and 2.0 s, in the
case of elastic-hardening-negative SDOF systems considered for blind testing of the optimized fit.
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standard deviations shown in Table I; the only exception is the ultimate (u) point for T= 0.2 s
(Figure 20(a)) because of some large tail values. Using such results, it is possible to have at least
some general sense of the epistemic uncertainty introduced by the optimized piecewise linear
approximation at the three different ranges of behavior. It goes without saying that the results for
current code-based fits are far more dispersed and heavily biased towards the conservative range.

6. CONCLUSIONS

A near-optimal piecewise linear fit is presented for static pushover capacity curves that can offer
nearly-unbiased low-error approximation of the dynamic response of nontrivial systems within the
framework of nonlinear static procedures. Incremental dynamic analysis is used to rigorously assess
different fits on an intensity-measure capacity basis, allowing a straightforward performance-based
comparison that is largely independent of site hazard. A fitting rule emerged that is based on using
appropriate linear segments to capture the three typical ranges of structural behavior appearing in
realistic pushover curves: (a) ‘elastic’ where the initial stiffness should always be captured by a
secant at 5%–10% of the peak strength regardless of any area-balancing or minimization rules;
(b) ‘hardening’, where it is important to maintain the actual peak shear strength but not necessarily
the corresponding displacement; and (c) ‘softening’, where the ultimate displacement should always
be matched while the linear segment itself should closely fit the negative stiffness pushover curve.
In the latter case, if a significant lessening of the slope is observed with increasing displacements
then an additional enveloping residual-plateau segment should be employed.

In addition, it was found that simple elastoplastic fits capturing the initial stiffness and the maximum
strength may serve as very simple approximations in most practical situations even venturing into the
early negative stiffness region. On the other hand, all codified approaches tested generally err on the
conservative side, although high changes in initial stiffness may reverse this finding for certain sites. In
general however, the error in code fits always increases disproportionately when encountering
significant changes in stiffness, representative of models that account for uncracked stiffness or the
gradual plasticization and failure of elements. In particular, the area-balancing fitting process prescribed
by most codes is often the culprit. Its indiscriminate use ignores the strong beneficial effect of
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Figure 20. Probability plot for normal distribution of the relative errors in the median Sa-capacity evaluated
at the three significant points y, p, and u for T = 0.2 s and T = 2.0 s.

Table I. Mean and standard deviation of the relative median error in Sa at the characteristic points y, p, u.

T= 0.2 s T= 0.5 s T= 1.0 s T= 2.0 s

y p u y p u y p u y p u

m 0.028 �0.013 �0.086 �0.030 �0.049 �0.143 �0.096 �0.053 �0.163 �0.060 �0.023 �0.122
s 0.060 0.066 0.182 0.044 0.071 0.218 0.056 0.091 0.186 0.042 0.053 0.129
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backbone shape and curvature, invariably introducing bias. The proposed fit is found to significantly
reduce the error introduced by the piecewise linear approximation, offering a practical solution to
upgrade existing guidelines.
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