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Short Note

Spatial Correlation of Spectral Acceleration in European Data

by Simona Esposito and Iunio Iervolino

Abstract Quantification of regional seismic risk is based on spatially correlated
random fields and requires modeling of the joint distribution of ground-motion inten-
sity measures at all sites of interest. In particular, when a portfolio of buildings or a
transportation/distribution network (lifeline) is of concern, correlation models for elas-
tic spectral acceleration (SA) may also be required in order to estimate the expected
loss in case of seismic events. The presented study focuses on semi-empirical estima-
tion of spatial correlation as a function of intersite separation distance. In fact, this
paper complements, and is based on, preceding work of the authors referring to spatial
correlation of peak ground acceleration and velocity (Esposito and Iervolino, 2011).
The evaluation of correlation for ground-motion residuals was performed on data
from multiple earthquakes, considering different ground-motion prediction equations
fitted to the same records. Correlation analyses, carried out through geostatistical
tools, considered two datasets: the Italian Accelerometric Archive and the European
Strong-Motion Database. Results appear generally consistent with previous research
on the same topic. Finally, simple relationships providing the correlation range of
intraevent residuals of SA, as a function of structural period, were derived for each
dataset. The developed models are useful for earthquake engineering applications

where spatial correlation of peak ground motion is required.

Introduction

Assessment of spatial correlation of ground-motion
intensity measures (IMs) has become a relevant topic in
seismic-risk analysis. The importance of modeling such phe-
nomena is due to the requirement to extend risk assessment,
usually related to site-specific structures, to spatially distrib-
uted systems, such as building portfolios and lifelines. In
particular, on the hazard side, probabilistic seismic hazard
analysis (McGuire, 2004) involves ground-motion prediction
equations (GMPEs), which provide probabilistic distribution
of the chosen IM (e.g., peak ground acceleration [PGA],
peak ground velocity [PGV], and elastic spectral acceleration
[SA]) conditional on earthquake magnitude, source-to-site
distance, and other parameters, such as local geological
conditions. Since GMPE residuals are spatially correlated
(e.g., Boore et al., 2003), neglecting such a correlation may
bias the loss assessment of distributed systems (e.g., Espo-
sito, 2011).

In the literature, several spatial-correlation models for
different ground-motion parameters are available (e.g., Goda
and Hong, 2008; Jayaram and Baker, 2009; Sokolov et al.,
2010). These models depend on intersite separation distance
and provide the limit at which correlation may be technically
considered to be lost (i.e., the distance beyond which intrae-
vent residuals of IMs may be considered uncorrelated).

Herein, evaluation of the spatial correlation for SA (5%
damped) residuals is carried out using two datasets: the
Italian Accelerometric Archive (ITACA), and the European
Strong-Motion Database (ESD). Residuals are computed
using GMPEs by Bindi et al. (2011) and Akkar and Bommer
(2010); only the records used to develop the considered
GMPEs are employed to estimate spatial correlation.

The analysis of correlation was performed through
geostatistical tools, pooling data from multiple events to fit a
unique model based on working hypotheses, and findings of
Esposito and Iervolino (2011) and Esposito et al. (2010).
In fact, this paper complements the preceding work on spatial
correlation of PGA and PGV using European multievent data.

The presentation of the study in the following is struc-
tured such that the first part briefly describes the framework
adopted to estimate correlation (yet for a more comprehen-
sive discussion, the reader should refer to Esposito and
Iervolino, 2011). Subsequently, the working assumptions
and a description of the considered datasets are given. Then,
results of estimation of correlation ranges for SA at 7 struc-
tural periods, ranging from 0.1 s to 2 s for the Italian dataset,
and at 9 periods, ranging from 0.1 s to 2.85 s for the
European dataset, are presented. Finally, simple linear rela-
tionships for the correlation length as a function of structural
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period are derived, discussed, and compared with other
models.

