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ABSTRACT

In seismic risk management, apart from assessment, it is also
necessary to develop decision-making strategies that are based
on evaluating the probability of the occurrence of earthquakes,
their consequences, and the effect of possible mitigation ac-
tions. There is a close connection between the knowledge level
of the analyst and the resulting probabilistic evaluations, which
should be considered correct if they incorporate all available
information. Knowledge, probability, and loss are the key con-
cepts in a state-of-the-art approach to risk estimation and man-
agement. This article, after reviewing the concepts of risk-based
decision making and the possible interpretations of probability,
discusses the importance of entrusting seismic risk assessment
to experts on the phenomenon who are also knowledgeable
regarding probability theory, and how these experts should
combine their expert knowledge with probability theory, which
is related to the responsibility of the seismic risk analyst.

NATURAL PHENOMENA, PROBABILITY, AND
LOSS

The term “random experiment” refers to any operation, activ-
ity, or phenomenon whose outcome cannot be predicted with
certainty. A classic example is the toss of a coin, whose outcome
(i.e., head or tail) is uncertain par excellence. The same concept
of a random experiment (in a broad sense) is also applicable
when referring to the observation of a natural phenomenon;
for example, an earthquake and/or its effect, whose outcome
will remain uncertain until it actually occurs.

In almost all cases in which the outcome is uncertain, any
loss (i.e., potentially adverse consequence) that the phenome-
non may induce will also be characterized by uncertainty, either
because losses will normally depend on the actual outcome or
because it is often impossible to assign to each possible out-
come a definitive value for the associated loss. Lack of complete
knowledge on the mechanisms governing the experiment and
the exact conditions under which the experiment takes place, as

well as lack of knowledge of the exact value of loss associated with
each outcome of the said experiment, prohibit a priori knowledge
of any outcome or potential loss level. As a matter of fact, the out-
come and/or the loss given by the outcome may vary if the ex-
periment is repeated under nominally identical conditions (i.e.,
undistinguishable in the eyes of the experimenter).

Successfully dealing with this type of uncertainty is impor-
tant. Probabilistic calculations provide the analytical tools nec-
essary to exploit all available knowledge (incomplete as it may
be) in order to express in a consistent manner the probability
that a certain outcome, rather than a different one, is realized
(or, more generally, that a given event occurs). Better yet, from
a risk estimation point of view, the mathematical tools of prob-
abilistic calculus can be used to directly express the probability
that the given experiment/phenomenon produces a particular
loss value (e.g., Marzocchi et al., 2015).

Risk Estimation: Expected Loss
Under conditions of uncertainty, once all loss values Lj (let us
say n in number) possibly resulting from a random experiment
have been identified, and the probability P�Lj� associated with
observing each of them has been defined, it is possible to obtain
a quantitative estimate of risk according to equation (1), which
gives what is called “expected loss” E�L�, that is, the (weighted)
average of all possible loss values producible by the considered
experiment. As shown in equation (1), the weight attributed to
each loss value is its probability:

EQ-TARGET;temp:intralink-;df1;323;197Risk � E�L� �
Xn
j�1

Lj · P�Lj�: �1�

Evaluating risk in terms of expected loss is extremely useful for
two reasons: first, it provides whomever undertakes the evalu-
ation with a consistent way of treating the available informa-
tion; second, it permits comparisons with risks of a completely
different nature by expressing them in terms of a single meas-
urement unit (e.g., euros) used to quantify the loss. The latter is
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essential when deciding risk management strategies (e.g., Ben-
jamin and Cornell, 1970).

To better clarify the usefulness of these concepts in the con-
text of seismic risk, let us assume, for instance, that a seismic
swarm of moderate intensity has just occurred in a zone near
a site of interest, and let us further assume that whomever has
been charged with evaluating that risk believes that the said
swarm might herald the occurrence of a strong earthquake in
the following 6 months, an event indicated by QS, with a prob-
ability P�QS � � 0:01. Having assigned this probability, and by
assuming that the loss due to the earthquake corresponds to a
billion euros, whereas the loss in the case the earthquake does not
occur QS is 0€, then using equation (1) one obtains the risk
value of the following equation:

EQ-TARGET;temp:intralink-;df2;28;577E�L� � E�LjQS � · �1 − P�QS �� � E�LjQS � · P�QS �
� �0€� · 0:99� �1 · 109€� · 0:01 � 1 · 107€: �2�

Note that the implied risk, while expressed in euros, does not
coincide with any actual value that loss may assume. In fact, the
risk as defined in equation (1) should not be interpreted as the
effective loss value one may expect to observe; it should rather be
understood as a value representing the average of losses that are
observable in a large number of nominally identical situations (to
follow).

