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The results of seismic hazard disaggregation can be used to assign relative weights to a given ground

motion record based on its corresponding magnitude, distance and deviation from the ground motion

prediction model (epsilon) in order to make probability-based seismic assessments using non-linear

dynamic analysis. In this paper, the implications of using the weighted ground motion records are

investigated in terms of the mean annual frequency of exceedance of the critical component-based

demand to capacity ratio in an existing reinforced concrete structure using both the peak ground

acceleration and the first-mode spectral acceleration as intensity measures. It is demonstrated how

site-specific seismic hazard disaggregation can be used in order to obtain the conditional probability

distribution for a relevant ground motion characteristic given the chosen intensity measure.

Distinguished by the amount of structural analysis required, two alternative non-linear dynamic

analysis procedures, namely the cloud and the stripes method are implemented. The weighted cloud

and the weighted stripes methods are then introduced as analysis procedures which modify the

structural response to the selected ground motion records by employing the information provided from

the seismic hazard analysis. It is demonstrated that the resulting annual frequencies based on weighted

records are comparable to those obtained by using vector-valued intensity measures, while requiring

less computational effort.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The seismic input selection represents one of the main issues
in assessing the seismic response of a structure through numerical
dynamic analysis [1]. In some cases, the records are selected to
have response spectra that approximate the uniform hazard
spectrum or other ‘‘design’’ response spectrum (e.g., [2–4]). In
general, it is reasonable to choose ground motion (GM) records
whose magnitude, distance, site conditions and fault mechanisms
are representative for the seismic hazard at the site of the
structure under consideration. This choice may be guided by the
disaggregation of the seismic hazard [5–7] for the site of interest.
However, once the set of records is chosen, there are several
techniques to evaluate the structural seismic response [8,9].

The choice of the GMs may be affected by the interface variable
used to measure the intensity of GM, known as the intensity
measure IM. According to the criteria proposed by Luco and
Cornell [10] a preferred IM is both ‘‘sufficient’’ with respect to the
GM characteristics and also ‘‘efficient’’. A sufficient IM renders the
ll rights reserved.
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structural response conditionally statistically independent of
other GM characteristics such as event magnitude, while an
efficient IM predicts the structural response with (relatively)
small record-to-record variability. Theoretically, careful record
selection is not essential if the IM is demonstrated to be sufficient
[11,12]. It has to be recalled that sufficiency of a specific IM

depends on the structure, the structural response parameters and
the GM characteristics. GM parameters such as site amplification
and/or directivity may prove particularly troublesome because
they may imply strong sensitivity of spectral shape to certain GM
parameters [13]. A useful strategy, in cases where the adopted
scalar intensity measure IM1 does not prove to be sufficient, is to
introduce an additional intensity measure, IM2. That is, one can
adopt a vector-valued IM¼[IM1,IM2], consisting of two scalar IM’s,
in order to render a more complete description of the GM
characteristics [13].

In this paper, an approximate method based on linear
regression is used in order to establish possible correlation
between the structural response conditional on the primary IM1

and the secondary IM2. Moreover, a weighting scheme based on
seismic hazard disaggregation is used, in the framework of the
scalar IM1, in order to adjust the structural response for possible
correlations with a candidate secondary IM2. This weighting
scheme can be implemented in non-linear dynamic analysis
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procedure for both wide range of GM intensities and also limited
range of GM intensities.

The efficiency of the weighting scheme is evaluated in terms of
seismic risk which is represented herein by the mean annual
frequency of exceeding the critical component demand to
capacity ratio. The seismic risk curves are obtained by adoption
of both scalar and vector-valued IM’s.
2. Probabilistic assessment based on non-linear dynamic
analysis

Adopting the performance assessment methodology developed
by the Pacific Earthquake Engineering Research (PEER) Center for
buildings in the framework of Performance-Based Earthquake
Engineering (PBEE) [14,15], a probabilistic performance-based
criterion for seismic assessment of existing structures can be
written as

lEDP rP0 ð1Þ

where lEDP refers to the (mean) annual frequency (MAF) of
exceeding a specified damage level1 expressed in terms of an
engineering demand parameter (EDP) and P0 the allowable
probability threshold for the assessment.2 In the framework of
PBEE, an intermediate parameter known as the intensity measure
IM is introduced in order to relate the characteristics of the GM
record to structural performance. The annual rate of exceeding a
specified limit state can be expanded, using the principles of
probability theory, with respect to the adopted (scalar) IM in the
following [15,9]:

lEDPðyÞ ¼

Z
PEDP9IMðEDP4y9xÞ9dlIMðxÞ9 ð2Þ

The first term in the integrand PEDP9IM(EDP4y9x) is the
conditional probability of exceeding the structural response
threshold y for a given value of IM¼x. This term is also known
as the structural fragility. The second term in the integrand is the
absolute value of the derivative of the annual rate of exceeding
IM¼x; this second term is known as the hazard for the adopted
IM. Ideally, the hazard function for the adopted IM is obtained
from the results of site-specific probabilistic seismic hazard
analysis (PSHA, see [17]).

The non-linear dynamic analysis procedures based on a limited
suite of GM records can be used to estimate the fragility term in
Eq. (2). Depending on the amount of structural analysis and also
on the range of limit states for which the performance assessment
is done, two alternative non-linear dynamic analysis procedures
are considered in this work, the cloud method and the stripes

method.
The cloud method [8] employs the linear least squares scheme

to the specified EDP given IM based on non-linear structural
response (cloud response) for a suite of GM records (un-scaled) in
order to estimate the conditional mean and standard deviation
of EDP given IM. The regression scheme is used to provide a
power–law estimate of the median EDP for a given IM. Moreover,
by assuming that the errors of the least-square estimate are
independent and identically distributed (i.i.d.) and assuming
1 It is desirable to express the performance objectives in terms of life-cycle

cost [16]. However, the focus of this work is on the ground motion record selection

for the purpose of estimating non-linear structural response. Therefore, the

performance objective is hereby stated in terms of an engineering demand

parameter instead of economic indices.
2 Note that in Eq. (1) it has been assumed that the numerical value for rate of

exceedance is close to that of the probability of exceedance; this is true for small

values of the exceedance probability representing very rare events, assuming a

Poisson occurrence model.
a Gaussian distribution for the logarithm of EDP given IM, the
PEDP9IM(EDP4y9x) term can be estimated using the Complemen-
tary Cumulative Distribution Function (CCDF)

PEDP9IMðEDP4y9xÞ ¼ GEDP9IMðy9xÞ ¼ 1�F
lny�Zðlny9xÞ
sðlny9xÞ

 !
ð3Þ

where Z(ln y9x) and s(ln y9x) are the conditional mean and
standard deviation of the logarithm of EDP given a specific IM

level, respectively.
The stripes method [9,8] provides the non-linear structural

response parameters for the suite of records that are scaled to
successively increasing IM levels: this is referred to as the stripe

response. Subsequently, the statistical properties of the stripe
response for various IM levels, calculated based on the response to
the suite of records, can be employed to obtain the probability of
exceeding a specified EDP level.