Modeling Spatial Correlation of Ground Motion
Intensity Measures

Geostatistical Framework

Spatial-correlation models provide the basic measure of
spatial continuity of a random field. Regarding the spatial
modeling of IMs for earthquake engineering purposes, the
literature is mostly based on the estimation of correlation be-
tween residuals of ground-motion parameters at two different
sites through the use of geostatistical tools. In particular,
GMPE:s generally model the logarithms of SA for a specific
structural period 7 and related heterogeneity at a site p due to
earthquake j as in

log SA(T) ,; = log SA(T),;(M.R.0) + 1 + €55 (1)

where log SA(T) ,;(M, R, 0) is the mean of the logarithms of
SA conditional on parameters such as magnitude (M),
source-to-site distance (R), and others (0); 7 ; denotes the
interevent residual, which is a constant term for all sites
in a given earthquake and represents a systematic deviation
of the mean of the specific seismic event; finally, Epj is the
intraevent variability of ground motion. ¢,,; and 7); are usual-
ly assumed to be independent random variables, normally
distributed with zero mean and standard deviation oy,
and Oy, respectively. Consequently, log SA(T),; is
modeled as a normal random variable with mean
log SA(T),,;(M,R,0) and standard deviation o7, where
O’% = Uiznler + Uizntra'

If hazard assessment at two or more sites at the same time
is of concern, the joint probability density function for the
logarithms of IM at all locations can be conveniently modeled
with a multivariate normal distribution (e.g., Jayaram and
Baker, 2008). In this case, it is assumed that the logarithms of
IM form a Gaussian random field (GRF), defined as a set of
random variables, one for each site u in the study area SeR?.
In particular, ground-motion parameters at n spatial locations
up,, {p =1,---,n}, are modeled as a collection of random
variables characterized by a mean vector provided by the
GMPE and a covariance matrix, ¥, defined as in

r= Oiznter o -+ Uizntra
1 1 1
1 p(hi2) p(hi,)
h | S :
p( .21) . . ' , (2)
p(hnl) p(hnZ) o 1
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where the first term produces perfectly correlated interevent
residuals (Malhotra, 2008), while the second term (symmetri-
cal) produces spatially correlated intraevent residuals. In
equation (2), such a correlation is only a function of the
separation distance & (under the hypothesis of second-order
stationarity and isotropy of the GRF); that is, the spatial
heterogeneity does not depend on the direction considered.

The covariance matrix typically depends on parameters
obtained from a non-negative definite spatial parametric cov-
ariance model (Cressie, 1993). In this work, as also assumed
in Esposito and Iervolino (2011), spatial correlation was es-
timated using all data available from different earthquakes
and regions (deemed homogeneous) differently from studies
focusing on earthquake-specific data (e.g., Jayaram and
Baker, 2009).

Semivariograms and Correlation Functions

A common tool to quantify the variability of spatial data
is the semivariogram, ;(h). It is used to model the covar-
iance structure of GRF through mathematically tractable
functions fitted to empirical observations. Under the hypoth-
esis of second-order stationary and isotropy mentioned
above, it is defined as in

7j(h) = Var(e)) - [1 = p;(R)], 3)

where Var(g;) is the homoscedastic variance of intraevent
residuals and p;(h) denotes the spatial correlation coefficient
between intraevent residuals at two generic sites separated
by A distance.

The estimation of correlation based on semivariograms
usually develops in three steps:

1. computing the empirical semivariogram', y(h);

2. choosing a functional form for curve fitting;

3. estimating the parameters of the chosen function-fitting
empirical data.

Regarding point (1): empirical semivariograms are com-
puted as a function of site-to-site separation distance, with
different possible estimators. The classical estimator is the
method-of-moments (Matheron, 1962), which is defined,
for an isotropic random field, as in

1

0= 2w

Y @+ ) —c@P. 4

N(h)

where e(u + h) — €(u) is the difference between intraevent
residuals at sites separated by & distance value, N(h) is the
set of pairs of sites, separated by the same / distance in the
dataset, at which the residuals of interest are measured, and
|N(h)| is the cardinal of N(h).

