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ABSTRACT  

Spatial correlation of peak ground motion amplitudes is required in modeling hazard for risk assessment 

of spatially distributed systems. In particular when a portfolio of buildings or a transportation/distribution 

network is of concern, spectral acceleration (Sa) correlation models may be considered in order to 

evaluate the expected loss in case of seismic events. The estimation of an appropriate spatial correlation 

model is still a research task in earthquake engineering, because of several issues related to: data, 

statistical approaches and estimation tools, and tests to evaluate the estimated models. In the presented 

paper an analysis of the spatial correlation of Sa is carried out using the Italian ACcelerometric Archive 

(ITACA) dataset. Correlation is estimated on the residuals with respect to a ground motion prediction 

equation (GMPE) calibrated on the same data considered. Results show that the decay rate of correlation, 

as a function of inter-site distance, tends to increase with structural period. Based on that, a simple linear 

formula, although preliminary, is provided to model spatial correlation of Sa as a function of frequency.  
 

1 INTRODUCTION  

Assessment of intraevent spatial correlation of 
ground motion intensity measures (IMs) has 
become a relevant topic in seismic risk analysis. 
The importance of modeling such phenomenon is 
due to the requirement to extend seismic risk 
analysis, usually related to site-specific structures, 
to spatially distributed systems and lifelines. In 
particular, on the hazard side, probabilistic 
seismic hazard analysis (PSHA; McGuire, 2004)  
refers to ground motion prediction equations 
(GMPEs) to model ground motion which provide 
probabilistic distribution of the chosen IM 
conditional on earthquake magnitude, source-to-
site distance, and other parameters such as local 
geological conditions. Since it was demonstrated 
that GMPEs’ residuals of IMs (e.g., peak ground 
acceleration, peak ground velocity, spectral 
acceleration) are spatially correlated (e.g., Boore 
et al. 2003, Goda and Hong 2008, Esposito and 
Iervolino 2011), it is important to have 

correlation models for hazard assessment of a 
region. 

 Spatial correlation models available in 
literature have been empirically estimated mainly 
on earthquakes outside Europe, such as 
Northridge (1994) or Chi-Chi (1999). Most of the 
studies are based on dense observations of single 
events (e.g., Boore et al. 2003, Wang and Takada 
2005, Jayaram and Baker 2009); a few works 
have, instead, combined data from multiple 
events to obtain a unique estimate of correlation 
(e.g., Goda and Hong 2008, Goda and Atkinson 
2009, Goda and Atkinson 2010, Sokolov et al. 
2010).  

Those models depend uniquely on inter-site 
separation distance and provide the distance limit 
at which correlation may technically considered 
to be lost (i.e., distance beyond which IMs may 
be considered uncorrelated).  Moreover, if 
spectral acceleration (Sa) is of concern, the 
correlation may depend also on the period Sa 
refers to.  
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In Figure 1, several models for spectral 
acceleration, considering as period 1 sec are 
shown. The correlation coefficient is expressed 
by Equation 1, where a, b, and c are the model 
parameters, T is the period and h is the inter-site 
separation distance (in km). 
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The black dotted line in Figure 1 represents the 
value of distance at which the correlation may 
technically considered to be lost, i.e. equal to 
0.05, or the practical range as discussed in the 
following.  

It is clear from the figure that distances at 
which the correlation is conventionally 
considered lost is very different for each model 
considered. In fact, models from different authors 
provide different results even if estimating 
correlation for the same IM. This is supposed to 
depend on several factors such as the dataset 
used, the GMPE chosen to compute intraevent 
residuals, and the working assumptions of the 
estimation. 

For example, Sokolov et al. (2010), starting 
from the strong-motion database of TSMIP 
network in Taiwan, investigated the dependency 
of spatial correlation on site classes and 
geological structures, asserting that a single 
generalized spatial model may not be adequate 
for all of Taiwan territory. In some cases (e.g., 
Wang and Takada 2005, Jayaram and Baker 
2009) existing GMPEs are used, while, in others 
(e.g., Goda and Hong 2008, Goda and Atkinson 
2009, Sokolov et al. 2010), ad-hoc fit on the 
chosen dataset is adopted. Generally, regressions 
analysis used to develop prediction equations 
does not incorporate the correlation structure of 
residuals as a hypothesis. Hong et al. (2009) and 
Jayaram and Baker (2010), evaluated the 
influence of considering the correlation in fitting 
a GMPE, finding a minor influence on regression 
coefficients and a more significant effect on the 
variance components. Goda and Atkinson (2010), 
investigated the influence of the estimation 
approach, emphasizing its importance when 
residuals are strongly correlated.  