In the case where a vector-valued IM¼[IM1,IM2] consisting of
two scalar IM’s is adopted, the fragility term in Eq. (2) for the
annual rate of exceeding EDP¼y can be expanded with respect to
IM2 and re-arranged as following [18]:

lEDPðyÞ ¼

ZZ
PEDP9IM2 ,IM1

ðEDP4y9x,zÞfIM29IM1
ðz9xÞ9dlIM1

ðxÞ9 ð4Þ

The first term in the integrand is the conditional probability of
exceeding EDP¼y given IM1 and IM2 and the second term is the
conditional probability density function (PDF) for IM2¼z given
IM1¼x. Similar to the case regarding scalar IM, both cloud method
and stripes method can be employed in order to perform
probabilistic seismic risk assessments. In the cloud method, the
two-variable ordinary least squares scheme can be used to
estimate the statistical parameters for EDP conditional on both
IM1 and IM2 [11]. Also in this case, by assuming that the errors of
the multiple-linear least square estimate are independent and
identically distributed (i.i.d.) and assuming a Gaussian distribu-
tion for the logarithm of EDP given IM1 and IM2, the
PEDP9IM1 ,IM2

ðEDP4y9x,zÞ term can be estimated using the CCDF

PEDP9IM1 ,IM2
ðEDP4y9x,zÞ ¼ GEDP9IM1 ,IM2

ðy9x,zÞ ¼ 1�F
lny�Zðlny9x,zÞ

sðlny9x,zÞ

 !

ð5Þ

where Z(ln y9x,z) and s(ln y9x,z) are the conditional mean and
standard deviation of the logarithm of EDP, respectively, given
IM1¼x and IM2¼z. Alternatively, using the stripes method, the
simple linear least squares can be applied to the stripe response at
various IM1 level with IM2 as the independent variable [18].

In this work, both scalar and vector IM’s are studied. As scalar
IM’s, the peak ground acceleration (PGA) and the first-mode
spectral acceleration (Sa(T1)) are considered. As vector IM’s,
the pairs consisting of PGA and magnitude M [11], Sa(T1) and the
deviation from the GM prediction model epsilon (e) [13] are
considered. Epsilon is defined as the number of standard
deviations by which an observed logarithmic spectral acceleration
differs from the mean logarithmic spectral acceleration of a
ground-motion prediction (attenuation) equation. The equation
corresponding to this definition is:

e¼
lnSaðTÞ�m̂ln SaðTÞ

ŝln SaðTÞ
ð6Þ

where ln Sa(T) is the natural logarithm of the spectral acceleration
at a specified period T and m̂ln SaðTÞ

and ŝln SaðTÞ are, respectively, the
mean and the standard deviation as predicted by a ground motion
prediction relationship. In this work, e is calculated based on the
Sabetta and Pugliese [19] model for ground motion prediction. It
should be noted that epsilon is defined with respect to the



Fig. 1. (a) The tri-dimensional view of the scholastic building and (b) the central frame of the case-study building.
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unscaled record and will not change in value when the record
is scaled.

PGA has been widely used as the ground motion IM in the past.
The first-mode spectral acceleration Sa(T1) is verified to be a more
suitable choice of an IM, as it reflects the elastic response of a
single degree of freedom (SDOF) system with a period equal to the
first-mode period of the structure. However, Sa(T1) is unable to
reflect the effect of higher frequencies (higher modes in a
structure with several degrees of freedom) or lower frequencies
(severe non-linear behavior in the structural elements) or the
near-source effects (a single low-frequency pulse dominating
the ground motion record [20]). Ideally, one should use a
vector consisting of Sa(T1) and an IM related to the spectral shape
[11,21–24], for example the ratio R(T)¼Sa(T)/Sa(T1) [11], where
T is the second period whose spectral value is considered as
important to the structural response. It has been demonstrated
that epsilon introduced above may act as a proxy for the spectral
shape [13].

Moreover, as vector IM’s, Sa(T1) is paired with the spectral
acceleration at a period T2aT1, (Sa(T2)): as will be explained later,
T2 is the second period whose spectral acceleration is most
efficient in predicting structural response.
3 These post-peak values for moment and rotation are chosen rather

arbitrarily in order to avoid numerical in-convergence problems.
3. Structural model

As the case-study, an existing school structure in the city of
Avellino, Italy, is considered herein. Avellino is located in the
Irpinia region, where the 1980 Irpinia Earthquake with moment
magnitude (Mw) equal to 6.9 has taken place. The Irpinia region
was classified as seismic Zone II (intermediate seismicity with
design PGA on rock for the life safety limit state equal to 0.25 g)
according to the Italian seismic guidelines [25]. The design
seismic action considered in this study is that according to this
code, although it is now superseded by DM 29, 2008 [26]. The
structure consists of three stories and a semi-embedded story and
its foundation lies on stiff soil (category B according to Eurocode 8
[27]). For the structure in question, the original design notes and
graphics have been gathered. The building is constructed in the
1960s and it is designed for gravity loads only, as it is frequently
encountered in the post-second world war construction. In Fig. 1a,
the tri-dimensional view of the structure is illustrated; it can be
observed that the building is irregular both in plane and elevation.
The main central frame in the structure is extracted and used as
the structural model (Fig. 1b).

The columns have rectangular section with the following
dimensions: first storey: 40�55 cm2, second storey: 40�45 cm2,
third storey: 40�40 cm2 and fourth storey: 30�40 cm2.
The beams, also with rectangular section, have the following
dimensions: 40�70 cm2 at first and second floor and 30�50 cm2

for the ultimate two floors. It can be inferred from the original
design notes that the steel rebar is of the type Aq42, characterized
by a nominal minimum yield strength fy¼2300 kg/cm2

(225 MPa), and that the concrete has a minimum strength equal
to 180 kg/cm2 (18 MPa) [28]. However, the steel yield strength
and the concrete compression strength in the structural model are
taken equal to 3200 kg/cm2 (314 MPa) and 165 kg/cm2 (16 MPa),
respectively. These are mean values extracted from a statistical
survey of material properties in existing buildings constructed in
the 1960s [29,30].

The finite element model of the frame is constructed, using the
Open System for Earthquake Engineering Simulation (OpenSees)
software, assuming that the non-linear behavior in the structure
is concentrated in plastic hinges located at the element ends [31].
The plastic hinges can form both in beams and columns. Hinge
characteristics such as, yield and ultimate chord rotation and the
plastic hinge length are calculated from the semi-empirical
formulas provided in the Italian code [32] for existing buildings.
The concrete behavior is modeled based on the Mander–Priestly
[33] constitutive relation for un-confined concrete. The reinfor-
cing steel is assumed to have elastic–plastic behavior. The plastic
hinges take into account the interaction of flexural and axial
action and the flexural strength degradation (shear failure is not
considered in hinge modeling). As it regards the post-peak
behavior, it is assumed that the section resistance drops to a
value of the moment equal to one tenth of the ultimate moment
(M*) corresponding to a rotation value equal to two times the
ultimate value (y*), resulting in a tri-linear curve. The tri-linear
moment-rotation backbone curve is demonstrated in Fig. 2.3 The
P-Delta effects are included in the structural analysis. The
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structural damping is modeled based on the Rayleigh model and
is assumed to be equal to 5% for the first two modes. The small-
amplitude period for the first two vibration modes are equal to
0.73 and 0.26 s, respectively.