' Assuming a common semivariogram for different events, that is, invariant
through earthquakes, allows us to neglect for subscript j in the following
equations.
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Since this estimator can be badly affected by atypical
observations (Cressie, 1993), Cressie and Hawkins (1980)
proposed a more robust, in the statistical sense (i.e., less sen-
sitive to outliers) estimator, equation (5). Both estimators are
used in the following for the evaluation of intraevent spatial
correlation of SA(T),

4
s =3[y Dletw+ - cwre]/

N(h)

0.494
(0457 + ) )

To compute the empirical semivariogram, it is necessary,
when dealing with earthquake records, to define tolerance
bins around each possible % value (this allows to divide data
in classes, based on a similar concept of histograms to fit
known probabilistic models to normalized observed fre-
quency). The selection of distance bins has important effects:
if the size is too large, correlation at short distances may be
masked; conversely, if it is too small, empty bins, or bins
with small numbers of samples, may lead to poor estimates.
A rule of thumb is to choose the maximum bin size as a half
of the maximum distance between sites in the dataset and to
set the number of bins so that there are at least 30 pairs per
bin (Journel and Huijbregts, 1978).

Point (2), concerning the interpretation of the experi-
mental semivariogram, consists in the identification of a
model among the family of functions able to capture and
emulate its trend. The three basic stationary and isotropic
models are exponential, spherical, and Gaussian (Goovartes,
1997). In particular, the exponential model, which is the most
common one in literature, is described as

() = o+, (1=eMP), Q)

where c is the nugget, that is, the limit value of the semi-
variogram when # tends to zero, c, is the sill, or the popula-
tion variance of the random field (Barnes, 1991), and b is the
practical range, or the correlation length, defined as the in-
tersite distance at which ~y(h) is equal to 95% of the sill, or in
other words, the distance at which the correlation may be
considered technically lost and residuals of ground-motion
intensity may be considered independent (under the GRF
assumption).

Regarding point (3), several goodness-of-fit criteria have
been proposed in geostatistical literature to find the best
parametric model. Studies dealing with earthquake data
sometimes use visual or trial-and-error approaches in order
to appropriately model the semivariogram structure at short
site-to-site distances, where engineering significance is more
important (Jayaram and Baker, 2009). In this work, experi-
mental semivariograms are fitted using recursively the least
squares method (LSM) on data obtained with the robust
estimator (to follow).
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Estimating Correlation on Multievent Data

Empirical semivariograms are computed starting
from normalized intraevent residuals for a single earthquake
J and a site p, as €}, = €pj/0p, Where o, is the standard
deviation of the intraevent residual at the site p (in the
study, the intraevent standard deviation is common for all
sites, consistent with GMPEs used to compute residuals).
The standardization enables one to avoid the estimation of
the sill, as it should be equal to one; therefore, equation (3)
becomes

Y(h) = 1= p(h), (7

where the superscript represents an empirical estimate. Note
that there are different alternatives for standardization (e.g.,
Goda and Atkinson, 2010; Jayaram and Baker, 2010), but
results are not significantly affected by a choice with respect
to another (e.g., Esposito and Iervolino, 2011).

Normalized-intraevent residuals from multiple events
(and regions) are then pooled to fit a unique correlation mod-
el. This is because geostatistical estimation needs a relatively
large number of data to model the semivariogram (i.e., a
number of records to have more than 30 pairs in each % bin),
which are not available for individual events in the chosen
datasets.

The use of all data implies the assumption of the same
isotropic semivariogram with the same parameters for all
earthquakes; therefore, the experimental semivariogram be-
comes that of

1
) = 5——e ) ey —enils ®)
2|N(h)| 1% pJj q]

where [N (h)| is the number of pairs in the specific 4 bin from
all earthquakes. Note that individual events are kept sepa-
rated in computing the empirical semivariogram, that is,
£,; — €,; differences are taken considering only residuals
from the same earthquake without mixing up the events.

Spatial Correlation Models of Spectral Accelerations
from ESD and ITACA

Analysis and Results

The considered recordings from the ESD data exactly
correspond to data used in Esposito and Iervolino (2011);
that is, the records (from earthquakes for which more than
one record was available) used to fit the Akkar and Bommer
(2010) GMPE. For the ITACA dataset, records employed are
those used to fit the Bindi ez al. (2011) GMPE, which is more
recent than Bindi et al., (2010), used in the previous study. In
particular, the ITACA dataset considered herein is comprised
of 763 ground motions from 97 events over the 4-6.9 mag-
nitude range (moment magnitude) and characterized by
source-to-site distance (i.e., the closest horizontal distance
to the vertical projection of the rupture, the Joyner—Boore
distance, Rj,) up to 196 km.
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In order to have at least 30 pairs per bin and a stable
trend of correlation, the experimental semivariograms were
obtained using a bin width of 2 km for the ITACA dataset
and 4 km for ESD the dataset. (In Esposito and Iervolino
[2011], the tolerance bin for ITACA was 1 km due to the
much larger dataset used to fit the Bindi et al. [2010], GMPE
used in that case.) Characteristics of the two datasets and dis-
tribution of data pairs as a function of separation distance
bins are shown in Figure 1.