In this paper, the evaluation of the spatial 
correlation of Sa residuals is carried out using the 
Italian ACcelerometric Archive (ITACA). The 
analysis of correlation was performed through 
geostatistical tools pooling data from multiple 
events to fit a unique model following the same 
approach of Esposito et al. (2010) and Esposito 
and Iervolino (2011).  

The GMPE with respect to which residuals are 
computed is those of Bindi et al. (2011) and only 

records used to estimate the considered GMPE 
are employed to estimate spatial correlation.  

In the paper, the first part describes the 
framework adopted to estimate the correlation. 
The second part provides the working 
assumptions and a description of the dataset 
considered. Then, results of the estimation of 
correlation lengths for spectral acceleration for 
the eight periods ranging from 0 s to 2 s are 
given.  

Finally, an approximated preliminary 
relationship of the correlation range as a function 
of period is provided and compared with previous 
research on the same topic. 

 
Figure 1. Some correlation models available in literature for 
Sa(1s): the black dashed line intersects the curves at the 
distance at which the correlation is conventionally 
considered as almost lost (i.e., the correlation coefficient is 
equal to 0.05). 

2 SEMI-EMPIRICAL MODELING OF 

SPATIAL CORRELATION 

2.1 Geostatistical analysis 

GMPEs model the logs of spectral acceleration 

for a specific period T, and related heterogeneity, 

at a site p due to earthquake j as in Equation (2). 

 log ( ) log ( ) , ,pj pj j pjSa T Sa T M R       (2) 

 log ( ) , ,pjSa T M R   is the mean of the logs 

conditional on parameters such as magnitude (M), 

source-to-site distance (R), and others   ; ηj 

denotes the inter-event residual, which is a 

constant term for all sites in a given earthquake 

and represents a systematic deviation from the 

mean of the specific seismic event; and εpj is the 

intra-event variability of ground motion. εpj and ηj 

are usually assumed to be independent random 

variables, normally distributed with zero mean 

and standard deviation σintra and σinter, 

respectively. Then, log ( ) pjSa T  is modeled as a 

normal random variable with mean 



 

 log ( ) , ,pjSa T M R   and standard deviation, σT 

where σ
2

T = σ
2

intra + σ
2
inter.  

If the hazard assessment at two or more sites is 

of concern, the joint probability density function 

(PDF) for Sa(T) at all locations is required, and it 

can be modeled with a multivariate normal 

distribution (Jayaram and Baker  2008).  

It is assumed that the logs of Sa(T) form a 

Gaussian random field (GRF), defined as a set of 

random variables, one for each site u in the study 

area SR
2
.  

To any set of n sites , 1, ,p npu , 

corresponds to a vector of n random variables that 

is characterized by the covariance matrix,
 
Σ , as 

in Equation 3 where the first term produces 

perfectly correlated inter-event residuals 

(Malhotra 2008), while the second term 

(symmetrical) produces partially correlated intra-

event residuals. 
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In Equation 3, the correlation is heterogeneous 

as it depends on the pairs of sites considered, and 

the intra-event variance is homoscedastic as it is 

constant for all sites (this assumed in most of 

GMPEs, although some studies have found 

dependence of intra-event variability on distance, 

magnitude and non-linear site effects; Strasser et 

al.  2009).  

If the spatial correlation for intra-event 

residuals is a function of the relative location of 

sites, it becomes as in Equation 4, where p and q 

are two locations at the end of hpq (the separation 

vector between the two sites).  

 pq 
pq

h  (4) 

Under the hypothesis of second-order 

stationarity and isotropy of the GRF, correlation 

depends only on the separation distance h = ||h||. 

Therefore if intra-event residuals may be modeled 

as a stationary and isotropic GRF, all data 

available from different earthquakes and regions, 

therefore deemed homogeneous, are used to fit a 

unique model (see Esposito and Iervolino 2011, 

for more details). 

A common tool to quantify spatial variability 

of georeferenced data is the semivariogram ( )
j

h  

It is used to model the covariance structure of 

GRF through suitable functions. Under the 

hypothesis of second-order stationarity and 

isotropy it is defined as in Equation 5.  