The performance objective is expressed in terms of a (scalar)
system EDP which reflects how far away the structure is from the
threshold of the limit state defined as EDP¼1 [34]

lLS ¼ lEDP41rP0 ð7Þ

The EDP can be defined as the ratio of system demand D to
system capacity CLS, (e.g., ratio of ymax to yCLS) or it can be defined
as a function of component demand and capacities, which is equal
to the one at the onset of failure. This latter formulation is
adopted herein based on the system reliability concept of cut-sets

[35]. In this work, the scalar global EDP, denoted by Y, is a critical
demand to capacity ratio defined as the demand to capacity ratio
of the strongest component of the weakest structural mechanism
Fig. 2. Schematic diagram of the typical tri-linear behavior characterizing the

rigid-plastic hinge.

Table 1
Selection A of ground motion records.

Record Mw FM Vs30 (m/s) ED

Basso Tirreno 6.0 Oblique ? 18

Valnerina 5.8 Normal ? 23

Camp. Lucano 6.9 Normal 529 16

Preveza 5.4 Thrust ? 28

Umbria 5.6 Normal 546 19

Lazio Abruzzo 5.9 Normal ? 36

Etolia 5.3 Thrust 405 20

Montenegro 5.4 Thrust 399 18

Kyllini 5.9 Strike slip 490 14

Duzce 1 7.2 Oblique 662 26

Umbria Marche 5.7 Normal 400 32

Potenza 5.8 Strike slip 494 28

Ano Liosia 6.0 Normal 411 20

Adana 6.3 Strike slip ? 39

South Iceland 6.5 Strike slip ? 15

Tithorea 5.9 Normal 665 25

Patras 5.6 Strike slip 665 30

Friuli Italy-01 6.5 Reverse 425 20

Friuli, Italy-02 5.9 Reverse 412 18

Fruili, Italy-03 5.5 Reverse 412 20

Irpinia, Italy-01 6.9 Normal 600 15

(average) 6.0 501 23
or cut-set [34]

Y ¼maxNmech

l ¼ 1 minNl

j ¼ 1

Djl

Cjl
ð8Þ

where Nmech is the number of considered cut-sets or potential
failure mechanisms and Nl the number of components taking part
in the lth cut-set. A cut-set is defined as any set of components
whose joint failure leads to system failure. Three types of
potential failure mechanisms (cuts-sets) are considered herein:
(a)
(km)
Ultimate chord rotation capacity in the external columns of a
storey;
(b)
 Ultimate chord rotation capacity in the central columns of a
storey and
(c)
 Yield chord rotation in the columns of a storey (a.k.a., soft
story mechanism).
The components of each mechanism are the column plastic
hinges involved in it. Shear failure has not been considered.
4. The suites of ground motion records and their properties

Two different suites, respectively, of 21 (Sel_A) and 20 (Sel_B)
GM records, all based on Mediterranean events, have been
selected for this study. They are all main-shock recordings
recorded on stiff soil (400 m/soVs30o700 m/s), which is con-
sistent with the soil-type for the site. The first suite of records is
taken from European Strong-Motion Database or ESD (http://
www.isesd.cv.ic.ac.uk/ESD/Database/Database.htm) (17 record-
ings) and Pacific Earthquake Engineering Research Next Genera-
tion Attenuation or PEER NGA Database (http://peer.berkeley.edu/
nga/flatfile.html) (4 recordings). The earthquake events have
moment magnitude (Mw) between 5.3 and 7.2, and closest
distances ranging between 7 and 30 km. This suite of records
has been chosen in order to cover a wide range of moment
magnitude values. The second suite of records, is selected from
the ESD. It consists of earthquake events with Mw between 5.9 and
7.2, and closest distances ranging between 0 and 71 km. This
second suite is chosen so that it covers a wide range of e values.
Tables 1 and 2 illustrate the GM recordings, their Mw, the fault
FD (km) PGA (g) Sa(T1) (g) e

16 0.15 0.17 �0.121

21 0.04 0.03 �0.529

13 0.16 0.31 �0.519

7 0.14 0.10 �0.244

19 0.21 0.02 0.230

28 0.07 0.05 �0.219

12 0.04 0.01 �0.518

? 0.07 0.09 �0.227

11 0.15 0.15 �0.231

13 0.13 0.18 �0.722

28 0.04 0.05 �0.334

29 0.10 0.08 �0.003

9 0.16 0.06 �0.308

30 0.03 0.05 �0.749

10 0.21 0.13 �0.344

? 0.03 0.02 �0.639

? 0.05 0.02 �0.184

21 0.35 0.35 0.168

18 0.21 0.08 0.110

21 0.11 0.21 0.034

18 0.13 0.30 �0.466

18 0.12 0.12 �0.277

http://www.isesd.cv.ic.ac.uk/ESD/Database/Database.htm
http://www.isesd.cv.ic.ac.uk/ESD/Database/Database.htm
http://peer.berkeley.edu/nga/flatfile.html
http://peer.berkeley.edu/nga/flatfile.html


Table 2
Selection B of ground motion records.

Record Mw FM Vs30 (m/s) ED (km) FD (km) PGA (g) Sa(T1) (g) e

Friuli 6.5 Thrust ? 42 34 0.06 0.22 �0.015

Friuli 6.5 Thrust ? 87 71 0.05 0.11 0.003

Camp. Lucano 6.9 Normal 472 48 33 0.11 0.25 �0.204

Camp. Lucano 6.9 Normal 529 16 13 0.16 0.31 �0.493

Kalamata 5.9 Normal 486 10 0 0.22 0.48 �0.231

Kalamata 5.9 Normal 399 11 0 0.24 0.48 �0.233

Umbria Marche 6.0 Normal 546 11 1 0.52 0.56 �0.216

Umbria Marche 6.0 Normal 450 38 27 0.09 0.17 0.062

South Iceland 6.5 Strike slip ? 7 6 0.63 0.54 �0.288

Duzce 1 7.2 Oblique 662 26 13 0.13 0.18 �0.893

Friuli 6.5 Thrust ? 42 34 0.09 0.25 0.031

Friuli 6.5 Thrust ? 87 71 0.07 0.12 �0.002

Camp. Lucano 6.9 Normal 472 48 33 0.14 0.26 �0.187

Camp.Lucano 6.9 Normal 529 16 13 0.18 0.31 �0.484

Kalamata 5.9 Normal 486 10 0 0.30 0.63 �0.120

Kalamata 5.9 Normal 399 11 0 0.27 0.51 -0.208

Umbria Marche 6.0 Normal 546 11 1 0.46 0.64 -0.156

Umbria Marche 6.0 Normal 450 38 27 0.10 0.18 0.065

South Iceland 6.5 Strike slip ? 7 6 0.51 0.74 �0.154

Duzce 1 7.2 Oblique 662 26 13 0.16 0.14 �1.004

(average) 6.4 506 30 20 0.22 0.35 �0.236

Fig. 3. (a) Acceleration spectra Sel_A and (b) acceleration spectra Sel_B.
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mechanism (FM), the velocity of propagation of the shear waves
(Vs30, symbol ‘‘?’’ indicates that the value is not available in the
database), epicentral distance (ED), fault distance (FD), peak
ground acceleration (PGA), spectral acceleration at the first mode
(Sa(T1)) and e values for each record of Sel_A and Sel_B,
respectively. It has to be noted that epsilon values of Sel_B are
all included in a range of values between �1.1 and 0.07.
The acceleration spectra for the original (un-scaled) records for
the two chosen selections, Sel_A and Sel_B, are plotted in Fig. 3a
and b, respectively.
5. The disaggregation of seismic hazard

In order to adopt a vector-valued IM for representing the GM
intensity in the seismic assessment outlines in Eq. (4), it is
necessary to obtain the conditional probability distribution for the
second IM given the occurrence of the original IM.

