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Abstract Spatial modeling of ground motion intensity measures (IMs) is required
for risk assessment of spatially distributed engineering systems. For example, when a
lifeline system is of concern, classical site-specific hazard tools, which treat IMs at
different locations independently, may not be adequate to accurately assess the seismic
risk. In fact, in this case, modeling of ground motion as a random field is required; it
basically consists of assigning a correlation structure to the IM of interest. This work
focuses on semiempirical estimation of the correlation coefficient, as a function of
intersite separation distance, between residuals with respect to ground motion predic-
tion equations (GMPEs) of horizontal peak ground acceleration (PGA) and peak
ground velocity (PGV). In particular, subsets of the European Strong-Motion Database
(ESD) and the Italian Accelerometric Archive (ITACA) were employed to evaluate the
intraevent residual correlation based on multiple earthquakes, considering different
GMPEs fitted to the same records. The analyses were carried out through geostatistical
tools, which enabled results to be found that are generally consistent between the two
datasets. Correlation for PGVappears to attenuate more gradually with respect to PGA.
In order to better understand the dependency of the results on the adopted estimation
approach and dataset, some aspects related to the working hypotheses are critically
discussed. Finally, estimated correlation models are used to develop illustrative
applications of regional probabilistic seismic-hazard analysis.

Introduction

Seismic-risk analysis of distributed systems and infra-
structures requires a different approach with respect to the
one commonly used for site-specific structures. In fact,
systemic seismic performance may be conditional upon the
behavior of many different components, each of which may
respond differently to the input ground motion in the region
where the system is deployed. In the seismic-risk assessment
of such systems, one of the key issues, at least on the demand
side, is to account for the existence of a spatial statistical cor-
relation between ground motion intensity measures (IMs).

Traditionally, ground motion is modeled, for engineer-
ing purposes, via ground motion prediction equations
(GMPEs), which provide probabilistic distribution of the cho-
sen IM, conditional on earthquake magnitude, source-to-site
distance, and other parameters such as local geological con-
ditions. GMPEs are obtained by regression of recorded data
from historical events. The model’s residual is usually ex-
pressed as the sum of two components: an interevent term,
which is constant for each earthquake (common for all sites)
and represents average source effects not explicitly appearing
in the model covariates, and an intraevent term representing

site-to-site variability of the IM (Strasser et al., 2009). Boore
et al. (2003) demonstrated that intraevent residuals, for
example those referring to peak ground acceleration (PGA),
are spatially correlated1. Therefore, IMs at different sites are
correlated because of both inter- and intraevent residuals, and
it is important to account for these dependencies in seismic-
risk assessment when a region is of concern (Crowley and
Bommer, 2006; Park et al., 2007; Goda & Hong, 2008b,
Crowley et al., 2008).

Several correlation models available in the literature
depend uniquely on intersite separation distance. Most of
the studies are based on dense observations of single events
(e.g., Boore et al., 2003; Wang and Takada, 2005; Jayaram
and Baker, 2009) from different major earthquakes outside

1This kind of spatial correlation of ground motion consists of similarity
between IMs (e.g., peak values of time history) observed at different sites
within the same event. It is also worth mentioning here the coherency of
ground-motion signals, which represents the similarity of ground motion
in the frequency domain and describes the degree of positive or negative
correlation between amplitudes and phase angles of two time histories at
each of their component frequencies (e.g., Zerva and Zervas, 2002).
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Europe, such as Northridge (1994) or Chi-Chi (1999). A few
works have, instead, combined data from multiple events to
obtain a unique estimate of correlation (e.g., Goda and Hong;
2008a, Goda and Atkinson, 2009; Goda and Atkinson, 2010;
Sokolov et al., 2010).