Expected Loss and Optimal Decisions
In order to complete the process of risk management, it is nec-
essary, apart from evaluation, to develop decision-making strat-

egies to control it, which means strategies for distinguishing
which action (A�) among those available �Ai; i � 0; 1;…; l�
is most rational to undertake in order to minimize the loss that
could incur from the phenomenon under consideration. To
this end, the definition of risk in equation (1) comes in handy.
It seems natural to define the optimal decision as the one
which results in selecting, among all possible actions, action
A�, corresponding to the smallest expected loss E�L�A���

EQ-TARGET;temp:intralink-;df3;28;181E�L�A��� ≤ E�L�Ai�� ∀i � 0; 1;…; l : �3�

Note that among available actions one should always include
action A0, which represents taking no action. To clarify these
concepts, let us assume that—referring to the previous example
—those responsible for managing the seismic risk must decide
which action would be the best to take among the following
alternatives: (A0) undertake no action; (A1) do not evacuate

the site, but prepare an enhanced plan of civil protection for
the period during which it is feared that an earthquake could
follow the swarm, in order to better cope with an eventual
emergency; (A2) evacuate the site for 6 months. It is assumed
that relocating the residents of the entire site for 6 months
would cost 500 million euros and that such an action would
nullify losses from an eventual earthquake (in general, evac-
uation does not completely avoid losses, as damage to assets
may still occur; however, this kind of loss is independent of the
decisions considered in the example, then it would not change
the optimal one, as such it is neglected for simplicity). On the
other hand, it is assumed that action A1 would cost 12 million
euros, but would only succeed in halving losses due to an earth-
quake. Expected losses are calculated as follows:

EQ-TARGET;temp:intralink-;df4;299;577

E�L�Ai���CAi�E�L�Ai�jQS � ·�1−P�QS ��
�E�L�Ai�jQS � ·P�QS � ∀i�0;1;…; l ; �4�

in which E�L�Ai�jQS � and E�L�Ai�jQS � represent the losses in
the cases the action is taken whether the earthquake occurs or
not, respectively, and CAi is the cost of the action Ai.

The results are given in equation (5). In this example, if no
mitigating action is taken, E�L�A0�� would amount to 10 mil-
lion euros; that is, equation (2). The expected loss in case of an
evacuation E�L�A2�� is equal to about half a billion euros,
whereas adopting enhanced planning reduces it to around
17 million euros, that is E�L�A1��. It is evident that in this case
(purely academic and only hypothetical), the optimal decision
would be to take no mitigating action:

EQ-TARGET;temp:intralink-;df5;29;3608>><
>>:

E�L�A0�� � �0€� · 0:99� �1 · 109€� · 0:01 � 1 · 107€

E�L�A1�� � 12 · 106€� �0€� · 0:99� �5 · 108€� · 0:01 � 1:7 · 107€

E�L�A2�� � 5 · 108€� �0€� · 0:99� �0€� · 0:01 � 50 · 107€

: �5�

The expected loss is not to be interpreted as the most likely
result of the next random experiment (the next seismic swarm,
in this example), yet it coincides with the limit of the average
loss computed over a virtually infinite number of replications
of the considered experiment (i.e., independent repetitions). In
this sense, the decision based on the minimal expected loss is
the optimal one in the long run; that is, it may be the rational
one for authorities that may have to deal with several of these
crises over a period of time.

Naturally, in order to use this approach it is essential to de-
fine the weights used in calculating expected loss, that is, the
probabilities P�Lj�. In the following section, the discussion fo-
cuses on the approaches and mathematical tools which analysts
may employ to obtain a consistent measure of the said probabil-
ities by using all available data and knowledge. This, along with
quantification of potential losses, constitutes the responsibility of
those tasked with undertaking such probabilistic analyses.
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DEFINITIONS OF PROBABILITY AND
TRADITIONAL CALCULATION CRITERIA

The calculation of probabilities is a mathematical science de-
veloped from its governing postulates (i.e., rules that ensure
consistency as formulated by Kolmogorov, 1933). Postulates
are dictated without discussing their practical meaning; thus,
all other rules of calculation (i.e., theorems) are derived from
them. In other words, such a modern approach considers prob-
ability as a primitive concept, much like point and line are con-
sidered primitive concepts in geometry. In fact, it does not
supply any interpretation of the term probability, it only ad-
dresses how to measure it. Consequently, any criterion that the
analyst would decide to adopt in order to measure probability
has to be considered mathematically legitimate, provided it sat-
isfies the postulates.