This section employs a site-specific seismic hazard analysis
performed based on the Italian seismic zonation (ZS9, areal
seismic zones, [36], Fig. 4) inside a Bayesian framework for
inference in order to obtain the conditional probability
distribution for magnitude m, distance r and the deviation from
the attenuation law e given the original IM adopted. As mentioned
earlier, the GM prediction relation adopted in this work is the
Sabetta and Pugliese relation [20].

It should be noted that the website of INGV (Istituto Nazionale
di Geofisica e Vulcanologia, Progetto DPC-INGV-S1, http://esse1.
mi.ingv.it) provides the results of site-specific seismic hazard
analysis based on the Italian seismic zonation, but only in terms of
PGA.

The seismic hazard can be disaggregated with respect to, for
example, magnitude using the Bayes theorem

f ðm9IMÞ ¼
f ðIM,mÞP

f ðIM9mÞf ðmÞ
¼

f ðIM,mÞ

f ðIMÞ
ð9Þ

Suppose that the site of interest is surrounded by areal seismic
zones. Using the total probability theorem, the term f(IM,m) can
be further expanded with respect to the seismogenic areas
surrounding the site, the distance r of the points within each
area to the site of interest and epsilon values

f ðm9IMÞ ¼
P

i

P
R

P
eaiIðIM9m,r,eÞf ðmÞf ðrÞf ðeÞ

f ðIMÞ
ð10Þ

http://esse1.mi.ingv.it
http://esse1.mi.ingv.it


Fig. 4. Seismogenic zonation ZS9; the different zones are identified by number;

the Campania region is highlighted by a gray polyline and the site of interest is

indicated by a pentagram.

Table 3
Parameters of those ZS9 seismic zones surrounding the Campania region.

Zone l b-value ml mu

920 0.0600 1.9600 4.7600 6.1400

922 0.3700 2.0000 4.7600 5.4500

923 0.1400 1.0500 4.7600 7.0600

924 0.1300 1.0400 4.7600 6.8300

925 0.1700 0.6700 4.7600 6.8300

926 0.1000 1.2800 4.7600 6.1400

927 0.4300 0.7400 4.7600 7.0600

928 0.2100 1.0400 4.7600 5.9100

929 0.1700 0.8200 4.7600 7.2900

930 0.1700 0.9800 4.7600 6.6000
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where ai is the relative seismicity of seismic area Ai with respect
to other seismic zones considered (ai¼li/Sl, where li is the
seismicity of zone i). The term I(IM9m, r, e) is an indicator function
reflecting the fact that given the epsilon, distance and magnitude,
the IM value is going to be known deterministically from the GM
prediction relationship. That is, I(IM9m, r, e) can assume only two
values, namely, zero and unity. It should be noted that, given that
an earthquake takes place in seismic zone Ai, it is assumed that it
is equally likely to have its epicenter located anywhere inside the
area. Therefore, the probability f(r) of having an earthquake with
its epicenter inside the areal increment dA, whose center is
individuated by the distance r from the site, can be calculated as
dA/A where A is the total area of the seismic zone.

The probability density function (PDF) for the magnitude can
be calculated from the Gutenberg–Richter truncated distribution

f ðmÞ ¼
be�bm

e�bml�e�bmu
ð11Þ

where b is the Richter b-value times ln(10) and ml and mu are a
lower and an upper bound magnitude, respectively. Table 3
illustrates the herein used relative seismicity l, the Richter
b-value and a lower and an upper magnitude bound (ml and mu,
respectively) for those ZS9 seismic zones surrounding the
Campania region.

It should be noted that the term f(IM), in the denominator of
Eq. (10) acts as a scaling constant on the nominator. Therefore, it
can be calculated by calculating the nominator for an interval
covering all possible m values, for a given value of IM, and
summing them up. This is because the resulting probability
distribution needs to sum to one for all possible m values.

In order to disaggregate the seismic hazard with respect to e of
the GM prediction relationship, the same as above, the Bayes
theorem and the total probability theorem can be used in order
to calculate

f ðe9IMÞ ¼
P

i

P
M

P
RaiIðIM9m,r,eÞf ðmÞf ðrÞf ðeÞ

f ðIMÞ
ð12Þ

where f(IM,e) is expanded, using the total probability theorem,
with respect to the seismogenic areal zones, magnitude m and
source-to-site distance r. In a similar manner, as described above,
the constant term f(IM) in the denominator can be calculating by
summing up the nominator in Eq. (12) for all possible values of
epsilon. It should be noted that the expansion of the nominator in
Eq. (12) is done assuming that the probability distribution for e is
independent of other GM parameters. Moreover, it is assumed
that the probability distribution for magnitude is the same for all
the points within a given seismic area.

The conditional probability distributions of magnitude given
PGA and of epsilon of the prediction law given Sa(T1), have been
obtained from Eqs. (10) and (12) through the disaggregation of
the seismic hazard for the site of the case-study structure.

The distributions f(m9PGA) obtained for different levels of PGA

are illustrated in Fig. 5a. The histogram of magnitude for record
selection A is also shown at the bottom of the figure. In the same
manner, the distributions f(e9Sa(T1)) obtained for different levels
of Sa(T1) are illustrated in Fig. 5b. The histogram of epsilon for
record selection B is plotted at the bottom of the figure.
6. Sufficiency and the weighted method

Linear regression is a useful statistical tool for investigating the
sufficiency criteria for a candidate IM1 [10,21,11]. The EDP, Y, can
be predicted as a function of IM1 (e.g., PGA or Sa(T1)), by
performing linear regression (usually in the logarithmic scale).
The efficiency of an IM can be measured by the standard error
of the regression analysis. In order to establish the sufficiency of
IM1, the effectiveness of GM characteristic variables as additional
regression variables (i.e., in addition to IM1) can be investigated.
In other words, GM characteristic variables cause very little
improvement in the regression prediction as regression variables
in addition to a ‘‘sufficient’’ IM. This improvement may be judged
by the reduction in the dispersion of the regression residuals and/
or the statistical significance of the regression coefficients
corresponding to the GM characteristic variables [11].
6.1. Residual–residual plots

In this study, a simplified statistical approach based on
regression is implemented for measuring the effectiveness of
GM characteristics as additional regression variables. This method
uses a graphical statistical tool known as the residual–residual
plot. The main advantage of the residual–residual plots is that
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4 This assumption may be unconservative, in fact for example, for the spectral

acceleration it has been proved in [11] that the standard deviation tends to

increase for the larger values of spectral acceleration. This stresses the importance

of performing linear regression locally, i.e., in a region of IM values of interest.
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they offer visual means for judging the improvement caused by an
additional regression variable.