Different authors, for a given IM, provide different
distance limits for correlation to disappear (i.e., distance
beyond which IMs may be considered uncorrelated), and this
is supposed to depend on the dataset considered, the GMPE
chosen to compute residuals, and the working assumptions of
the estimation. For example, Goda and Atkinson (2009)
investigated the effects of earthquake types (i.e., shallow
and deep events) on correlation using datasets from K-NET
and KiK-net Japanese strong-motion networks without find-
ing any significant dependency. On the other hand, Sokolov
et al. (2010), starting from the strong-motion database of Tai-
wan Strong Motion Instrumentation Program (TSMIP) net-
work, estimated correlation for various areas, site classes,
and geological structures, asserting that a single generalized
spatial model may not be adequate for all of Taiwan territory.

In some cases (e.g., Wang and Takada, 2005; Jayaram
and Baker, 2009), existing GMPEs are used, while in others
(e.g., Goda and Hong, 2008a; Goda and Atkinson, 2009;
Sokolov et al., 2010), ad hoc fit on the chosen dataset is
adopted. Generally, regression analysis used to develop pre-
diction equations does not incorporate the correlation struc-
ture of residuals as a hypothesis. Hong et al. (2009) and
Jayaram and Baker (2010) evaluated the influence of consid-
ering the correlation in fitting a GMPE, finding a minor
influence on regression coefficients and a more significant
effect on the variance components.

Goda and Atkinson (2010) investigated the influence of
the estimation approach, emphasizing its importance when
residuals are strongly correlated.

In Figure 1, several models for PGA and peak ground
velocity (PGV) as mentioned in the preceding paragraph,
are shown; the correlation coefficient is expressed by
equation (1), where a, b, and c are the model parameters

(to follow), and h is the intersite separation distance (in
kilometers):

ρ h� � � maxf�1 � c� � c · e�a·h
b
; 0g: (1)

In this paper, the evaluation of the spatial correlation of
PGA and PGV intraevent residuals is carried out using the
European Strong-Motion Database (ESD) and the Italian
Accelerometric Archive (ITACA). Because each earthquake
in the chosen datasets is characterized by a relatively small
number of records, which may be insufficient to evaluate
correlation, data from multiple events are pooled to fit a
unique model.

The GMPEs, with respect to which residuals are com-
puted, are those of Akkar and Bommer (2010) for ESD and
Bindi et al. (2010) for ITACA. Subsets of the same records
used to estimate the considered GMPEs are used to estimate
intraevent spatial correlation models.

The analysis of correlation was performed through
geostatistical tools, and in order to better understand the
dependency of the results on the approach adopted, some
aspects related to the working hypotheses are discussed.
Finally, developed correlation models are employed within
the framework of regional seismic-hazard assessment to com-
pare with the case when spatial correlation is not considered.

Semiempirical Modeling of Spatial Correlation

GMPEs model the logs of ground-motion intensities and
related heterogeneity at a site p due to earthquake j as in
equation (2):

logYpj � logYpj�M;R; θ� � ηj � εpj: (2)

Ypj denotes the IM of interest; logYpj�M;R; θ� is the mean
of the logs conditional on parameters such as magnitude (M),
source-to-site distance (R), and others (θ); ηj denotes the
interevent residual, which is a constant term for all sites
in a given earthquake and represents a systematic deviation
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Figure 1. Some correlation models available in literature for PGA (left) and PGV (right); a, b, and c are the model parameters in
equation (1). The black dotted line intersects the curves at the distance at which the correlation is conventionally considered as almost
lost, which is the correlation coefficient equal to 0.05.
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from the mean of the specific seismic event; and εpj is the
intraevent variability of ground motion. Residuals εpj and ηj
are usually assumed to be independent random variables,
normally distributed with zero mean and standard devia-
tion σintra and σinter, respectively. Then, logYpj is modeled
as a normal random variable with mean logYpj�M;R; θ�
and standard deviation σT , where σ2

T � σ2
intra � σ2

inter.
Appropriately plugging this distribution into the probabilistic
seismic-hazard analysis leads to the distribution of the IM at
the site of interest (McGuire, 2004).