     1j j jh Var h                          (5) 

where 
j

h ( ) denotes the spatial correlation 

coefficient between intra-event residuals 

separated by the distance h. 

The estimation of correlation usually develops 

in three steps:  

 

1. computing the empirical semivariogram
1
;  

2. choosing a functional form;  

3. estimating the correlation parameters by 

fitting the empirical data with the 

functional model. 

 

Empirical semivariograms are computed as a 

function of site-to-site separation distance, with 

different possible estimators. The classical 

estimator is the method-of-moments (Matheron 

1962) which is defined for an isotropic random 

field in Equation 6, where N(h) is the set of pairs 

of sites separated by the same distance h, and 

|N(h)| is the cardinal of N(h).
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Since this estimator can be badly affected by 

atypical observations (Cressie 1993), Cressie and 

Hawkins (1980) proposed a more robust 

estimator (less sensitive to outliers). Both 

estimators will be used in the evaluation of intra-

event spatial correlation of Sa(T).  

 To compute the semivariogram it may be 

useful, when dealing with earthquake records, to 

define tolerance bins around each possible h 

value. The selection of distance bins has 

important effects: if its size is too large, 

correlation at short distances may be masked; 

conversely if it is too small, empty bins, or bins 

with samples small in size, may impair the 

                                                 
1
 Assuming a common semivariogram for different events, 

that is, invariant through earthquakes, allows to neglect the 

subscript j in the following equations. 



 

estimate. A rule of thumb is to choose the 

maximum bin size as a half of the maximum 

distance between sites in the dataset, and to set 

the number of bins so that there are at least thirty 

pairs per bin (Journel and Huijbregts 1978).  

The interpretation of experimental 

semivariograms consists in the identification of a 

model among the family of functions able to 

capture and emulate its trend. The three basic 

stationary and isotropic models are: exponential, 

spherical, and Gaussian. In particular, the 

exponential model which is the most common 

one, is described in Equation 7:  

   3 /

0 1 h b

eh c c e       (7) 

where c0 is defined nugget, i.e. the limit value of 

the semivariogram when h is zero, ce is the sill, or 

the population variance of the random field 

(Barnes 1991) and b is the practical range defined 

as the inter-site distance at which h( )  equals 

95% of the sill.  

Note that the parameter b defined in Equation 

7, which will be used in the following, does not 

correspond to the parameter defined in Equation 

1.  

Several goodness-of-fit criteria for finding the 

best parametric model have been proposed in 

geostatistical literature. Studies dealing with 

earthquake data sometimes use visual or trial and 

error approaches in order to appropriately model 

the semivariogram structure at short site-to-site 

distances (Jayaram and Baker 2009), where it is 

significant. 

In this work experimental semivariograms are 

fitted visually, although using the least squares 

estimation as a starting point. 

2.2 Estimating correlation on multievent data 

Empirical semivariograms are computed 

starting from normalized intra-event residuals 

obtained for a single earthquake j and a generic 

site p as pj

pj/p where p is the standard 

deviation of the intra-event residual at the site p 

(in the study the intra-event standard deviation is 

common for all sites consistent with GMPEs used 

to compute residuals, to follow).  

The standardization enables to not estimate the 

sill, as it should be equal to one; therefore 

Equation 5 becomes Equation 8, where the 

superscript represents an empirical estimate. 

   1h h  ˆ ˆ  (8) 

With earthquake data, standardization can be 

carried out with the standard deviation provided 

by the GMPE
2
. Another option is to use the 

sample variance as an estimate of the true 

variance (e.g., Jayaram and Baker 2010). 

Moreover Goda and Atkinson (2010) used the 

intra-event standard deviation inferred from the 

large-separation-distance plateau of the 

semivariogram, assuming that at those distances 

residuals are not correlated.  

In this work, the variance provided by the 

GMPEs was preferred. In fact, evaluation of 

possible alternatives for standardization leads to 

results which seem to be not significantly affected 

by a choice with respect to another (e.g., in 

Esposito and Iervolino 2011). 

Normalized intra-event residuals from multiple 

events (and regions) are then pooled to fit a 

unique correlation model. This because 

geostatistical estimation needs a relatively large 

number of data to model the semivariogram (i.e., 

many records to have more than thirty pairs in 

each h bin), which are not available for individual 

events in the chosen dataset.  