It is important to note, however, that a mathematically
legitimate evaluation might still not have practical validity, if
the analyst did not take on the responsibility of using all and
solely the available information. As a matter of fact, from a
practical point of view, one should recognize that whoever for-
mulates a probability is consequently burdened by responsibil-
ity, much in the same way as in any other professional or
scientific field. For example, a building analyzed by correctly
following the rules of structural engineering may end up de-
signed incorrectly with regard to its intended purpose, if con-
siderations regarding a potential source of stress—such as
seismic demand—are omitted. In an analogous manner, a prob-
ability that is formulated following the rules of probability
theory may end up incorrect if an essential element of knowl-
edge related to the experiment is ignored. The responsibility as-
sociated with all evaluations of probability should lead to the
purging of all arbitrariness from the analysis (including conser-
vative assumptions) and should use all knowledge available at the
time the calculation takes place.

The choice of which criterion should be used in formu-
lating a probability is motivated by opportunity, professional
evaluations, subjective knowledge, and so forth. Meanwhile,
the mathematical rules that need to be observed say nothing
about the choice of the formulation criterion, but merely
guide towards a consistent development of the deductive cal-
culations necessary for evaluating the risk. In turn, this sit-
uation determines a twofold responsibility/opportunity for
the expert: (1) to choose the criterion based on the knowledge
of the phenomenon, which allows probabilistic evaluations
with practical value; and (2) to convincingly motivate the choice
of the criterion, so as to gather consensus among others also
interested in the same problem.

Even in situations when everyone operates under the same
calculation choices (which thus become the norm), one is still
obligated to explicitly cite the adopted hypotheses. This is nec-
essary so as not to—unconsciously—preclude further possible
refinements to the calculation, which may prove useful or even
indispensable if hypotheses become untenable in light of any
new information.

Although it has been discussed that probability is consid-
ered a primitive concept, it is nevertheless appropriate to briefly
recall the three historical definitions that constitute useful
tools for measuring probability in some typical experimental
situations.

Classical Definition
This definition, formalized by Laplace (1812), refers to an ex-
periment which may have N mutually exclusive, equally possible
outcomes. In this context, assuming that NA of these outcomes
correspond to the occurrence of event A, the probability P�A�
can be defined as follows:

EQ-TARGET;temp:intralink-;df6;323;601P�A� � NA=N: �6�

Although based on a calculation criterion valid for the specific
situation, equation (6) is an unacceptable definition, as it
would be circular. In fact, the concept of probability is implic-
itly employed prior to its definition. Furthermore, the classical
criterion is not applicable when the possible outcomes of the
experiment are virtually infinite and/or not equally probable.
Then, for example, it cannot be used to formulate the prob-
ability of observing a specific value of macroseismic intensity
for the next earthquake occurring at a certain location, as al-
ternative intensity values are not equally likely.

Frequentist Definition
A second definition of probability, which overcomes some of
the limitations of the classical one, is the frequentist (von Mises,
1928). Assuming that an experiment can be replicated an un-
limited number of times, with all repetitions conducted under
nominally (i.e., macroscopically) identical conditions, probability
is defined by means of the limit given below:

EQ-TARGET;temp:intralink-;df7;323;342P�B� � lim
n→∞

nB
n
; �7�

in which nB is the number of repetitions in which event B was
realized and n is the number of total repetitions. This may be, for
example, the probability that, given an earthquake will occur on
a certain seismic source, the said earthquake has a magnitude
which falls in an interval of interest.

Even equation (7), although again suggesting a valid cal-
culation criterion for the case considered, is far from being an
acceptable definition. In fact, one can never be in a position to
guarantee that the considered limit exits, and even if it does, no
one can guarantee that it will coincide with the intended meas-
urement, which is the probability of B, whose very existence is
an act of faith. Furthermore, even this definition does not pos-
sess general validity, because it presumes that the experiment is
repeatable, which is not always the case. The repeatability issue
arises, for example, in the case of very rare natural events such
as earthquakes of magnitude never observed yet (as the 2011
Tohoku earthquake case; e.g., Kagan and Jackson, 2013). Fi-
nally, even when it can be assumed that repetition of the experi-
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ment is possible, one still has to clarify what exactly is meant by
nominally identical experimental conditions, which is a vague
concept, considering that different repetitions normally pro-
duce different outcomes because the experimenter cannot con-
trol the values or the effects of all the factors influencing the
results. In other words, to apply the frequentist definition
to the magnitude bin example above, it was necessary to implic-
itly assume that the earthquakes’ generating process is such that
each earthquake results from the repetition of the same random
experiment; for example, the random rupturing phenomenon
does not show any trend or any form of memory of the seismic
history.