Residual–residual plots are constructed by: (a) performing
regression of the dependent variable EDP versus the (first)
independent variable IM1 (e.g., PGA or Sa(T1)), (b) performing
regression of the second independent variable IM2 (e.g., M or e) on
the first variable IM1 and (c) plotting the residuals of the two
regressions mentioned above against each other. Roughly speaking,
the two regressions on IM1 ‘‘eliminate’’ possible dependence of both
EDP and IM2 on IM1. This facilitates investigating the potential
dependence of EDP on IM2, by observing a (statistically) significant
trend, in the linear regression between the two sets of residuals
explained above. The significance of the trend is measured by both
the variability in the residuals of such regression and/or testing the
following hypothesis: ‘‘The slope of the regression line is zero’’ (i.e., test
of hypothesis). The significance of the slope is usually measured by a
quantity known as the p-value, assuming that the slope of the
regression line is a random variable described by Student’s
T-distribution [37]. The hypothesis is rejected (i.e., the slope is non-
zero) if the p-value is smaller than a certain (small) value, e.g., 0.01.

An effective IM2 is going to ‘‘explain’’ part of the variability in the
data EDP that is not captured by IM1. In the context of sufficiency,
this means that if the standard error of the residual–residual
regression is (significantly) smaller than the standard error of the
regression of EDP versus IM1, this will also confirm (in addition to
the test of hypothesis) that IM1 is not sufficient with respect to IM2.
It also indicates that IM1 and IM2 together can provide a more
‘‘efficient’’ prediction of the EDP, recalling that the efficiency criterion
is based on the variability of Y for a given value of the IM1.

However, it should be noted that in this (simplified) approach the
sufficiency of IM1 is questioned for one IM2 at the time. This would
ignore possible interactions between the GM characteristics
themselves. A more thorough approach consists of performing a
multi-variable regression of EDP on IM1 and all of the GM
characteristics in question, and test the (joint) hypothesis of whether
all the regression coefficients corresponding to the GM characteristics
are simultaneously zero. Nevertheless, it is believed that the residual–
residual plot approach is still effective in un-covering potential
dependencies of EDP on GM characteristics.
6.2. The cloud method

As described above, in order to estimate the statistical properties
of the cloud response, the linear least squares is applied on EDP

versus IM for a suite of GM records (un-scaled) in order to estimate
the conditional mean and standard deviation of EDP given IM [38].
This is equivalent to fitting a power–law curve of the form, aIMb, to
the median EDP. The standard deviation of the regression is assumed
to be constant with respect to IM over the range of IM’s in the cloud.4

If the adopted IM is sufficient in relation to other GM characteristics,
the cloud method is efficient and easy to apply. In cases where the
adopted IM1 is not sufficient with respect to an other GM
characteristic IM2 a vector-valued IM¼[IM1,IM2] consisting of two
scalar IM’s could be adopted. The two-variable linear least squares
scheme can be used to estimate the statistical parameters for the
EDP conditional on both IM1 and IM2 [11,18].

If IM1 is not sufficient with respect to the GM characteristics a
weighted regression scheme may help in reducing the depen-
dence of the residuals (of the ‘‘original’’ regression on IM1)
on GM characteristics. Shome and Cornell [21] implemented the
weighted regression scheme in order to take into account the
effect of the shape factor in predicting the response of
special moment resisting frames. Baker and Cornell [13] have
implemented the weighted regression scheme in order to
incorporate the information in the GM e in addition to Sa(T1).
The weighted regression scheme weights each error term
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(residual) proportional to its corresponding variance [39,37]. It
can be argued that the variance of each error term and hence the
corresponding weight is positively related to the following ratio:

wip
fIM29IM1

ðzi9xÞdisaggregation

fIM29IM1
ðzi9xÞdata

ð13Þ

where fIM29IM1
ðz9xÞ is the fraction of the GMs with IM2 equal to z for

a given IM1 equal to x. In this work, it is assumed that it is equally
likely to observe IM2 given IM1 for each record in the set;
therefore, fIM29IM1

ðzi9xÞdata is going to be equal to 1/NT, where NT is
the total number of records. fIM29IM1

ðzi9xÞdisaggregation is the
probability that IM2 is equal to zi for a given IM1 equal to x,
estimated by disaggregation of seismic hazard.
6.3. The multiple-stripe analysis

In the multiple-stripe analysis, the suite of GM records are
scaled to successively increasing values of the IM parameter.
The set of corresponding EDPs calculated for each IM value can be
referred to as the stripe response for the IM level [8]. The statistical
properties of the stripe responses for various IM levels, can be
evaluated based on the response to the suite of records, in order to
estimate the fragility using Eq. (3) [8,9].5

If the adopted IM1 is not sufficient, a vector-valued
IM¼[IM1,IM2] consisting of two scalar IM’s could be adopted. In
this case, the linear regression analysis can be employed in order
to investigate the dependence of the stripe response for each IM1

level on the secondary IM2 parameter [18]. In contrast to the cloud
method, the constant coefficients a and b and the standard
deviation of the regression residuals, estimated from the observed
prediction errors, are re-estimated at every IM1 stripe and depend
on the IM1 value at each stripe.

If the ‘‘primary’’ IM1 is not sufficient with respect to the GM
characteristics, instead of adopting a vector-valued IM, a procedure
similar to the one used in the weighted cloud method can be
employed, in order to account for additional information available on
the correlation between the adopted primary IM1 and a candidate
secondary IM2 by employing the information extracted from seismic
hazard disaggregation. For a given suite of GM records, the stripe
response at each IM1 level can be weighted in relation to the
conditional probability distribution f(IM29IM1). This approximate
method, which has been proposed by Shome and Cornell [21] and
Jalayer [11], incorporates the available information about IM2 given
IM1 in the seismic assessments based on the scalar IM1.

The (log of the) median of the stripe response for each IM level
can be approximated by the expected value (mean) of the (log of
the) relevant EDP, Y, for a given IM level x [37,11].6 Expanding the
estimated median (of the log) with respect to IM2, the mean (of
the log) of the stripe response can also be calculated as

ln ẐY9IM1
ðxÞffiE½lnYðxÞ� ¼

XNIM2

j ¼ 1

E½lnYðx,zjÞ9IM1,IM2�fIM19IM2
ðzj9xÞ ð14Þ

where Ẑð:Þ denotes the estimated median for the stripe response.
For a selection consisting of NT GM records the above expression
can be calculated by dividing the chosen records into NIM2

bins, in
5 The multiple-stripe analysis (MSA) [8] and the incremental dynamic analysis

(IDA) [9] would lead to (almost) the same results in terms of the prediction of EDP

given IM. However, unlike MSA, which could (potentially) be done using different

sets of records at different intensities, the IDA results pertain to a fixed set of

ground motion records. Moreover, unlike MSA, which is performed for a given

candidate IM, the IDA can be used for screening alternative candidate IM’s without

redoing the structural analyses.
6 For a lognormal distribution, the log of the median is exactly equal to the

mean of the logarithm.
which each bin is represented by value zj. The E[ln Y(x, zj)] is the
estimated conditional mean (i.e., sample average) for the natural
logarithm of the EDP in each bin, represented by value zj, for a
given IM1 value x, and fIM29IM1

ðzj9xÞ is the probability that IM2 is
equal to z (in bin j) given IM1 equal to x (e.g. it can be obtained
from disaggregation).