For the ESD dataset, the estimation was performed for 9
structural periods ranging between 0.1 s and 2.85 s. Because
the GMPE used to obtain intraevent residuals refers to the
geometric mean of horizontal components, the correlation
was estimated for this IM.

Both classical and robust estimators discussed above
were used; no significant differences, as expected, were found
in the shape of the experimental semivariogram. The robust
estimator was considered to fit the correlation function.

The exponential model was chosen to fit empirical
points because this model is widely adopted in literature.
Moreover, the choice of using the same model for all periods
allows for comparison of results and to investigate the pos-
sible dependency of the model parameters on the fundamen-
tal period. Assuming that there is no nugget effect (as this
study does not investigate variations at a smaller scale with
respect to that of the tolerance), the only parameter to esti-
mate is the range b in equation (6). To this aim, LSM was
used iteratively (in two stages) to fit the model to the empiri-
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Figure 1.
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cal semivariogram. In particular, the range was defined start-
ing from the value estimated by the LSM applied on the
semivariogram until a half of the maximum separation dis-
tance of residuals in the dataset. The range obtained from this
step was then used as an upper bound for the limit distance to
apply LSM again on the semivariogram (i.e., until the dis-
tance from the first step). This latter step enabled an adjust-
ment of the fitting and obtaining the final practical—range
values, that is, the distances at which correlation may be
considered to be lost for intraevent residuals of each spectral
ordinate.

Following this procedure, the estimated ranges for the
exponential models were retrieved for the ESD dataset.
Figure 2 shows empirical semivariograms with both estima-
tors and fitted models. For the ITACA dataset, ranges for re-
siduals obtained from Bindi et al. (2011) were estimated
fitting the exponential model on semivariograms in Figure 3.
As a summary, practical ranges for both datasets are given in
Table 1.

It should be finally noted that for ITACA, the proposed
methodology was used in Esposito and lervolino (2011) to
estimate the horizontal PGA and PGV intraevent residuals’
correlation starting from a less recent GMPE and a larger
dataset that includes the one used in the present study. As
a consistency check, PGA and PGV correlation was reesti-
mated herein. The resulting ranges are very similar to that of
the mentioned study; that is, 10.8 km versus 11.5 km for
PGA, and 13.7 km versus to 14.5 km for PGV, respectively.
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(a) The European Strong-Motion Database subset with respect to magnitude (M), source-to-site distance (R ;,) and local site

conditions: rock (3), stiff soil (2), soft soil (1), and very soft soil (0); (b) the Italian Accelerometric Archive strong-motion subsets with respect
M, Rj, and local site conditions according to Eurocode 8 (2004); (c) histograms of the number of data pairs as a function of site-to-site
separation distance bin (4 km) for the European dataset; (d) histograms of the number of data pairs as a function of site-to-site separation

distance bin (2 km) for the Italian dataset.
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Empirical semivariograms and fitted exponential models for the European Strong-Motion Database.
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Empirical semivariograms and fitted exponential models for the Italian Accelerometric Archive.

The slight difference may also be related to the bin width
used in the estimation of empirical semivariograms (1 km
versus 2 km considered herein).