If the hazard assessment at two or more sites is of con-
cern, the joint probability density function (PDF) for the IMs
at all locations is required. A simple way to model for the
joint PDF of the IM, conditional on the GMPE covariates, is
the multivariate normal (e.g., Jayaram and Baker, 2008). It is
assumed that the logs of IM form a Gaussian random field
(GRF), defined as a set of random variables log�IM�u��, one
for each site u in the study area S∈R2, flog�IM�u��;∀u∈Sg.
For any set of n sites up, p � 1;…; n, corresponds to a
vector of n random variables that is characterized by the
covariance matrix, Σ, as in equation (3), where the first term
produces perfectly correlated interevent residuals (Malhotra,
2008), while the second term (symmetrical) produces par-
tially correlated intraevent residuals:

Σ � σ2
inter ·

1 1 � � � 1

1 1 � � � 1

..

. ..
. . .

. ..
.

1 1 � � � 1

2
66664

3
77775

� σ2
intra ·

1 ρ12 � � � ρ1n

ρ21 1 � � � ..
.

..

. ..
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. ..
.

ρn1 ρn2 � � � 1

2
6666664

3
7777775
: (3)

In equation (3), the correlation is heterogeneous as it depends
on the pairs of sites considered, and the intraevent variance is
homoscedastic as it is constant for all sites (this is assumed in
most of GMPEs, although some studies have found depen-
dence of intraevent variability on distance, magnitude, and
nonlinear site effects; Strasser et al., 2009). If the spatial cor-
relation for intraevent residuals is a function of the relative
location of sites, it becomes as in equation (4), where p and q
are two locations at the ends of hpq (the separation vector
between the two sites):

ρpq � ρ�hpq�: (4)

To briefly review the features of a GRF, let up∈R2 be the
generic site in a two-dimensional Euclidian space and sup-
pose that the intraevent residual in a specific earthquake,
εj�up� � εpj, is a GRF in a domain S∈R2 (the region of
interest). The GRF is fully described by the mean E�εj�u��
for each site and the covariance Cj between two generic
locations up and uq defined in equation (5):

Cj�up; uq� � E�εj�up� · εj�uq�� � E�εj�up�� · E�εj�uq��:
(5)

Under the hypothesis of second-order stationarity of the GRF
(Goovartes, 1997), the mean is constant and the covariance is
location-independent as defined in equation (6):

Cj�h� � E�εj�u� · εj�u� h�� � E�εj�u�� · E�εj�u� h��:
(6)

In this case, the two points’ statistics depend only on the
separation vector h, and the reference to a particular location
u can be dropped. Here, it is assumed that intraevent resid-
uals may be modeled as a stationary GRF, and all data avail-
able from different earthquakes and regions, therefore
deemed homogeneous, are used to fit a unique model.

If the GRF is isotropic, correlation depends only on the
separation distance h � khk. An anisotropic random field
implies, instead, the possibility of having a spatial variability
that depends on the direction considered. Past research has
shown that the hypothesis of isotropic random field, which is
also retained herein, is reasonable (Wang and Takada, 2005;
Jayaram and Baker, 2009).

Geostatistical Analysis of Intraevent Residuals

A common tool to quantify spatial variability of random
fields is the semivariogram, γj�h�. It measures the average
dissimilarity between georeferenced data, and it is used to
model the covariance structure of GRF through suitable
functions. Under the hypothesis of second-order stationarity
and isotropy it is defined as in equation (7):

γj�h� �
1

2
Var�εj�u� h� � εj�u�� � Var�εj�u�� � Cj�h�:

(7)

Therefore, for an isotropic and homogenous random field,
considering that for h → 0, Cj�h� � Var�εj�, the semivario-
gram results as in equation (8),

γj�h� � Cj�0� � Cj�h� � Var�εj� · �1 � ρj�h��; (8)

where ρj�h� denotes the spatial correlation coefficient
between εj�u� h� and εj�u�; see Cressie (1993) for more
details. In fact, estimation of correlation usually develops in
three steps: (1) computing the empirical semivariogram
(assuming a common semivariogram for different events, that
is, invariant through earthquakes, allows us to neglect the
subscript j in the following equations), (2) choosing a func-
tional form, and (3) estimating the correlation parameters by
fitting the empirical data with the functional model.