In a similar manner, the conditional variance of the natural
logarithm of response for a given IM1¼x, can be expanded with
respect to a candidate IM2, as

b̂
2

ln Y9IM1
ðxÞffi

XNIM2

j ¼ 1

E½ðlnYðx,zjÞÞ
29IM1,IM2�fIM19IM2

ðzj9xÞ�ðE½lnY9IM�Þ2

ð15Þ

Here, E[(ln Y(x, zj))
29IM1,IM2] denotes the expected squares of

the natural logarithm of the structural response EDP for the GMs
in each bin represented by the value zj (for a given IM1¼x).

As it was stated before, IM1 is sufficient if it renders the EDP

conditionally independent of the GM characteristics, for all
intensity levels. For a given IM level IM1¼x, the statistical
equivalent to this statement is to establish that the conditional
probability distribution for the EDP given IM1 is independent of
other GM characteristics, namely

fY9IM1
ðxÞ ¼ fY9IM1 ,IM2

ðx,zjÞ ð16Þ

for any zj value. The sufficiency criterion can be ‘‘approximated’’ in
terms of the (conditional) statistical moments of the response
(e.g., conditional mean and variance). For example, a ‘‘first-order
measure’’ of the sufficiency criterion can be obtained by
establishing that the first (conditional) moment of the response
for a given IM1 level, x, is independent of other GM characteristics

ln ẐY9IM1
ðxÞffiE½lnYðxÞ9IM1� ¼ E½lnYðx,zjÞ9IM1,IM2� ð17Þ

If an IM is sufficient, it can be demonstrated that the two sides
of Eq. (14) will always be equal and does not depend on the
probability distribution fIM29IM1

.7

A ‘‘second-order measure’’ of sufficiency criterion can be
expressed in terms of the (conditional) second moment of the
stripe response

E½ðlnYðxÞÞ29IM1� ¼ E½ðlnYðx,zjÞÞ
29IM1,IM2� ð18Þ

for all zj value. Similarly, it can be demonstrated that the two sides
of Eq. (15) will always be equal, independent of fIM29IM1

ðzj9xÞ, if the
second-order sufficiency is established.

When multiple-stripe analysis is performed for high IM levels, it
happens quite often that the structural analysis cases do not yield
meaningful values. This could either imply that the structure has lost
its load bearing capacity or may signal numerical in-convergence.
Since both cases are characterized by very large EDP values, they are
both referred to, for simplicity, as the ‘‘collapse cases’’. In this study,
the logistic regression is used in order take into account the collapse
cases, that happen in the structural analysis for increasing level of
IM1. In order to explicitly take into account the collapse cases, the
stripe response is divided into two parts, namely, the non-collapse
and the collapse parts. The logistic regression [40] is applied to the
collapse data in order to predict the probability of collapse as a
function of the second IM2 (rather than estimating the probability of
collapse as the fraction of records in an IM1 stripe that cause
collapse). Using the indicator variable C to designate the occurrence
7 The above conclusion is based on the fact that the sum of the fractions

fIM29IM1
is equal to unity.
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of collapse (C equals 1 if the record causes collapse and 0 otherwise),
the following functional form is fitted [18]:

PðC9IM1 ¼ x,IM2 ¼ zÞ ¼
eaðxÞþbðxÞz

1þeaðxÞþbðxÞz
ð19Þ

where a and b are the coefficients to be estimated for the stripe
response at IM1¼x. Using the total probability theorem the first
term in the integrand of Eq. (4) can be expanded in this way

PDM9IM1 ,IM2
ðDM4y9x,zÞ ¼ PDM9IM1 ,IM2

ðDM4y9x,z,NCÞ

UPðNC9IM1 ¼ x,IM2 ¼ zÞþ1

UPðC9IM1 ¼ x,IM2 ¼ zÞ ð20Þ

where

PðNC9IM1 ¼ x,IM2 ¼ zÞ ¼ 1�PðC9IM1 ¼ x,IM2 ¼ zÞ ð21Þ

is the probability of not having collapses given IM1¼x and IM2¼z.
The term PDM9IM1 ,IM2

ðDM4y9x,z,NCÞ may be estimated by a
lognormal probability distribution whose mean and standard
deviation are calculated using Eqs. (14) and (15). Alternatively, in
the case of a vector-valued IM, it can be calculated using linear least
squares in order to estimate the mean and the standard deviation for
the probability distribution PDM9IM1 ,IM2

ðDM4y9x,z,NCÞ.
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7. Numerical results

Distinguished by number of analyses carried out, two alter-
native procedures are considered in this work: the cloud method
and the multiple-stripe method.
7.1. The cloud method

For record selection A (Sel_A) the primary IM (IM1) is PGA

paired in vector form with M. Instead, for record selection B

(Sel_B) the primary IM (IM1) is the Sa(T1) paired in vector form,
with the deviation from the GM prediction relationship e, that can
be regarded as a ‘‘shape factor’’ of the single spectrum in a range
of periods in the vicinity of T1.

In Figs. 6a and 7a the results obtained using the cloud method
in order to predict Y adopting as IM1, PGA based on selection A,
and Sa(T1) based on selection B, are, respectively, illustrated. As
stated before, a graphical statistical tool known as the residual–
residual plot is used in order to establish the sufficiency of IM1

and the effectiveness of GM characteristic variables adopted as
IM2. The main advantage of the residual–residual plots is that they
offer visual means for judging the improvement caused by IM2. In
Figs. 6b and 7b the residual–residual plot related to the
introduction of M (for Sel_A) and e (for Sel_B) as IM2, together
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with the p-values calculated for the hypotheses test, are,
respectively, shown. In Fig. 6b a significant positive trend in the
plot can be observed, confirmed by both the p-value and the
sigma value; this indicates that, based on Sel_A, PGA is not
sufficient with respect to M. In Fig. 7b a (statistically significant)
negative trend can be observed. This means that, based on Sel_B,
Sa(T1) is not sufficient with respect to e.

Figs. 8a and 9a show the results obtained by the cloud method
adopting the vector intensity measure [PGA, M] for Sel_A and
[Sa(T1), e] for Sel_B, respectively. In both cases the multiple
regression is used to predict the structural EDP, Y, as a function of
the two chosen IM’s.

It would be interesting to study how the seismic risk,
represented herein by the MAF of exceeding Y, is affected by the
weighed regression scheme. For both record selections, the results
of weighted regression (Figs. 8b and 9b, respectively) can be used
in order to predict the conditional mean and standard deviation of
Y as a function of IM1; these parameters are then incorporated in
Eq. (3) in order to calculate the structural fragility. It should be
noted in Figs. 8b and 9b that (IM1i, Yi) data pairs are plotted by
circles with diameters proportional to the corresponding weight
which are proportional to f(IM2i9IM1i). The MAF of exceeding Y can
be calculated from Eq. (2) by integrating the structural fragility
and the IM1 hazard curve. Figs. 14b and 15b illustrate the PGA
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The MAF of exceeding Y has been calculated from Eq. (4) by
adopting a vector-valued IM, [PGA, M] for Sel_A and [Sa(T1), e] for
Sel_B. It serves as a benchmark for judging if the weighted
regression is helpful in adjusting for the dependence on IM2 (M for
Sel_A, e for Sel_B). Fig. 10a and b illustrates the results obtained by
following the above-mentioned alternative methods for the two
considered record selections, respectively.