Assuming the same isotropic semivariogram 

with the same parameters for all earthquakes the 

experimental semivariogram becomes that of 

Equation 9 where nj is the number of records for 

the jth event and  N h  is the number of pairs in 

the specific h bin.  

Equation 10 shows how individual events are 

kept separated in computing the empirical 

semivariogram. In fact, the differences of 

residuals of Equation (9) are computed only 

between pairs of residuals (standardized with the 

common standard deviation from the GMPE) 

from the same earthquake, then differences from 

different earthquakes are pooled.  

This process is visually sketched in Figure 3 

from which it is possible to note that the 

empirical semivariogram point at h1 is not the 

average of experimental semivariograms from 

different earthquakes, as N(h) is the number of 

pairs in the specific h bin from all earthquakes. 
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2 It is usual to use the sample variance as an estimator of the sill 

for the experimental semivariogram, but this may be improper in 

some circumstances; see Barnes (1991) for a discussion. 
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3 DATASET 

The number of considered recordings from 
ITACA corresponds exactly to data used to fit 
Bindi et al. 2011 GMPE (except that only 
earthquakes for which more than one record was 
available where considered) and it is equal to 763 
ground motions from 97 events over the 4-6.9 
magnitude range (moment magnitude, Mw).  

Source-to-site distance is the closest horizontal 
distance to the vertical projection of the rupture 
(i.e., Joyner-Boore distance, Rjb) and is up to 196 
km in the data.  

Characteristics of the datasets, with respect to 
explanatory variables of the considered prediction 
equation (magnitude, distance and local site 
conditions) are shown in Figure 2. 

 

Figure 2. ITACA strong-motion subsets with respect Mw, 

Rjb and local site conditions according to Eurocode 8 

(CEN, 2003). 

4 SPATIAL CORRELATIONS OF 

SPECTRAL ORDINATES FROM ITACA 

In order to have a reasonable number of data 

pairs in the bins (at least 30) and a stable trend of 

correlation, the experimental semivariograms 

were obtained using a width of 2 km at seven 

periods ranging between 0.1 seconds and 2 

seconds.  

In Figure 4 the distribution of data pairs as a 

function of separation distance bins (2 km) is 

shown. 
Because the GMPE used to obtain intraevent 

residuals refers to geometric mean of horizontal 
components, the correlation was estimated for 
this IM.  

Both estimators (classical and robust) were 
used; no significant difference was found in the 
shape of the fitted semivariogram.  

 
Figure 3. Pooling standardized intra-event residuals of 
multiple events (j=1,2,..k) to compute experimental 
semivariogram.  

Of the three basic models (Gaussian, spherical 

and exponential), the exponential model has been 

chosen to fit empirical points since this model is 

widely adopted in the literature. Moreover, the 

choice of using the same model for all periods 

allows to compare results and to investigate 

possible dependency of the model’s parameters 

on the fundamental period. 

Assuming that there is no nugget effect (as this 

study does not investigate variations at a smaller 

scale with respect to that of the tolerance); the 

only parameter to estimate is the range, b. 

Least square method (LSM) was used as a 

reference to manually fit the model in the 

empirical semivariogram in order to give more 

importance to the small separation distances. In 

particular, correlation lengths evaluated for 

spectral acceleration for the seven periods, 0.1 s, 

0.2 s, 0.3 s, 0.5 s, 1 s, 1.5 s, 2 s, resulted equal to 

11.4 km, 9 km, 13.2 km, 11.9 km, 17.8 km, 25.7 

km, and 33.7 km, respectively.  

In Figures 5 to Figure 11 all estimated 

exponential models are shown toghether with 

data points referring to both classical and robust 

estimators. 

 
Figure 4. Histograms of the number of data pairs as a 
function of site-to-site separation distance. 



 

 
Figure 5. Empirical semivariogram and fitted exponential 

model for Sa(0.1 s).  

 
Figure 6. Empirical semivariogram and fitted exponential 
model for Sa(0.2 s). 

 
Figure 7. Empirical semivariogram and fitted exponential 
model for Sa(0.3 s). 

 
Figure 8. Empirical semivariogram and fitted exponential 
model for Sa(0.5 s). 

 

 
Figure 9. Empirical semivariogram and fitted exponential 
model for Sa(1 s). 

 
Figure 10. Empirical semivariogram and fitted exponential 
model for Sa(1.5 s). 