Subjectivist Definition
Because the two previous definitions of probability are per-
meated by a strong component of subjectivity (e.g., “equally
possible” appearing in the classical definition and the existence
of the limit in the frequentist case), a third line of thought,
named “subjectivism” or “neo-Bayesianism”, has developed a
definition completely centered on the concept of probability as
a degree of belief, without any particular prior assumption
(Ramsey, 1926). This definition is often employed to assign a
level of credibility to each of a set of models in the seismic risk
assessment context with epistemic uncertainty (e.g., Der Kiur-
eghian and Ditlevsen, 2009).

To better comprehend the subjectivist definition, imagine
a hypothetical bet in which one is prepared to wager sum a
on an experiment proving that event Q will occur, against
sum b if Q will not occur. In this situation, one can conse-
quently formulate, as a subjective estimate of the probability
of Q , the ratio

EQ-TARGET;temp:intralink-;df8;40;373P�Q � � a=�a� b�: �8�
With this approach, one avoids the drawbacks of defining
probability using one of its evaluation methods. Furthermore,
it requires effort toward formulating the probabilities using all
available knowledge (which is one of the responsibilities of the
analyst, as discussed later on). In particular, to ensure fair eval-
uations, whoever is betting should be ready to exchange his role
with the bookmaker; in other words, he should be in agreement
with betting sum b, to receive the a� b amount in case Q does
not occur. The consistency and operative aspects of this defini-
tion are evident and bring to mind the contents of that wise rule-
of-thumb according to which when a certain amount needs to be
divided between two parties, one should be charged with divid-
ing it and the other with choosing his share.

It is useful to delve deeper into the meaning of the last
example. Assume that a sum of a� b euros is the value for
a certain item to be insured against earthquakes; that is, the
amount of lost value in the case event Q (an earthquake) oc-
curs. Because the occurrence of Q is uncertain during the
period of insurance coverage, the premium that the owner of
the item is predisposed to pay is not the full value of the loss
(a� b euros). He would be willing to pay a lower price instead
(let us say a) which would be proportionate to the degree of

belief in the occurrence of Q . Thus the ratio defined in equa-
tion (8) can be assumed to constitute a measure of the prob-
ability P�Q �.

PROBABILITY, STATE OF KNOWLEDGE, AND
BAYES’ THEOREM

As shown, any estimate of probability should be considered
conditional to all knowledge that the analyst possesses at the
time when the estimation takes place. Consequently, if one’s
state of knowledge changes then one’s estimate of probability
should be updated. It is obvious that the analyst is confronted
with the problem of revising calculations in a consistent man-
ner, more specifically, in a manner that produces results not in
conflict with the estimate already derived based on the prior
state of knowledge. Toward this end, Bayes’ theorem can prove
useful, because it represents the appropriate strategy for cor-
rectly performing such an update/revision in mathematical
terms. In this context, using the Bayes theorem does not nec-
essarily mean to adopt a subjectivist/Bayesian approach.
Indeed, the probabilities in the Bayes’ theorem can be indiffer-
ently assigned in a frequentistic and/or in a subjective manner
(for example when dealing with epistemic/model uncertainty),
without affecting the calculations and the way they are per-
formed by any means.

Bayes’ theorem is sometimes also referred to as the theo-
rem of probability of the cause, as it allows computation of the
probability of a certain event (A) given the occurrence of an-
other event (B). Therefore, its result may be interpreted as the
probability that A was causative for the occurrence of B, in
those cases when a cause-effect relationship exists between
A and B. This is the case, for example, of disaggregation of
seismic hazard (e.g., Bazzurro and Cornell, 1999), in which
the Bayes’ theorem is used to compute how likely a specific
variable involved in hazard assessment is causative for some
feature of ground motion.