Empirical semivariograms are computed as a function of
site-to-site separation distance, with different possible esti-
mators. The classical estimator is the method-of-moments
(Matheron, 1962) which is defined for an isotropic random
field in equation (9),
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γ̂�h� � 1

2 · jN�h�j ·
X
N�h�

�ε�u� h� � ε�u��2; (9)

where N�h� is the set of pairs of sites separated by the same
distance h, and jN�h�j is the cardinal of N�h�. To compute
the semivariogram, it may be useful, when dealing with
earthquake records, to define tolerance bins around each pos-
sible h value. The selection of distance bins has important
effects: if its size is too large, correlation at short distances
may be masked; conversely, if it is too small, empty bins, or
bins with samples small in size, may impair the estimate. A
rule of thumb is to choose the maximum bin size as a half of
the maximum distance between sites in the dataset and to set
the number of bins so that there are at least 30 pairs per bin
(Journel and Huijbregts, 1978).

Themethod-of-moments estimator is unbiased; however,
it can be badly affected by atypical observations (Cressie,
1993). Therefore, Cressie and Hawkins (1980) proposed a
more robust estimator (less sensitive to outliers), as in
equation (10):

γ̂�h� � 1

2

��
1

jN�h�j
X
N�h�

jε�u� h� � ε�u�j0:5
�
4

��
0:457� 0:494

jN�h�j

��
: (10)

The fitting analytical model, under stationary and isotropic
hypotheses, may be of different kinds, for example, exponen-
tial, Gaussian, or spherical (Goovartes, 1997). In particular,
the exponential model, which is the most common one, is
described in equation (11), where c0 is defined as the nugget
and represents the limit value of the semivariogram when h is
zero because of variations at distances smaller than the sam-
pling interval and measurement errors, which cause a discon-
tinuity at the origin (Matheron, 1962); ce is the sill, or the
population variance of the random field (Barnes, 1991);
and b is the range defined as the intersite distance at which
γ�h� equals the sill. For the exponential model, the sill is
asymptotic, and it is possible to define a practical range as
the separation distance at which γ�h� equals 95% of the sill:

γ�h� � c0 � ce · �1 � e�3·h=b�: (11)

The goodness of fit of a model can be determined via several
criteria that have been proposed in the geostatistical literature.
Studies dealing with earthquake data sometimes use visual or
trial-and-error approaches in order to appropriately model the
semivariogram structure at short site-to-site distances (Jayar-
am and Baker, 2009). In this work, experimental semivario-
grams are fitted visually, although using the least-squares
estimation as a starting point (described in the PGA and
PGV Correlations from ESD and ITACA section).

Datasets

The estimation of the correlation starts from the charac-
terization of residuals of empirical data with respect to a
GMPE. To this aim, subsets of the ESD and the ITACA datasets

were considered (see the Data and Resources section). The
ESD dataset is comprised of 480 records from 87 events
recorded between 1973 and 2003 and characterized by
moment magnitudes from 5 to 7.6 and the closest horizontal
distance to the vertical projection of the rupture (i.e., Joyner–
Boore distance, Rjb) from 0 to 100 km. The number of con-
sidered recordings for the ITACA subset is 1112 from 162
events over the 4–6.9 magnitude range (moment or local),
and Rjb up to 196 km. Characteristics of the datasets, with
respect to explanatory variables of the considered prediction
equations (magnitude, distance, and local site conditions) are
shown in Figure 2. ESD is a smaller database of stronger and
closer-to-the-source records from European events, while
ITACA is a denser dataset of Italian earthquakeswithin a lower
magnitude range and a broader distance range.A limited num-
ber of records (150 from 19 events) are in common between
the two sets of data. In Figure 3, the distributions of data pairs
as a function of separation distance bins (4-km width for ESD
and 1-km width for ITACA) are also shown.