 
Figure 11. Empirical semivariogram and fitted exponential 
model for Sa(2 s). 

Results indicate that correlation range tends to 

increase with period reaching the value of about 

40 km for T = 2 s.  

It should be noted that in Esposito and 

Iervolino (2011) the proposed methodology was 

used to estimate the horizontal peak ground 

acceleration (PGA) intra-event residuals’ 

correlation starting from a less recent GMPE, the 

Bindi et al. (2010), and a larger dataset that 

includes the one used herein. For completeness, 

their spatial correlation model has been also 

estimated for horizontal PGA. The resulting range 

was similar to that of the mentioned study (Figure 

12); i.e., 10.8 km with respect to 11.5 km, as 

expected.  

The slight difference may also be related to the 

bin width used in the estimation of empirical 



 

semivariograms (1 km instead of 2 km considered 

herein).  

 
Figure 12. Empirical semivariogram and fitted exponential 
model for horizontal PGA compared with Esposito and 
Iervolino (2011). 

5 DISCUSSION 

Empirical results demonstrate that correlation 

length tends to increase with period. Except for 

high frequencies at which there is no a significant 

increment. This seems to be consistent with past 

studies of ground motion coherency (Zerva and 

Zervas 2002). In fact, the coherency describes the 

degree of correlation between amplitudes and 

phases angles of two time histories at each of 

their component frequencies. Considering that 

coherency decreases with increasing distance 

between measuring points and with increasing 

frequency, it may be reasonable to expect more 

coherent ground motion, as spectral acceleration 

evaluated at high periods exhibits more correlated 

peak amplitudes.  

This same issue aspect was also discussed in 

Jayaram and Baker (2009) where in all 

earthquakes analyzed, the estimated ranges 

increased with period except for some cases. 

In Figure 13 estimated ranges have been 

compared with some correlation lengths available 

in literature; those models have been chosen 

considering: Californian dataset from Goda and 

Hong (2008), “all earthquakes” model from Hong 

et al. (2009), and the “predictive model” based on 

all earthquakes from Jayaram and Baker (2009). 

The range b has been obtained evaluating the 

distance at which correlation is equal to 0.05.  

Results provided by this study seem to be 

comparable with ranges estimated in literature in 

terms of both trend as a function of T, and the 

estimated value of correlation lengths.  

This holds generally, except with respect to 

Goda and Atkinson (2009, 2010) models, in 

which ranges are larger (never below about 60 

km) and the dependence of the correlation on 

period is not significant.  

A simple linear predictive model (red dashed 

line in Figure 13) has been estimated using LSM 

method in order to obtain ranges based on the 

period of interest. The resulting linear model is 

expressed by Equation (11). 

  8.6 11.6b T T    (11) 

Based on this model, the correlation between  

normalized intraevent residuals separated by h is 

obtained as follows: 
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derived from Equation 7 and Equation 8 where 

model parameters c0  and ce, the nugget and the 

sill respectively, are equal to one. 

Starting from this predictive model it is 

possible to get the joint probability density 

function for Sa(T) at all locations, for which it is 

required characterizing the covariance matrix, Σ , 

expressed in the Equation 3. 

 
Figure 13 Estimated ranges in this study compared with 
some correlation lengths available in literature. 

6 CONCLUSIONS 

The study presented focused on the assessment 

of intraevent spatial correlation of spectral 

acceleration at eight periods ranging between 0 s 

and 2 s.  

A subset of the Italian Accelerometric Archive 

has been used to compute residuals starting from 

a GMPE calibrated on the same dataset. 

Consistent with the available literature on the 

topic, hypotheses of the stationarity and isotropy 

of the random fields were retained to compute 

experimental semivariograms of standardized 

intraevent residuals (with respect to the standard 

deviation estimated by the GMPE).  

Moreover, because a relatively small number 

of records for each earthquake was available, 



 

records from multiple events and regions within 

Italy were pooled to develop a unique model 

fitted with a large number of observations. 

Exponential correlation models were 

calibrated by finding that practical ranges tends to 

increase with the period. The choice of using the 

same model (exponential) for all periods allows 

to compare results and to investigate possible 

dependency of the parameters on the period the 

spectral ordinate refers to.  

Results have been also compared with 

previous researches finding, generally, a similar 

trend.  

Finally a simple linear predictive model has 

been estimated in order to provide the correlation 

coefficient between spectral accelerations as a 

function of structural period. 
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