We introduce the expression for this theorem by means of
an example, so as to demonstrate its potential and hint at its
implications. Specifically, revisiting the example given in the
first section, we shall see how Bayes’ theorem permits us to
estimate the probability that a strong earthquake (Q ) follows
within 6 months of a seismic swarm (S)—which in the exam-
ple was given as 0.01. To this end, it is assumed that the prob-
ability of observing an earthquake in the region of interest
within a 6-month span is one in a thousand, based on historical
data (this is the probability estimate regardless of whether or
not a seismic swarm has been previously observed). It is further
assumed that the analysis of historical data also indicates that in
40% of the cases when a strong earthquake occurred in the
region, it was preceded by a swarm. On the other hand, it is
assumed that in 4% of the cases when no earthquake eventually
occurred, a seismic swarm occurred anyway. Based on this in-
formation, the probabilities in the following equation were de-
termined, in which the vertical bar (when present) indicates
that it is assumed that the event to the right of the bar has
occurred (i.e., a conditioning event):
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EQ-TARGET;temp:intralink-;df9;52;745 8>><
>>:

P�Q � � 0:001

P�SjQ � � 0:4

P�SjQ � � 0:04

: �9�

Having assigned these probabilities and assuming that a seis-
mic swarm has occurred, we may calculate the probability
P�Q jS� that the observed swarm is a prelude to a strong earth-
quake, by means of Bayes’ theorem, as shown in the below
equation (note that this probability was indicated as P�QS �
in equations 2 and 4):

EQ-TARGET;temp:intralink-;df10;52;604P�Q jS� � P�Q∩S�
P�S�

� P�Swarm and strong earthquake both occur�
P�Swarm is observed�

� P�SjQ � · P�Q �
P�SjQ � · P�Q � � P�SjQ � · �1 − P�Q ��

� 0:4 · 0:001
0:4 · 0:001� 0:04 · 0:999

� 0:01: �10�

As can be seen, solely on the basis of the added information of
a swarm’s occurrence, the probability of an earthquake taking
place P�Q jS� grew tenfold with respect to the value based ex-
clusively on historical data (i.e., P�Q �).

PROBABILITY, EXPERTIZE, AND RESPONSIBILITY

Referring to the example in the Probability, State of Knowl-
edge, and Bayes’ Theorem section, one can actually imagine
that if information related to other credible precursors were
available, the estimate of earthquake probability could be fur-
ther refined, again using Bayes’ theorem. In fact, with ever-
increasing knowledge of the phenomenon (i.e., knowledge on
its mechanisms and determining factors), the outcome of the
experiment will tend toward becoming predictable with cer-
tainty. This shows that the calculation of probabilities does not
conflict with determinism.

In general, one could say that results of practical value can
only be produced by those who are experts on both the phe-
nomenon and the calculus of probability. It is actually for this
reason that estimates of hazard (i.e., the probability of occur-
rence of hazardous events) and the associated risks are normally
requested to the experts—the intended meaning of this term
being those who are able to reduce the uncertainty about the
phenomenon to a minimum, having studied said phenomenon
more than anyone else.

Consequently, it may be concluded that two of the prin-
cipal responsibilities of the seismic risk analyst, when the analy-
sis is framed in probability theory, are
1. to ensure that the risk assessment takes advantage of the

fullest level of information, about the phenomenon of in-
terest, at the time of the analysis;

2. and to employ such information in a (mathematically) coher-
ent manner as prescribed by the rules of probability theory.

SUMMARY

The intrinsic link between the knowledge of the seismic risk
analyst and the results of the probabilistic analysis was pre-
sented. More specifically, stating that any criterion to measure
probability could be considered mathematically legitimate does
not imply that said evaluation may be formulated in an arbi-
trary manner, but rather highlights the responsibility which
burdens the analyst to produce an evaluation incorporating all
effectively available information in a probabilistically consis-
tent manner. This means that estimates of probability can be
considered correct if and only if they correctly incorporate all
available information.

This requires careful deliberation and also implies that
seismic risk estimates will vary according to the analyst’s level
of information and the validity of the said estimates decays
once new information is acquired and/or the event of interest
occurs. Consequently, the importance of entrusting seismic risk
assessment to experts on the phenomenon, who also know
probability theory, was highlighted.

It was also shown how it is convenient to express risk in
terms of the losses that the event of interest may produce and
the associated probabilities. It is only by evaluating the conse-
quences that one may compare risk management strategies that
refer to different risks of different nature. This is where the
possibility to direct resources for risk mitigation in an optimal
manner, according to a utility criterion, derives from. In this
context, the concepts of expected loss and optimal decision
making were briefly discussed. In conclusion, knowledge, prob-
ability, and loss are the key factors for a state-of-the-art ap-
proach toward seismic risk evaluation and management.
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