Estimating Correlation on Multievent Data

To compute the empirical semivariogram, normalized
intraevent residuals are obtained for a single earthquake j
and a generic site p as ε	pj � εpj=σp where σp is the standard
deviation of the intraevent residual at the site p (in the study,
the intraevent standard deviation is common for all sites con-
sistent with GMPEs used to compute residuals). In this case,
equation (8) becomes equation (12), where the superscript
represents an empirical estimate:

γ̂�h� � 1 � ρ̂�h�: (12)

Equation (12) shows that standardization enables us to not
estimate the sill, as it should be equal to one. This applies
if standardization is carried out using the true population’s
variance. With earthquake data, the sample variance or the
standard deviation provided by the GMPE can be used to
obtain standardized residuals2. Another option is to use the
sample variance as an estimate of the true variance (e.g.,
Jayaram and Baker, 2010). Goda and Atkinson (2010) used
the intraevent standard deviation inferred from the large-
separation-distance plateau of the semivariogram, assuming
that at those distances, residuals are not correlated. In this
work, the variance provided by the GMPEs was preferred.
In fact, evaluation of possible alternatives for standardization
leads to results that seem to be not significantly affected by
one choice with respect to another (as discussed in the Influ-
ence of Standardization section).

Because geostatistical estimation needs a relatively large
number of data tomodel the semivariogram (i.e.,many records
havemore than 30 pairs in each h bin), which are not available
for individual events in the chosen datasets, all data available

2It is usual to use the sample variance as an estimator of the sill for the
experimental semivariogram, but this may be improper in some circum-
stances; see Barnes (1991) for a discussion.
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from multiple events (and regions) are used herein to fit a
unique correlation model. The same isotropic semivariogram
with the same parameters for all earthquakes is assumed.

The experimental semivariogram becomes that of equa-
tion (13), where nj is the number of records for the j-th
event, and jN�h�j is the number of pairs in the specific h bin.
Equation (14) shows how individual events (k in total) are
kept separated in computing the empirical semivariogram.
In fact, the differences of residuals of equation (13) are com-
puted only between pairs of residuals (standardized with the
common standard deviation from the GMPE) from the same
earthquake; then, differences from different earthquakes are
pooled. This process is visually sketched in Figure 4, from
which it is possible to note that the empirical semivariogram
point at h1 is not the average of experimental semivariograms
from different earthquakes, as jN�h�

�� is the number of pairs
in the specific h bin from all earthquakes:

γ̂�h� � 1

2 · jN�h�j
X
N�h�

�ε	pj � ε	qj�2; (13)

N�h� � f�j; ε	pj; ε	qj� : kε	pj � ε	qjk � h;

p; q � 1;…nj; j � 1;…kg: (14)

PGA and PGV Correlations from ESD
and ITACA

For the European subset, each bin has a 4-km width, as
this also allows there to be at least 30 pairs per bin and no
empty bins until half of the maximum distance between pairs
in the dataset. Both estimators (classical and robust) were
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Figure 3. Histograms of the number of data pairs as a function of site-to-site separation distance.
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used; no significant difference was found in the shape of the
fitted semivariogram.