In Fig. 10a and b the thick lines represent the MAF of exceeding
the Y adopting as IM the pair [PGA, M] and [Sa(T1), e], for Sel_A and
for Sel_B, respectively. The thin lines represent the MAF of
exceeding Y using a scalar IM1 (PGA for Sel_A and Sa(T1) for Sel_B).
The dashed lines represent the MAF of exceeding Y using a scalar
IM1 (PGA for Sel_A and Sa(T1) for Sel_B) but adjusting for the
dependence on IM2 (M for Sel_A, e for Sel_B) by weighted
regression.

It can be observed that the weighted regression manages to
take into account some of the information provided by IM2 and its
corresponding MAF of exceeding Y ends up somewhere between
those corresponding to the original cloud method and the
multiple-regression, respectively. Fig. 10a shows that the weight-
ing scheme is partially effective in taking into account the M
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dependence in the prediction of seismic risk for Sel_A using PGA as
IM. In the same way, Fig. 10b demonstrates that the seismic risk
curve calculated using the weighted regression manages to adjust
partially for the dependence on e, using Sa(T1) as IM1 for Sel_B.
Obviously, the resulting improvement depends both on the
distribution of the epsilon values for Sel_B and the GM prediction
relationship used in the hazard/disaggregation analysis (Fig. 5b).

For Sel_B, the choice of e as IM2 has been inspired by the fact
that it acts as a proxy for spectral shape in the vicinity of the
fundamental period of the structure. Therefore, it is interesting to
investigate the dependence of Y given Sa(T1) on spectral accel-
eration at another period T2aT1, Sa(T2), in order to consider in an
explicit way the shape of the elastic acceleration spectrum
[22–24]. The procedure followed for establishing the dependence
of Y given Sa(T1), on Sa(T2) is similar to the one followed in order to
investigate the sufficiency of Sa(T1) with respect to e. Sa(T2)
is regarded as a second regression variable IM2, and the residual–
residual plots are used to study its efficiency in reducing the
dispersion.

It would be interesting to identify the period whose
corresponding spectral acceleration is most efficient in predicting
the EDP conditional on Sa(T1). The efficiency of the spectral
acceleration at a period, T2aT1, as the second regression variable,
has been studied from the point of view of the reduction in the
standard error of the regression [11]. This leads to finding an
optimal period T2 at which the dispersion is minimum and the
pair [Sa(T1), Sa(T2)] has maximum efficiency as an IM. The plot in
Fig. 11, illustrates the standard error of the residual–residual
regressions performed for a range of periods. It can be observed
that choosing the spectral acceleration at T2¼1 s leads to the
maximum reduction in the residual–residual dispersion. The
period corresponding to the first mode of the structure is also
marked on the figure. The efficiency of Sa(T2¼1 s) in reducing the
standard error of the residual–residual plot signals non-linear
behavior in the structural elements resulting in the elongation of
the vibration period.

In order to characterize the joint probability distribution for
the logarithm of the spectral acceleration at two periods T1 and T2,
the mean and standard deviation values for both can be extracted
from the GM prediction equation [41,42]. In order to completely
specify the first and second moments for this pair of spectral
values, one needs to evaluate the correlation between ln Sa values
at the two periods. An empirically determined relationship for
such correlation is given by Inoue and Cornell [43]

rln SaðT1Þ,ln SaðT2Þ
¼ 1�0:339lnðT1=T2Þ9 0:1srT1,T2r4s ð22Þ

Previous research has established that ln Sa(T1) and ln Sa(T2)
are each marginally normally distributed [44]. Under the mild
assumption that they are also jointly normally distributed, one
can obtain the conditional mean of ln Sa(T2), given ln Sa(T1) [41]

mln SaðT1Þ9ln SaðT2Þ ¼ x ¼ mln SaðT2Þ
þrln SaðT1Þ,ln SaðT2Þ

sln SaðT2Þ

x�mln SaðT1Þ

sln SaðT1Þ

� �
ð23Þ

The conditional standard deviation of ln Sa(T2) is given as

sln SaðT2Þ9ln SaðT1Þ ¼ x ¼ sln SaðT2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

ln SaðT1Þ,ln SaðT2Þ

q
ð24Þ

These statistics have been used in order to obtain the MAF of
exceeding the critical component demand to capacity ratio Y.
The conditional mean and standard deviation derived from
Eqs. (23) and (24) can be used in order to construct the
conditional probability distribution f(Sa(T2)9Sa(T1)).

Fig. 12a shows the results obtained by the cloud method and
the introduction of Sa(T2) with T2¼1 s as the IM2, using the
multiple regression. Fig. 12b illustrates the results of weighted
regression analysis exploiting the additional information provided
by the conditional probability distribution f(Sa(T2)9Sa(T1)). The
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(Sa,i(T1), Yi) data pairs are plotted by circles with diameters
proportional to the corresponding weight which are proportional
to f(Sa(T2i)9Sa(T1i)). Fig. 13 illustrates the seismic risk curves
calculated by following the alternative approaches just discussed.

It can be observed that there is only a small gain in information
resulting from incorporating the correlation between the two spectral
values inside the weighted regression scheme. The same as the case of
IM2¼e, the weights applied inside the weighted regression are
sensitive to both the interval covered by the Sa(T2) values of the
selection of records and the characterization of f(Sa(T2)9Sa(T1)).
7.2. The multiple-stripe analysis

The results of multiple-stripe analysis are used in order to
investigate the efficiency of the weighting scheme based on the
information provided by seismic hazard, in the prediction of the
MAF of exceeding Y. Figs. 14a and 15a illustrate the results of
multiple-stripe analysis, using the same IM’s used in the cloud
method, for the case-study structure subjected to record selection
A and record selection B, respectively.
The critical demand to capacity ratio Y (the stripe response) is
calculated for increasing levels of PGA (Sel_A) and Sa(T1) (Sel_B) using
the multiple-stripe method. The lines connecting the (counted) 16th,
50th and 84th percentiles of the stripe response at each IM level are
also shown. The numbers near black diamonds in Figs. 14a and 15a
indicate the number of ‘‘collapse cases’’ encountered for each level of
PGA and Sa(T1), respectively. In Figs. 14b and 15b the peak ground
acceleration hazard curve and the spectral acceleration hazard curve
(extracted from the site of INGV for the coordinates of the site (lat.
40.915; lon. 14.78)) are shown, respectively.