Discussion

Empirical results demonstrate that correlation length
tends to increase with period, except for high frequencies

at which there is no clear trend. This seems to be consistent
with past studies of ground motion coherency (Zerva and
Zervas, 2002). In fact, the coherency describes the degree
of correlation between amplitudes and phases angles of
two-time histories at each of their component frequencies.
Considering that coherency decreases with increasing dis-
tance between measuring points and with increasing fre-
quency, it may be reasonable to expect more coherent
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Table 1
Estimated Ranges for the European Strong-Motion
Database (ESD) and the Italian Accelerometric
Archive (ITACA)

Dataset Period (s) Range (km)

ESD 0.1 13.7
0.2 11.6
0.3 153
0.5 12.5
1 339
1.5 27.0
2 39.0
2.5 40.5
2.85 48.8

ITACA 0.1 11.4
0.2 9.0
0.3 13.2
0.5 11.9
1 17.8
1.5 25.7
2 33.7
PGA 10.8
PGV 13.7

ground motion, as SA evaluated at longer periods exhibits
more correlated peak amplitudes. This same issue was also
discussed in Jayaram and Baker (2009) where generally the
estimated ranges increased with period.

Two simple linear-predictive models were fitted using
LSM in order to capture the trend of the range (in km) as
a function of structural period® (in seconds),

b)) =d +d,-T, )

where models parameters d; and d, are equal to 11.7 and
12.7, respectively, for the ESD dataset and 8.6 and 11.6, re-
spectively, for the ITACA dataset. In Figure 4a these linear
functions are shown?; thus, based on the results provided, the
correlation between normalized intraevent residuals sepa-
rated by h is obtained as p(h, T) = =3/,

Finally, in Figure 4b, to compare results shown herein
with existing studies, estimated ranges are compared with
some correlation lengths available in literature. Those mod-
els were chosen considering the Californian dataset from
Goda and Hong (2008), the “all earthquake” model from
Hong et al. (2009), and the “predictive model” based on
all earthquakes from Jayaram and Baker (2009).

Results of this study seem to be comparable with ranges
estimated in literature in terms of both trend as a function of
vibration period T, and the estimated values of correlation
length. It is worth mentioning, for completeness, that an

*To fit predictive models, PGA ranges derived in Esposito and Iervolino
(2011) for ESD, and herein for ITACA, were included.

*Differences among the two datasets appear to be not especially signifi-
cant; however, they may be attributed to different distributions of magnitude,
yet it is difficult to quantitatively investigate this issue because of the rela-
tively small number of records for each magnitude event available.
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Figure 4. (a) Linear models and estimated ranges for the Eur-

opean Strong-Motion Database (ESD) and for the Italian Accelero-
metric Archive (ITACA); (b) comparison with available models
from literature.

exception in this respect is represented by the Goda and
Atkinson (2009, 2010) models in which ranges are larger
(never below about 60 km) and the dependence of the cor-
relation on period is not significant.

Conclusions

The study presented complements authors’ previous
work on the assessment of intraevent spatial correlation of
residuals of ground-motion intensity measures based on
European data. In particular, the focus was elastic SA at per-
iods ranging between 0.1 s and 2.85 s. Subsets of the ITACA
and the ESD were used to compute residuals starting from
GMPE:s calibrated on the same data.

Consistent with the available literature on the topic,
hypotheses of stationarity and isotropy of random fields were
retained to compute experimental semivariograms of standard-
ized intraevent residuals (with respect to the standard devia-
tion estimated by the GMPEs). Moreover, because only a
relatively small number of records for each earthquake were
available, records from multiple events and regions were
pooled to develop the models.

Exponential correlation models were calibrated from
empirical data. The choice of using the same functional form
(exponential) for all periods allowed for a comparison of re-
sults and the investigation of possible dependency of the
parameters on the period. In fact, it was found that practical
ranges tend to increase as structural period increases, and
simple linear functions were fitted to capture this trend.
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Moreover, results were also compared with results from main
references on the same topic, finding, in general, consistency.
Starting from the correlation models provided, it is pos-
sible to define the joint probability density function for
SA(T) at all locations in a region of interest for earthquake
engineering and seismic risk assessment applications.

Data and Resources

The ground motions and related information were pro-
vided by the authors of Akkar and Bommer (2010) and Bindi
et al. (2011) GMPEs for ESD (http://www.isesd.hi.is/) and
ITACA (http://itaca.mi.ingv.it/ItacaNet/) datasets, respec-
tively. In particular, this study considered subsets of data
used to fit these GMPEs; that is, only free field records from
earthquakes for which more than one record was available.
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