Of the three basic models (Gaussian, spherical, and
exponential), the exponential model provided the best fit
at the small separation distances (where the correlation is
expected to be strong). The least-squares method (LSM) was
used as a starting point to fit the semivariogram. Because the
LSM minimizes the fitting error over the whole distance
interval data, and in order to give more importance to the
small separation distances, the LSM has been applied until a
limit separation distance (of the same order of magnitude of
the range where correlation is expected to disappear). LSM
results are then used as a reference to manually fit a model in
the empirical semivariogram. This approach was used to
estimate the correlation of both the PGA and PGV. Because
the chosen GMPE refers to the geometric mean of the hori-
zontal components, the correlation was estimated for this IM.
Assuming that there is no nugget effect (this study does not
investigate variations on a smaller scale with respect to that
of the tolerance), the only parameter to estimate is the range
b whose results equal 13.5 km for PGA and 21.5 km for PGV,
as shown in Figure 5.

It should be noted that in Esposito et al. (2010),
the proposed methodology was used to estimate the correla-
tion of the PGA (horizontal and vertical components)
intraevent residuals starting from a less-recent GMPE, the
Ambraseys et al. (2005a,b), and the dataset was also not
exactly the same. However, the resulting range was quite
similar, 12 km and 18 km for the horizontal and vertical
components, respectively.

For the Italian dataset, the spatial correlation ranges of
residuals obtained from the Bindi et al. (2010) GMPE were
11.5 km and 14.5 km for PGA and PGV, respectively (Fig. 6).
In this case, because of the denser dataset, it was possible to
consider a 1-km bin width; however, it seems that estimates
are not significantly dependent on such size. In fact, the
exponential model for PGA obtained with a bin width of
4 km is characterized by a range of 13.5 km.

Discussion

IM and Dataset Effects

In the cases of both ESD and ITACA, correlation ranges
are higher for PGV than for PGA. In fact, the acceleration
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time history shows a significant proportion of relatively high
frequency, while velocity records shows substantially less
high-frequency motion and are likely to yield higher correla-
tions (e.g., Kramer, 1996). This seems to be consistent with
past studies of ground-motion coherency (Zerva and Zervas,
2002). In fact, the coherency describes the degree of correla-
tion between amplitudes and phase angles of two time his-
tories at each of their component frequencies. Considering
that coherency decreases with increasing distance between
measuring points and with increasing frequency, it may be
reasonable to expect more coherent ground motion, as veloc-
ity that corresponds to low frequency exhibits more corre-
lated peak amplitudes.

In principle, residuals model what is not explained by
the covariates of the GMPE; therefore, because the datasets
are different, differences in the results between ESD and ITA-
CA may be legitimate3. However, for a given IM, practical
ranges are definitely comparable, and the differences are
probably not significant, although the latter is difficult to
assess because the estimation methodology does not provide
the statistics of the range, which would allow us to quan-
titatively assess differences by means, for example, of a
hypothesis test.

Influence of Standardization

As mentioned, there are different possibilities to obtain
standardized residuals. As suggested in Goda and Atkinson
(2010), positive correlations among intraevent residuals may
lead to underestimated intraevent sample variance in GMPEs.
Hence, intraevent standard deviations inferred from the
large-separation-distance plateau of the semivariograms
were used to estimate practical ranges of correlation in the
two subsets. In particular, intraevent residuals without any
standardization were used to estimate the sill (population

variance) under the assumptions that at large-separation dis-
tances, those residuals are not correlated. The resulting esti-
mates are practically the same (less than 10% differences)
with respect to those of the GMPEs. This is also because there
are relatively few data at short separation distances in the
datasets. As a result, it was possible to infer that, at least in
the considered case studies, the GMPEs variance can be used
for the standardization.