The statistics of the stripe response (i.e., mean and standard
deviation of the logarithm) are calculated for each IM1 level and
incorporated in Eq. (3) in order to calculate the structural fragility.
For the vector-valued intensity measures, [PGA, M] for Sel_A and
[Sa(T1), e] for Sel_B, a simple regression analysis is performed for
the stripe response, at each IM1 level on logarithm of the stripe
response versus moment magnitude, IM2¼M, and epsilon, IM2¼e,
respectively. The regression results are then used in order to
calculate the conditional mean and standard deviation of the
logarithm of Y given PGA and M (Sel_A) and given Sa(T1) and e
(Sel_B). These statistics are incorporated in Eq. (5) in order to
calculate the structural fragility. Alternatively, the weighted
multiple-stripe analysis is used in order to weigh the stripe
response based on the results of seismic hazard disaggregation,
f(M9PGA) for Sel_A and f(e9Sa(T2)) for Sel_B. The weighted statistics
(mean and standard deviation of logarithm) for the stripe
response are calculated from Eqs. (14) and (15). The structural
fragility can be calculated from Eq. (3) for the scalar IM based on
the weighted statistics. It should be mentioned that the presence
of the collapse cases in the stripe response is accounted for by
employing a logistic regression scheme as discussed previously.
Through numerical integration of the structural fragility with the
IM hazard curve, the seismic risk curves for the critical component
demand to capacity are calculated (Fig. 16a and b).

Given the increased sophistication and computational effort
associated with the multiple-stripe method compared to the
cloud method, the position of the hazard curve calculated using
the weighted method indicates that the weighting scheme for the
stripes analysis is more effective in taking into account the IM2

dependence (M for Sel_A and e for Sel_B) in the prediction of the
MAF of exceeding Y with respect to the curve obtained through
the cloud method. In other words, in the cloud method the
efficiency of the weighted regression scheme depends strongly on
the suite of GM records selected, since they are not scaled.
Instead, when applying the stripes method, the GM records are



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Y

P
G

A
 [g

]

12
14

19
18
17
16
14

19

9
9
9
10

5
5
5
4
3
2
1
1

7

0.2 0.4 0.6 0.8 1 1.2 1.4
10-6

10-5

10-4

10-3

10-2

10-1

100

PGA [g]

λ P
G

A

Fig. 14. (a) Results of multiple-stripe analysis for Sel_A and (b) peak ground acceleration hazard curve.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

S
a(

T 1
) [

g]

17
17
16
14
12
9
9
9
8
6
6
3
2
1

0.2 0.4 0.6 0.8 1 1.2 1.4
10-6

10-5

10-4

10-3

10-2

10-1

100

Sa(T1) [g]

λ S
a(

T 1
)

Fig. 15. (a) Results of multiple-stripe analysis for Sel_B and (b) spectral acceleration hazard curve for T1¼0.75 s.

L. Elefante et al. / Soil Dynamics and Earthquake Engineering 30 (2010) 1513–1527 1525
scaled to successively increasing levels of IM and can cover an
ample range of the GM intensities.

Next, the pair of IM’s Sa(T1) and Sa(T2) are also studied in the
framework of the multiple-stripe analysis, for Sel_B. The condi-
tional probability distributions f(Sa(T2)9Sa(T1)) of spectral accel-
eration at T¼T2 given spectral acceleration at the fundamental
period of the structure are illustrated in Fig. 17; moreover, the
histogram of the values of Sa(T2) of the record selection B is shown
at the bottom of the figure.

Fig. 18 illustrates the MAF of exceeding Y, which is calculated
through numerical integration of the structural fragility and the
spectral acceleration hazard curve in Fig. 15b.

It is observed that the weighted multiple-stripe analysis does
not succeed in including the additional information provided by
IM2¼Sa(T2). It can be noted from Fig. 17, that the conditional
probability distributions f(Sa(T2)9Sa(T1)) do not defer drastically
from the histogram of the Sa(T2) values for selection B (i.e., the
weights are going to be close to unity). Moreover, the conditional
probability distributions seem to remain invariant for large values
of Sa(T1). Hence, the weighted stripe method leads to little
improvement compared to the original stripes.
8. Conclusions

In the framework of the performance assessment methodology
developed by the PEER Center, the mean annual frequency (MAF)
of exceeding a specified engineering demand parameter (EDP) is
calculated by adopting the ground motion intensity measure (IM),
as an intermediate parameter to relate the ground motion record
characteristics to the structural performance. Non-linear struc-
tural dynamic analysis method can be incorporated in this
framework in order to evaluate the structural performance given
the IM. The cloud method (suitable for a limited range of IM

levels) and the multiple-stripe method (suitable for a wide range
of IM levels) [8,9] are two such methods considered herein.
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This IM-based performance assessment methodology impli-
citly assumes that the structural response depends only on the
chosen IM and not on any other properties of the ground motion
(GM). This criterion is called ‘‘sufficiency’’ and states that the
structural response EDP for a given IM is statistically independent
of (other) GM characteristics. If the sufficiency criterion is not
met, the conditional probability distribution for EDP given IM will
be dependent on (other) GM characteristics. Hence, a biased
estimate of the structural response would be obtained if the
selected GM records do not match the records that the real
structure will be subjected to. In order to increase the sufficiency
of an IM, additional parameters can be introduced so that the
resulting vector-valued IM would describe more completely the
properties of the GM. In particular, a vector intensity measure
IM¼[IM1,IM2] consisting of two parameters can be adopted,
where IM2 strives to capture the GM characteristics not already
described by IM1.

A simple statistical/graphical tool known as the residual–
residual plot is employed in this work in order to reveal the
possible dependence of the EDP conditional on the adopted IM1,
on a candidate IM2. In cases where the sufficiency for IM1 is not
established, a weighting scheme based on the results of the
seismic hazard analysis can be adopted in order to implement the
additional information provided by a candidate IM2. In the cloud
method, a weighted regression scheme was applied to the cloud
response, weighting each square residual term in relation to the
conditional probability distribution f(IM29IM1), obtained through
seismic hazard disaggregation. In multiple-stripe analysis, an
analogous weighting procedure was employed. In this approach,
the stripe response is discretized into a set of IM2 bins; each bin is
then weighted by the probability f(IM29IM1) obtained from
seismic hazard and/or seismic disaggregation analysis. In parti-
cular the IM pairs [PGA, M], [Sa(T1), e] and [Sa(T1), Sa(T2)], T2aT1

were considered in this work. The conditional probability
distributions f(M9PGA) and f(e9Sa(T1)) have been calculated
through the disaggregation of the seismic hazard for the site of
the case-study structure using the Bayesian updating.

The implication of using the weighting scheme has been
studied in terms of seismic risk represented herein by the MAF of
exceeding the critical component demand to capacity ratio Y. The
seismic risk curves obtained by adopting the scalar IM1 and the
vector-valued IM¼[IM1,IM2] are used to benchmark the efficiency
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of the weighting scheme. It is observed that the weighting scheme
manages to take into account some of the information provided
by IM2 and its corresponding MAF of exceeding Y ends up
somewhere between those obtained adopting the scalar IM1 and
the vector-valued IM¼[IM1,IM2]. In this case-study, the weighting
scheme proves to be more efficient for multiple-stripe analysis
compared to the cloud analysis. This can be attributed to the fact
that, the multiple-stripe analysis spans over a wider range of IM

levels and therefore, in comparison to the cloud method, may be
less sensitive to the selection of GM records. In general, it is
observed that the weighted scheme enhances the assessment of
the MAF of exceeding EDP for the structure considered.
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