Regional Hazard

Developed correlation models can be used, for example,
to obtain the exceedance probability of the IM in a region and
in a time interval of interest. The hazard integral of equa-
tion (15),

λ � ν ·
Z
M

Z
R
P�IM1 > im	;………; IMn > im	jM;R�

· fM;R�m; r� · dm · dr; (15)

provides such an annual rate of joint exceedance in a region
if the same assumptions of site-specific hazard analysis are
retained (McGuire, 2004). In equation (15), fM;R�m; r� is
the joint distribution of magnitude and distances referred to
a particular seismic source; ν is the rate of occurrence of earth-
quakes on it; and P�IM1 > im	;………; IMn > im	jM;R�,
the term affected by spatial correlation, is the conditional
probability that the same4 im	 threshold is exceeded at the
n sites in which the region is discretized and whose distances
from the source are represented by the vector R �
fR1;…; Rng (the integral is conventionallywritten as if it were
a scalar). As an example, a regional hazard was developed
considering the Paganica fault as a source, on which the
2009 L’Aquila (central Italy) earthquake originated, and the
Bindi et al., (2010) GMPE under the assumption that all
the sites have the same rock local site conditions.
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Figure 6. ITACA empirical semivariogram and fitted exponential model for PGA (left) and PGV (right) considering a bin width of 1 km.

3One may argue that the larger ranges found for ESD with respect to ITACA

are an effect of different distribution of magnitude in the two datasets. How-
ever, the proposed correlation models do not incorporate dependency on
magnitude also based on the findings of Jayaram and Baker (2009). 4This is only a possible criterion, and others are possible.
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PGA and PGV hazards, considering ranges of 11.5 km
and 14.5 km, respectively, were computed for a characteristic
earthquake of moment magnitude 6.3 and occurrence rate on
the source ν � 1=750 (Pace et al., 2006).

In Figure 7, surfaces are a function of IMs (as in tradi-
tional hazard curves) and exceedance areas (A	), which are
fractions, between 2.5% to 25%, of a region of 2500 km2

around the fault. Referring, for example, to PGA, entering
the plot with a pair of two A	 and PGA values, the surface
returns the mean annual rate of exceedance of that PGAvalue
over an area at least equal to A	. For comparison, the hazard
considering uncorrelated intraevent residuals was also
computed.

For both PGA and PGV, correlation does not always pro-
vide higher rates with respect to the independent case. This is
because, in the simulated case, the n sites constituting the A	

exceedance region are not necessarily adjoining. Given that
im	 is exceeded (not exceeded) at a given site, correlation
increases the probability of having neighboring sites exceed-
ing (not exceeding) im	 as well.

If an alternate hazard criterion is considered, for exam-
ple, im	 has to be exceeded at exactly n points constituting
A	, the joint hazard for correlated residuals is always higher

with respect to the independent case (Fig. 8). This seems also
consistent with the results of Sokolov and Wenzel (2011).

Conclusions

This study focused on the semiempirical estimation of
spatial correlation of PGA and PGV using subsets of ESD
and ITACA.

The hypotheses of the geostatistical analysis are statio-
narity and isotropy of the random fields. Consistent with the
available literature on the topic, standardized intraevent
residuals were used to compute experimental semivario-
grams that are a function of the site-to-site separation dis-
tance. Because a relatively small number of records for each
earthquake was available, records from multiple events and
regions were pooled to develop a unique model fitted with a
large number of observations.

Exponential correlations were calibrated by finding
practical ranges (the separation distance at which the corre-
lation is technically lost) for ESD (ITACA), 13.5 km
(11.5 km) for PGA and 21.5 km (14.5 km) for PGV.

The proposed results provide the basis for regional
probabilistic seismic-hazard analysis, in other words, hazard
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Figure 7. Regional-hazard surface considering the (a,c) correlated residuals, and the (b,d) independent residuals for PGA
and PGV.
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analysis for spatially distributed systems. Illustrative exam-
ples show the differences in hazard assessment considering
or ignoring the estimated correlations in the case of adopting
different criteria.

Data and Resources

The ground motions and related information were pro-
vided by the authors of the Akkar and Bommer (2010) and
Bindi et al. (2010) GMPEs for the ESD and ITACA datasets,
respectively. In particular, this study considered subsets of
data used to fit these GMPEs; in other words, this study used
only free-field records from earthquakes for which more than
one record was available.
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